Rule-based Analysis of Behaviour Learned by
Evolutionary and Reinforcement Algorithms

Stanislav Slusny, Roman Neruda, and Petra Vidnerova

Institute of Computer Science
Academy of Sciences of the Czech Republic
Pod vodarenskou vézi 2, Prague 8, Czech Republic
{sl usny, roman, petra}@s. cas. cz

Abstract. We study behavioural patterns learned by a robotic agentdansiof
two different control and adaptive approaches — a radialstfasiction neural
network trained by evolutionary algorithm, and a tradiibreinforcement Q-
learning algorithm. In both cases, a set of rules contrgltime agent is derived
from the learned controllers, and these sets are comparisdshown that both
procedures lead to reasonable and compact, albeit raffenedt, rule sets.

1 Introduction

We study intelligent behaviours that arise as a result ob@mgs interaction with its en-
vironment. The ultimate goal of the process is to developanalied and autonomous
agent with a high degree of adaptive possibilities [9]. Twainmapproaches to tackle
this problem are currently the traditional reinforcemesatrhing (RL) [13] and evolu-
tionary robotics (ER) [8]. Both these approaches fall iti@ $ame category of learning
algorithms that are often used for tasks where it is not pés$d employ more spe-
cific supervised learning techniques. Designing an agerttaomechanism is a typical
example of such a problem where an instant reward of ageionads not available.
We are usually able to judge positive or negative behaviattiems of an agent (such
as finding a particular spot in a maze or hitting a wall) andwate it on the coarser
time scale. This information is used by different learnitgpaithms of reinforcement
type to strengthen successful partial behaviour pattemsin the course of adaptation
process, to develop an agent solving a given task.

The Q-learning approach considers discrete spaces olyp@sgjent states and ac-
tions, and in the course of adaptation creates approximatibthe optimal strategy —
a way to select a particular action in a given state of an ageact that the potential
(delayed) reward from the environment is maximized.

The ER approach attacks the problem through a self-orgémizprocess based
on artificial evolution [5]. Control mechanisms of an agerd typically based on a
neural network which provides direct mapping from agenssento effectors. Most
of the current applications use traditional multi-layergaptron networks [4]. In our
approach we utilize local unit network architecture calladial basis function (RBF)
network which has competitive performance, more learniptjoas, and (due to its
local nature) better interpretation possibilities [11],12

2 Reinforcement Learning

Let us consider an embodied agent that is interacting wéletivironment by its sensors
and effectors. The essential assumption of RL is that thatdges to be able to sense
rewards coming from the environment. Rewards evaluatentakéons, agent’s task is
to maximize them. There has been several algorithms swggyestfar. We have used
the Q-learning algorithm, which was first breakthrough of [R4].

The next important assumption is that agent is working inréie time steps. Sym-
bol S will denote finite discrete set of states and symHAdlet of actions. In each time
stept, agent determines its actual state and chooses one actierefore, agent’s life
can be written as a sequenggigrooiairy - . . Whereo, denotes observation through
the sensorsg; € A action and finally symbol; € R representseward that was
received at time. The most serious assumption of RL algorithms isMeakov prop-
erty, which states, that agent does not need history of previbasrgations to make
decision. The decision of the agent is based on the lastdifmno; only. When this
property holds, we can use theory coming from the fielMafkov decision processes
(MDP). The direct implication of Markov property is the edjtyaof states and obser-
vations. The strategy, which determines what action is chosen in particular stae
be defined as function : S — A, wheren(s;) = a;.

Now, the task of the agent is to find optimal strategy Optimal strategy is the
one, that maximalizes expected reward. In MDP, single ogitoleterministic strategy
always exists, no matter in what state has the agent startedquantityV™(s;) is
called discounted cumulative reward. It is telling us, wieatard can be expected, if
the agent starts in statg and follows policyr: V™ (s;) = ry +y7rip1 +Y2riao + ... =
D im0 VT

Here0 < v < 1is a constant that determines the relative value of delapesiig
immediate rewards. Optimal strategy can now be defined as* = argmax {V " (s),
Vs € S}. To simplify the notation, let us writ& *(s) instead of symbol/™ , value
function corresponding to optimal strategy: V*(s) = max, V™(s).

