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Anotace

Samostatně pracuj́ıćı bezpečnostńı model pro dynamická

distribuovaná prostřed́ı

Ing. Roman Špánek

Disertačńı práce obsahuje návrh nového bezpečnostńıho modelu pro dy-
namické a distribuované systémy, ve kterých se klasické bezpečnostńı mecha-
nismy použ́ıvané v centralizovaných systémech potýkaj́ı s celou řadou problé-
mů. Jedńım z úspěšných model̊u pro zabezpečeńı distribuovaných systémů
jsou tzv. reputačńı systémy, které umožňuj́ı budováńı d̊uvěry mezi entitami.
Následné ř́ızeńı př́ıstupu k dat̊um či službám je pak založeno na mı́̌re d̊uvěry
mezi entitami. Pokud je d̊uvěra dostatečně vysoká, je př́ıstup k dat̊um či
službám možné povolit nebo doporučit.
Disertačńı práce je doplněna o návrh a experimentálńı ověřeńı bezpečnostńıho
modelu navrženého speciálně pro dynamické distribuované systémy s velkým
počtem uživatel̊u. V dynamických systémech může docházet k častým změnám
v úrovni d̊uvěry mezi entitami, entity mohou do systému přicházet nebo na-
opak ze systému odcházet. Takovéto dynamické systémy představuj́ı problémy
i pro tradičńı reputačńı systémy. Představovaný bezpečnostńı systém se proto
lǐśı od známých reputačńıch systémů v chápáńı d̊uvěry mezi entitami. V našem
modelu je d̊uvěra společná skupině entit a ne pouze konkrétńı dvojici entit.
Takový model poskytuje lepš́ı podporu pro budováńı d̊uvěry předevš́ım v dy-
namických systémech s velkým počtem entit, kde nelze využ́ıvat pouze osobńı
vztahy mezi entitami.

Vzhledem k odlǐsnému chápáńı d̊uvěry použ́ıvá námi navrhovaný bezpe-
čnostńı model pro popis d̊uvěry mezi entitami matematického aparátu hyper-
graf̊u. Bezpečnost́ı model je tvořen námi navrženými a ověřenými algoritmy
pro transformaci obecného grafového vstupu do modelu hypergraf̊u, algoritmu
pro správu dynamických aspekt̊u systému a také bezpečnostńıho podsystému.

Navrhovaný bezpečnostńı model je pilotně implementován v experimentálńı
implementaci SecGrid, která je také použita pro experimentálńı ověřeńı všech
část́ı modelu. Experimenty ukazuj́ı, že námi navrhovaný model překonává
tradičńı reputačńı systémy v dynamických systémech s velkým počtem entit.

Kĺıčová slova: reputačńı systémy, bezpečnost, d̊uvěra, distribuované systémy
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Annotation

Self-organizing and Self-monitoring Security Model for Dynamic

Distributed Environments

Roman Špánek

The thesis deals with security hazards in distributed environments where
traditional centralized approaches are only of limited serviceability. One of
the very successful model for treating security and access management in dis-
tributed systems are so called reputation systems. The main goal of the rep-
utation systems is to provide entities in the environment with mechanisms for
inferring and building trust consequently used for access control. If the trust
between two entities is high enough, transactions are likely to be allowed.

The thesis proposes a new security model with trust management system
for dynamic and distributed environments with huge number of entities. In
dynamic systems new entities or relationships are likely to emerge or existing
entities or relationships may often disappear. Such dynamics pose severe prob-
lems even for traditional reputation systems. Therefore our approach differs
from the traditional ones in the way adopted for establishment and manage-
ment of trust between entities – in our point of view trust is not assigned to
particular relationships but the trust is common for a group of entities. In this
way, our proposal significantly enhances ability to infer trust between entities
with no previous personal experiences with each other or in environments with
huge number of entities.

For the proposal differs in understanding of trust, it uses a hypergraph
model for representation of system of entities. The security model proposed
in the thesis contains two algorithms for transformation of a general input
graph structure into hypergraph model, an algorithm treating dynamics of the
distributed environment and a security subsystem.