1. LetS be the finite set of states antfinite set of actions.
Vse S,ae A:Q(s,a) =0
2. Process sensors and obtain state
3. Repeat:
— Choose and carry out actien
Receive rewara
Obtain new state’
- Q(s,a) «— r +ymax, Q(s',a’)

— 5« ¢§

Algorithm 1: Q-learning.

The Q-learning algorithm was the first algorithm to compytéroal strategyr*
[14]. The key idea of the algorithm is to define the so-cal@dalues Q™ (s,a) is

AN

Fig. 1. A scheme of a Radial Basis Function Netwoyk,is the output of the s-th output unip.
is an activation function, typically Gaussian functipfs) = e,

the expected reward, if the agent takes actiom states and then follows policy
7w Q™ (s,a) = r(s,a) + yV7(s'), wheres’ is the state, in which agent occurs tak-
ing actiona in states (s' = 4(s,a)). Q-learning algorithm (Algorithm 1) guarantees
convergence to optimal values &f* (s, a), if Q-values are represented without any
function approximations (in table), rewards are boundetlerery state-action pair is
visited infinitely often. To fulfil the last condition, evegction has to be chosen with
non-zero probability. Probability?(a|s) of choosing actioru in states is defined as
[6]: P(ai|s) = k@(=a0) /37 k9(=3), where constant > 0 determines exploitation-
exploration rate. Big values @&f will make agent to choose actions with above average
values. On the other hand, small values will make agent toshactions randomly.
Usually, learning process is started with smiglthat is slightly increasing during the
course of learning. Optimal valu&s‘s can be obtained fror®*(s, a) by the equality:
V*(s) = maxy Q(s,a’).

3 Evolutionary Learning of RBF Networks

Evolutionary robotics combines two Al approaches: neuetvorks and evolutionary
algorithms. The control system of the robot is realized bgaral network, in our case
an RBF network. Itis difficult to train such a network by tréaihal supervised learning
algorithms since they require instant feedback in each stbjzh is not the case for
evolution of behaviour. Here we typically can evaluate eaghof a robot as a good
or bad one, but it is impossible to assess each one move asogdmt. Thus, the
evolutionary algorithm represent one of the few possibgihow to train the network.

TheRBF networK10, 7, 1], used in this work, is a feed-forward neural netaith
one hidden layer oRBF unitsand linear output layer. The network function is given
in Eq. (1) (see Fig. 1). The evolutionary algorithms (EA)3brepresent a stochastic
search technique used to find approximate solutions to ggtion and search prob-
lems. They work with a population dafidividualsrepresenting feasible solutions. Each
individual is assigned &itnessthat is a measure of how good solution it represents.
The evolution starts from a population of completely randodividuals and iterates
in generations. In each generation, the fitness of eachithdiVis evaluated. Individu-
als are stochastically selected from the current populgtiased on their fithess), and
modified by means of genetic operators to form a new generatio

In case of RBF networks learning, each individual encodesRBF network. The
individual consists of blocks:Igrpr = {B1, ..., Br}, whereh is a number of hidden

units. Each of the blocks contains parameter values of ond- RRBiits,

B = {cki1,- -+, Chny bk, Wi, - .., Wem }, Wheren is the number of inputsy is the
number of outputse, = {ck1,...,ckn} IS the k-th unit's centre b, the width and
wy, = {wg1, - .., wpm } the weights connecting-th hidden unit with the output layer.

The parameter values are encoded using direct floating-poaoding. Concerning the
genetic operators, the standaolirnament selectigrl-point crossoverand additive
mutatiort are used. The fitness function should reflect how good thet isho given
tasks and so it is always problem dependent. Detailed gigeriof the fithess function
is included in the experiment section.

4 Experimental Framework

In order to compare performance and properties of descalygithms, we conducted
simulated experiment. Miniature robot of e-puck type [2]swieained to explore the
environment and avoid walls. E-puck is a mobile robot suigzbby two lateral wheels
that can rotate in both directions and two rigid pivots. Thasory system employs
eight active IR sensors distributed around the body. Sensturn values from interval
[0,4095]. Effectors accept values from interjal1000, 1000]. The higher the absolute
value, the faster is the motor moving in either direction.

Table 1. Sensor values and their meaning.

Sensor value Meaning Sensor value Meaning
0-50 NOWHERE 1001-2000 NEAR
51-300 FEEL 2001-3000 VERYNEAR
301-500 VERYFAR 3001-4095 CRASHED
501-1000 FAR

Instead o#1095 raw sensor values, learning algorithms worked Wititreprocessed
perceptions (see Tab. 1). Effector’s values were proceisssitnilar way: instead of
2000 values, learning algorithm was allowed to choose from \&[u800, -100, 200,
300, 500]. To reduce the state space even more, we groupedgbaiensors together
and back sensors were not used at all. Agent was trained Birthdated environment
of size 100 x 60 cm and tested in more complex environmenrefki0 x 100 cm. We
used Webots [15] simulation software.

In the first experiment, we have used Q-learning algorithoessribed in Section 2.
Each state was represented by a triple of perceptions. FEongbe, the state [NEAR,
NOWHERE, NOWHERE] means, that the robot sees a wall on itsiéé only. Action
was represented by a pair [left speed, right speed].

Learning process was divided into episodes. Each episateatomost 1000 sim-
ulation steps. At the end of each episode, agent was movedeidrom 5 randomly
chosen positions. Episode could be finished earlier, if agienthe wall. The learning
process was stopped after 10000 episodes. Parametss set td).3.

! Additive mutation changes the values by adding small vaamelomly drawn from{—e, ¢).

Fig. 2. Simulated environments for agent training and testing: g@rm was trained in the sim-
ulated environment of size 100 x 60 cm. b) Simulated testimgrenment of size 110 x 100
cm.

In the second experiment the evolutionary RBF networks \appied to the same
maze-exploration task (see Fig. 2). The network has 3 inpit$,u5 hidden Gaussian
units, and 2 output units. The three inputs correspond toedheled sensor values (two
left sensors, two front sensors, two right sensors), whiehpaeprocessed in the way
described in Tab. 1. The two outputs correspond to the leftreyiht wheel speeds and
before applying to robot wheels they are rounded to one ofi8l values.

Fitness evaluation consists of two trials, which differ lgeat’s starting location
(the two starting positions are in the opposite ends of theenaAgent is left to live
in the environment for 800 simulation steps. In each stepreetcomponent score is
calculated to motivate agent to learn to move and to avoitbobes:

Trj = Vie,j(1 = /AVi) (1 — ik). 2

The first component}, ; is computed by summing absolute values of motor speed
(scaled to{—1, 1)) in the k-th simulation step angtth trial, generating value between
0 and 1. The second componéit- ,/AV}, ;) encourages the two wheels to rotate in
the same direction. The last componéht- iy, ;) encourage obstacle avoidance. The
valueiy ; of the most active sensor (scaled(th 1)) in k-th simulation step ang-th
trial provides a conservative measure of how close the ristiotan object. The closer
it is to an object, the higher is the measured value in rang® .0 to 1.0. Thus,T}, ;

is in range from0.0 to 1.0, too. In thej-th trial, scoreS; is computed by summing

normalized trial gaing, ; in each simulation stef; = gis >y, Tk.;. To stimulate
maze exploration, agent is rewarded, when it passes throoglof predefined zones.
There are three zones located in the maze. They can not bedsbysan agent. The

rewardA; € {0,1,2,3} is given by the number of zones visited in tji¢h trial. The

fitness value is then computed As= Zjil Aj + Zjil % where K = 2 is the
number of trials.