Our experimental implementation SecGrid utilizes proposed algorithms and
it is used for experimental verification of the security models. The experiments
investigate ability of the transformation algorithms; in details the dynamic
part of our proposal together with the security subsystem proposed specially
for the hypergraph model. Experiments show that our model overcame the
traditional graph model in many ways especially in dynamic environments
with huge amount of entities.

Key Words: trust management systems, security, trust, distributed systems
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Chapter 1

Introduction

It is thought that humans evolution was started at the precise moment
when the first primogenitor used its hands to make a simple work. Even if
it might not be the true, the truth is that our primogenitor used to live in
groups. These groups were after some time enlarged and humans started to
live in crowds. These crowds were nothing but simple societies, the prede-
cessors of current complicated society spreading around the world with many
members and very complicated relationships. Although the evolution from
crowds to nowadays societies was a long and sometimes a painful process, at
least one thing has reminded in the limelight – the communication. Were it
not for the communication, it would have been very hard even unlikely to have
achieved the progress in society. It is not surprising then that many great
inventions have been in the field of the communication. The list might be
started with the typography going through the Bell’s telegraph and telephone
reaching the contemporary hi-tech wireless communication devices and the In-
ternet. The great success of the Internet, mobile phones or networking just
naturally testifies our assertion on the importance of the communication.

Taking aside for a moment the older inventions, let take a closer look at
recent progress in communication. At the beginning of the 20th century people
would not even think of devices that appeared several decades later. The huge
progress was started by research projects in the field of micro-technologies.
At first simple and huge computers were introduced with just few capabilities
compared to the computers of our days. As time moved on, the progress was
accelerating and micro-computers became smaller and more capable, leading
to a first personal computer appeared in the 80s.

But the microcomputers were not the only research area of great inven-
tions and improvements. Even computers despite their computational power
and abilities were limited in the same way as would be any isolated entity.
Therefore the first computer networks came into the world. Although these
first networks were very limited connecting just few computers in dozens me-
ters radius, it was the beginning of a rapid development. This development
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has brought the Internet as one of its most considerable results.
When the Internet became popular and personal computers were evolving

following the Moor’s law, communication was about to change medium and
devices. It was a moment when micro-technologies together with wireless net-
working technologies enabled a new type of networks and devices – the mobile
communication. At the beginning the mobile networks were simple, slow and
prone to many errors. In addition to that mobile devices were closer to weight
than to pocket devices for everyday use. Nevertheless the unceasing progress
and interest of the users led to currently available devices such as tiny mobile
phones, capable PDA (Personal Digital Assistance) or laptops. Moreover, the
capabilities of the mobile networks have been under continual improvement.

However, all the progress and the great success of the Internet and mobile
phones have also faced some severe problems. One of the most severe issues is
the task of treating the security.

Even thought the security is a problem being common to many research
and application areas, it becomes very important in the case of information
exchange systems. This is due to the fact that current information exchange
includes very often private information or information with a significant price.
Albeit the security task is sometimes considered as the one coping with the
encryption only, it should be treated differently, namely as consisting of several
subtasks.

In the following basic scenario we would like to make clear the fact that security
is not only a cryptography. Assume two distinct entities A and B. The entity B
requires very private information from the entity A. Such information exchange
requires at least the following:

• data formats for communication
• protocols for transmission of data
• encryption for securing transmission against the threat of tap.

Even thought this list might be seen as a complete one, in the following a
missing element will be identified. Let the mentioned tools are available and
secure enough1. At this point entities A and B are able to exchange the infor-
mation. Nevertheless A would probably mind sending the private information
to anybody. More probably the exchange will be restricted so that private
information will be available to the reliable entities only and non-private in-
formation will be distributed with no or little restrictions.
At this moment we can step back to the list given above and address the
missing element – the trust. Since trust is common for many research and
development areas many trust definitions have been proposed till now.

1Note that we overlook for the moment the fact that the last assumption is clearly odd
as no encryption can guarantee total invulnerability against unauthorized decryption.
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From these definitions we have adopted the one by Deutsch [1] leading to:

Definition 1

a) An individual is confronted with an ambiguous path, a path that can
lead to an event perceived to be beneficial or to an event perceived to be
harmful;

b) He perceives that the occurrence of these events is contingent on the be-
havior of another person; and

(c) He perceives the strength of a harmful event to be greater than the strength
of a beneficial event.