5 Experimental Results

Table 2 contains states with biggest and smallest Q-valoégteeir best action. The
states with biggest Q-values contain mostly perception NHBRE. On the other side,
states with smallest Q-values contain perception CRASHED.

Learned behaviour corresponds to obstacle avoidance ioginaVhe most inter-
ested are the states, which contain perception "NEAR”. Etqzbrules "when obstacle
left, then turn right” can be found. States without peraeptiNEAR” were evaluated
as safe — even if bad action was chosen in this state, it caiikéd by choosing good
action in next state. Therefore, these actions do not telllasabout agent’s behaviour.
On the other side, action with perception VERYNEAR leadedhi® crash, usually.
Agent was not able to avoid the collision.

Table 2.5 states with biggest and smallest Q-values and their béehac

State Action Q-value

left front right

NOWHERE NOWHERE VERYFAR [500, 300] 5775.71729
NOWHERE NOWHERE NOWHERE [300, 300] 5768.35059
VERYFAR NOWHERE NOWHERE [300, 500] 5759.31055
NOWHERE NOWHERE FEEL [300, 300] 5753.71240
NOWHERE VERYFAR NOWHERE [500, 100] 5718.16797
CRASHED CRASHED CRASHED [300, 500] -40055.38281
CRASHED NOWHERE CRASHED [300, 300] -40107.77734
NOWHERE CRASHED VERYNEAR [300, 500] -40128.28906
FAR VERYNEAR CRASHED [300, 500] -40210.53125
NOWHERE CRASHED NEAR [200, 500] -40376.87891

The experiment with evolutionary RBF network was repeat@dirhes, each run
lasted 200 generations. In all cases the successful belravés found, i.e. the evolved
robot was able to explore the whole maze without crashingeantalls. Table 3 shows
parameters of an evolved network with five RBF units. We cateustand them as rules
providing mapping from input sensor space to motor contiolever, these ‘rules’
act in accord, since the whole network computes linear sutheotorresponding five
Gaussians.

The following Tab. 4 shows rules from actual run of the robothe train arena.
The nine most frequently used rules are listed. It can bethedthis agent represents a
typical evolved left-hand wall follower. Straight moveniéna result of situations when
there is a wall far left, or both far left and right. If the rdts@es nothing, it rotates left-
wise (rule 2). The front collision is avoided by turning rigas well as a near proximity
to the left wall (rules 6-8).

The evolved robot was then tested in the bigger testing niekehaved in a con-
sistent manner, using same rules, demonstrating geredialiof the behaviour trained
in the former maze.

Table 3.Rules represented by RBF units (listed values are origiB&l Retwork parameters after

discretization).

Sensor Width Motor
left front right left right
VERYNEAR NEAR VERYFAR 1.56 500 -100
FEEL NOWHERE NOWHERE 1.93 -500 500
NEAR NEAR NOWHERE 0.75 500 -500
FEEL NOWHERE NEAR 0.29 500 -500
VERYFAR NOWHERE NOWHERE 0.16 500 500

Table 4. Most important rules represented by trained RBF networkthen semantics.

Sensor Motor
left front right left right
FEEL NOWHERE NOWHERE 500 500 straight forward
NOWHERE NOWHERE NOWHERE 100 500 turning left
VERYFAR NOWHERE NOWHERE 500 500 straight forward
FEEL NOWHERE FEEL 500 500 straight forward
NOWHERE NOWHERE FEEL 100 500 turning left
FAR NOWHERE NOWHERE 500 300 turning right
FEEL FEEL NOWHERE 500 300 turning right
NEAR NOWHERE NOWHERE 500 100 turning right

Both approaches where successful in finding the strategypéaie exploration. The
200 generations of evolutionary learning needed on aveB&88e fithess evaluations
(corresponds approx. 14 115 RL epochs). To acquire theeteb&haviour, RBF net-
works needed from 529 to 2337 fithess evaluations.