If he chooses to take an ambiguous path with such properties, he makes a
trusting choice; else he makes a distrustful choice.

Therefore the security task can be viewed as consisting of the two main
subtasks:

• encryption - strong cryptography algorithms for securing communica-
tion against the threat of tap, man-in-the-middle attack, etc.
• trust - trust between engaged entities simplifying the process of making

the decision whether to accept or reject a request.

The important point is that the mentioned subtasks should not be treated sep-
arately but rather considered as the cryptography providing formats, methods
and algorithms for the level of trust.

It is clear that research is very needed on both subtasks and should be
driven by common aims.

We have discussed above that an interaction or a communication between
entities with very limited knowledge about themselves can take place only
if trust between parties is high enough. Nevertheless trust is not a static
phenomena; humans are used to change their relationships on the fly as put
in harm’s way or security threats during their every day lives. Thence models
coping with trust as static property fail to be appropriate in human driven
communication.Thus, a dynamic model of trust is needed as new relationships
may emerge, existing relationship may disappear or level of trust may change
in time.

1.1 Motivation

The following extended basic scenario expresses the main motivation of this
thesis:

Assume entity (let entity to be a user in the following) A being asked for
personal information by user B. User A can reject the request, or accept it.

14



However, if user A cannot find out to whom the data will be sent (who user B
is), it should rather reject the request. This, however, will lead to the situation
when all similar requests are rejected, and consequently no communication is
allowed. On the contrary, if user A is able to find out who user B is, he will
make the decision whether share information or not much more easily. Simply,
if user B is a reliable person, the access is granted, otherwise rejected.

The fact stressed by this scenario is that users should bound access to private
information according to the level of trust between them 1. Therefore the main
aim of the thesis is to propose a stable system preserving overall security in
a distributed environment by supporting shared knowledge and experience in
groups of users. The important and novel point is the treatment of trust for
the whole groups of users, which differ from the current systems where trust is
treated for particular users. Furthermore, such system should be designed to
be able to handle a dynamic evolution of groups of users. In addition to that
the system should have distributed implementation with low time complexities.

User B (requiring

information)

User A (providing

information)

opt level of trust

[intersection_trust>=threshold]

[intersection_trust<threshold]

My Groups(set of groups of user B)

My Groups(set of groups of user A)

intersection:= calculate intersection(set of groups of user A, set of groups of user B)

intersection:= calculate intersection(set of groups of user B, set of groups of user A)

access granted

access granted

access rejected

access rejected

Figure 1.1.1: The Extended Motivation Scenario (describing private informa-
tion exchange between two users)

In Figure 1.1.1 the extended scenario of private information exchange given
above is shown in the UML interaction diagram format. This corresponds
precisely to the main motivation and the aim of the thesis.

1Note that terms “level of trust” and “trust” will be used in the thesis interchangeably.
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The figure shows two interacting users, user A and user B so that user
B is the consumer of the information provided by user A. At first users ex-
change sets of groups they are members of. Then both retrieve their own group
memberships and compute intersections – groups they are both members. If
both users find out that they are both members of trusted group(s) the ac-
cess is granted, rejected otherwise (shown in the figure in the opt block). The
important point is that users don’t use information valid for their particular
relationship, but group membership information for trust derivation.
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Chapter 2

Related Work

This chapter presents topics related to the thesis theme, the thesis is put
into the context and the importance of the topic is discussed.

2.1 Mobile Databases

In [2] authors mention a new trend in the evolution of the Internet according
to the recent progress in the mobile computing paradigm. The paper points to
the fact that human users on the Internet are becoming a minority compared to
the amount of artificial users or services communicating to themselves rather
than human users using their computers (with browsers). As the human users
are set a bit out, we can no longer assume only a pc-class device running a full
browser. Instead of pc-class devices, much smaller (typically hand-held size)
and less capable devices are to be expected to access the services. Examples
of such devices are cell phones, palm devices, home appliances, and embedded
systems (i.e. in cars). Some of these devices may stay stationary, but many
of them turn to be mobile. The fact that many current protocols and even
architectures (such as server/client) are not sufficient and appropriate under
assumption of mobile and less capable devices is obvious.

The mobile databases [3],[4],[5] paradigm corresponds well to the ideas
given above. Generally, the mobile database architecture allows users to ac-
cess and exchange information anywhere and at any time through pocket-size
mobile devices. Even thought the mobile databases have been a hot topic for
quite a short time, the achieved progress and its rapidity is indisputable. The
mobile networks have evolved from narrow band, error prone and highly un-
available networks to nowadays wide bandwidth networks available round the
world.
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Most people think of mobile databases as cellular networks, but the mobile
databases paradigm may consist of various architectures:

• cellular networks
• multihop wireless networks (ad-hoc networks)
• sensor networks

Although cellular networks consist of a few components (such as Mobile
Switching Center, Home Location Register, Visitor Location Register) we relax
most of them for the sake of simplicity. Instead, for our purposes, cellular
networks consist of some specialized nodes (base stations) and mobile nodes.
Base stations are equipped with sufficient capabilities designed to coordinate
and control all transmissions within their coverage area - a cell. They also
grant access to wireless channels in response to service requests received from
mobile nodes. Mobile nodes, on the contrary, are pocket-size mobile devices
intended to be terminals into cellular networks. The recent noticeable trend
in cellular networks is transformation from voice intended networks into wide
bandwidth data exchange networks (the generations of the networks starting
from 1G through 2G, 2.5G, 3G to 4G).

The primary characteristic of the ad-hoc network architecture [6],[7],[8],[9]
is the absence of any predefined (stationary) infrastructure. Ad-hoc nodes can
communicate directly with the nodes within their transmission range in the
peer-to-peer manner. Communication to distant nodes is achieved through
other nodes in the network in a multihop fashion. Thence, each ad-hoc node
acts as client as well as a router, storing and forwarding packets on behalf
of the other nodes. This results in a generalized wireless network that can
be rapidly deployed and dynamically reconfigured to provide on-demand net-
working solutions.

Sensor networks consist of possibly huge amount of sensors being gene-
rally equipped with a sensing unit, a radio transmitter, a processing unit and
a battery. The sensing unit provides measurement of the sensor vicinity and
transformation of the measurements into electric signal. The measured data
are processed by the processing unit and then sent via the radio transmitter
to a command center (sink). The sink is responsible for forwarding measured
data into common networks. Although sensor networks are in the essence very
similar to ad-hoc networks, there exist some limitations tightly connected with
sensor networks. Such limitations can be summarized as follows:

• a centralized addressing scheme cannot be used,
• high redundancy of measured data,
• severe physical limitations (e.g. transmission power, on-board energy,

processing and storage capacity).
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All mentioned limitations have led to the design of specialized routing al-
gorithms:

• data-centric (flooding and gossiping [10], Sensor Protocols for Informa-
tion via Negotiation - SPIN [11], Directed Diffusion [12],[13]),
• hierarchical (Low-Energy Adaptive Clustering Hierarchy - LEACH [14],

Power-Efficient GAthering in Sensor Information Systems - PEGASIS
[15], Threshold sensitive Energy Efficient sensor Network protocol - TEEN
[16]),
• location-based (Greedy Perimeter Stateless Routing - GPSR [17], Geo-

graphical Energy Aware Routing - GEAR [18], Two-Tier Data Dissemi-
nation - TTDD [19]).

A deeper survey on routing protocols for sensor networks is provided in [20].

2.2 Peer-To-Peer Networks

Peer-To-Peer (P2P) networking [21],[22] has been given tremendous in-
terest worldwide among either ordinary Internet users as well as networking
professionals. The basic definition of P2P networks follows [23]:

Definition 2 A distributed network architecture may be called a Peer-to-Peer
(P2P) network, if the participants share a part of their own hardware resources
(processing power, storage capacity, network link capacity, printers,...). These
shared resources are necessary to provide the service and content offered by the
network (e.g. file sharing or shared workspaces for collaboration). They are
accessible by other peers directly, without passing intermediary entities. The
participants of such a network are thus resource (service and content) providers
as well as resource (service and content) requestors (servent-concept).

P2P architecture was proposed to overcame several of client/server limita-
tions [22]:

• Scalability
• Single point of failure
• Central administration
• Unused resources.