6 Conclusion

We have presented experiments with RL and ER algorithmsitigia robot to explore
a maze. It is known from the literature, and from our previaosks, that this problem
is manageable by both RL and ER learning with different nlergjresentations of
the control mechanism. Usually, in such a successful lagrapisode, an agent with
general behavioural pattern emerges that is able to exptesgously unseen maze in
an efficient way.

In this work we have focused on comparison of rules derivedragitional RL
approach and by the evolved neural networks. We have chbedRBF network archi-
tecture with local processing units. These networks ardyetasinterpret in terms of
rules than traditional perceptron networks. A simple asialghows that both RL and
ER resulted in arules that are reasonable, and easy tolietesphigher-level behaviour
traits. The RL approach shows rational obstacle avoidambie the neuro-evolution
approach comes with more compact individuals that can talglelassified as left-
hand wall followers (or right-hand wall followers, respigety).

As we have seen, different learning approaches can leadferedit behaviours.
Agents trained by evolutionary algorithms usually show enbehaviours. Often,
changing basic environment constraints (dimensions af@mment, for example) can
make learned strategy fail [8]. In our experiment, learrieatagy is simple (it can be de-
scribed by several rules) but effective. Agent learned big&dning algorithm showed
more complex behaviour. It can cope with situations, in Wwhagent trained by ER
would fail. However, effective wall following strategy wast discovered.

In our further work, we would like to take advantages of bogipr@aches. The
basic learning mechanism will be evolutionary algorithrehBvioural diversity could
be maintained by managing population of agents that userdiit learning approaches
(RBF networks and reinforcementlearning). In both aldwnis used, experience can be
expressed as a set of rules. Taking this into account, gergtrators could be designed
to allow simple rules exchange mechanisms.

7 Acknowledgements

This research has been supported by the the project 1LETQ809®f the Program In-
formation Society (of the Thematic Program Il of the NatibRasearch Program of the
Czech Republic) “Intelligent Models, Algorithms, Methaaisd Tools for the Semantic
Web Realization” and by the Institutional Research Plan 218800504 "Computer
Science for the Information Society: Models, Algorithmgpplications”.

References

1. D.S.Broomhead and D. Lowe. Multivariable functionaéiolation and adaptive networks.
Complex System2:321-355, 1988.

. E-puck, online documentation. http://www.e-puck.org.

D.B. Fogel.Evolutionary Computation: The Fossil RecoMIT-IEEE Press, 1998.

. S. Haykin.Neural Networks: a comprehensive foundati®nentice Hall, 2nd edition, 1999.

. J. Holland.Adaptation In Natural and Artificial System®IIT Press, 1992.

. T. Mitchell. Machine Learning McGraw Hill, 1997.

. J. Moody and C. Darken. Fast learning in networks of Igeaalhed processing unitbleural

Computation 1:289-303, 1989.

8. S. Nolfi and D. Floreandzvolutionary Robotics — The Biology, Intelligence and téagy
of Self-Organizing MachineShe MIT Press, 2000.

9. R. Pfeifer and Ch. Scheiddnderstanding IntelligenceThe MIT Press, 2000.

10. T. Poggio and F. Girosi. A theory of networks for approaiion and learning. Technical
report, Massachusetts Institute of Technology, Cambrilife USA, 1989. A. I. Memo No.
1140, C.B.1.P. Paper No. 31.

11. S. Slusny and R. Neruda. Evolving homing behavioutdam of robotsComputational In-
telligence, Robotics and Autonomous Systems. Palmerstidh NViassey University2007.

12. S. Slusny, R. Neruda, and P. Vidnerova. Evolutioniofpse behavior patterns for au-
tonomous robotic ageniSystem Science and Simulation in Engineering. - : WSEAS,Pres
pages 411-417, 2007.

13. S. Richard Sutton and G. Andrew BartBeinforcement Learning: An IntroductiorThe
MIT Press, 1998.

14. C.J. C. H. Watkins. Learning from delayed rewareh.D. thesis1989.

15. Webots simulator. on-line documentation http://wwiverbotics.com/.

NOUTAWN