P2P networks, in contrast to server/client architecture, offer a great amount
of benefits:

• Efficient use of resources
• Scalability and reliability
• Consumers of resources also donate resources
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• Aggregate resources grow naturally with utilization
• Geographic distribution
• No single point of failure and no central administration
• Nodes have self organizing capabilities
• Built-in fault tolerance, replication, and load balancing.

As a simple example of a P2P network one can think of a home computer
network where users configured their computers to enable simple sharing of
files, printers and resources. The other examples of P2P architecture are file
sharing networks dedicated for simple file sharing across the Internet. Exam-
ples of applications allowing such a simple file sharing were/are Napster [24],
Kazaa and Kazaa Lite [25] and Gnutella [26].

In spite of the well known problems with legacy and problems concern-
ing privacy and security, P2P networks offer a great amount of possibilities.
As every node in the network is responsible for its own security policies and
privacy, the overall security is hard to achieve by traditional approaches (e.g.
passwords).

It is noticeable that P2P architecture is sometimes mentioned as a future
architecture of the Internet.

2.3 Grids

The term Grid was introduced in the mid 1990s to denote a distributed com-
puting infrastructure proposed for advanced scientific and engineering tasks.
The Grids enable sharing resources in multi-institutional Virtual Organizations
defined as [27]:

Definition 3 Virtual Organization (VO) is a temporary or permanent coali-
tion of geographically dispersed individuals, groups, organizational units or en-
tire organizations that pool resources, services and information to achieve com-
mon objectives and that have precisely described mechanisms and rules when
and what to share.

Note that the sharing process is not a simple file exchange but rather a direct
access to computers, software, data, and other resources, for the achievement
of required collaboration for problem-solving in industry, science, and engi-
neering.

Ian Foster at all gave in [27] a sketch of the Grid with precisely defined layer
architecture (see Figure 2.3.1).

The first Fabric layer provides the resources offered to shared access.
The resources might be computational resources, storage systems, catalogs,
network resources, and sensors. The fabric layer implements resource-specific
operations (details in [28]).
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Figure 2.3.1: The Layered Grid Architecture and its Correspondence to the
Internet Architecture (extracted from [28]).

The Connectivity layer defines the core communication and authenti-
cation protocols needed for network transactions between the Fabric layer re-
sources. The Connectivity layer also provides protocols for authentication
providing security mechanisms for verifying the identity of users and also re-
sources (details in [28]).

The third Resource layer builds on Connectivity layer communication
and authentication protocols (and APIs and SDKs) for the secure negotiation,
initiation, monitoring, control, accounting, and payment of sharing operations
on individual resources. Resource layer protocols are entirely concerned with
individual resources ignoring the global state and atomic actions across dis-
tributed collections; such issues are the concern of the Collective layer discussed
next.

The Collective layer takes care for the global state of the Grid and cap-
tures interactions across collections of resources.

Over the Collective layer the top Application layer is defined. The Ap-
plication layer is the point where calls of offered services are made.

The layers are discussed in details in [28].

2.3.1 Security Systems for Grids

Treating the security and the authorization hazards in Grids is not an easy
task. This is mainly due to the fact that a Grid is a heterogeneous, distributed
system for sharing expensive and valuable resources.

The very common feature of security systems for Grids is the replacement of
identity based access (e.g. password) with authorization based on the attributes
of users. Such attributes can be mapped to users’ accounts much easily achiev-
ing demanded properties of authorization (e.g. delegation).
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• Virtual Organization Management Service (VOMS) [29] supports at-
tribute based access control. The client retrieves a pseudo certificate
consisting of client attributes (e.g. groups and roles) from VOMS servers
and stores them in a non-critical extension of a common proxy certifi-
cate. These proxy certificates are then used to access the resource. The
final decision is based on the attributes contained.

• PERMIS [30] project aimed at the creation of an X.509 role based Privi-
lege Management Infrastructure. The main advantage brought by PER-
MIS is the ability to accommodate diverse access scenarios. PERMIS
primary consists of two subsystems:

1. the privilege allocation subsystem issuing a user X.509 certificate
and storing it in LDAP (Lightweight Directory Access Protocol)
[31] directories.

2. the privilege verification subsystem which hauls the user certificates
from a pre-configured list of LDAP.

• AKENTI [32] uses certificates signed by so called stakeholders from dif-
ferent domains in order to make a decision about access to a resource
requested. AKENTI proposed three types of certificate stored in an XML
format, particularly:

1. attribute certificates binding an attribute-value pair,
2. use-condition certificates indicating lists of relational expressions of

required attributes to access rights and,
3. policy certificates consisting of trusted Certificate Authorities CAs

and stakeholders issuing use-condition certificates and lists of URLs
where attribute certificates can be retrieved.

Clients are then authenticated on their X.509 certificates.

• System for Privilege Management and Authorization (PRIMA) [33] also
accommodates attribute X.509 certificates to enforce privilege and poli-
cy statements. Both certificates issued by a resource administrator and
a stakeholder are used by a client to the resource Policy Enforcement
Point (PEP). The PEP then validates the attributes and verifies with
the resource Policy Decision Point (PDP) if the issuers are authoritative
for user’s presented privileges. All acknowledged privileges are gathered
by the PEP and further presented to the PDP for verification against
the access control policies. The PDP simply returns an authorization
decision and a set of access recommendations (e.g. file accessible, user’s
quotas) for setting up a local account.
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An important point worth mentioning is a way how to store policies rep-
resentation in a standard language. EXtensible Access Control Markup Lan-
guage (XACML) [34] is an example of standardized format (OASIS) [35] for
specifying access control policies. However, current versions of XACML do not
have expressiveness needed (e.g. delegation of authority).

2.4 Trust Management Systems

In the introduction we argued that the security cannot be treated as a
single nor flat task. It would be rather a hierarchy where at least encryption
algorithms and trust layers should be identified.

Trust management systems can be categorized into 3 categories:

• credential and policy based trust management;
• reputation based trust management, and;
• social network based trust management.

This categorization is based upon the way adopted for establishing and evalu-
ating trust between entities.

Policy based approach has been proposed in the context of open and
distributed services architectures [36],[37],[38],[39],[40] as well as in the context
of Grids [41] as a solution to the problem of authorization and access control
in open systems. Its focus is on trust management mechanisms employing
different policy languages and engines for specifying and reasoning on rules for
the establishment of the trust. Since the primary aim of such systems is to
enable access control, trust management is limited to verification of credentials
and restricting access to resources according to policies defined by a resources
owner [42]. The resource owner provides an access to a restricted resource only
if verification of credentials has been done successfully. Nevertheless, policy
based systems need the requesting entity to establish trust with the resource
owner, which unfortunately implies the fact that policy based systems do not
provide a complete generic trust management solution for all decentralized
applications.

On the contrary, Reputation based trust management systems provide
a way in which entities may evaluate and build a trust relationship between
resource provider and requester. Reputation approach emerged in the context
of electronic commerce systems, e.g. eBay. In distributed settings, reputation-
based approaches have been proposed for managing trust in public key certifi-
cates, P2P systems XREP [43], mobile ad-hoc networks, and recently, also in
the Semantic Web [43], NICE [44], DCRC/CORC [45], EigenTrust [46],[47],
[48],[49],[50],[51]. Typically, the reputation-based trust is used in distributed
networks where any involved entity has only a limited knowledge about the
whole network. In this approach, the reputation is based on recommendations
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and experiences of other users/sites. Trust value assigned is a function of the
combination of the peer’s global reputation and the peer’s perception of that
entity.

Social network based trust management systems utilize, in addition,
social relationships between entities to infer trust. In particular, the social
network based system views the whole structure as a social network with re-
lationships defined amongst entities. This social network can be further used
as an input for deduction of trust among entities. Examples of such trust
management systems include Regret [52], NodeRanking [53].

It is important to note, that there is clear distinction between trust and
reputation [54]: a trust value T can be computed based on the reputation R,
that is,

T = φ(R, t) (2.4.1)

where t is the time elapsed since the reputation was modified.

2.4.1 Dynamic Trust Management

Trust may be a highly dynamic phenomenon in many environments (e.g.,
P2P, mobile databases, the semantic web, the real human society). This fact
has led researchers to investigation and proposals of new approaches for treat-
ing the trust dynamics.

In most approaches trust is defined as a vector comprising few factors
contributing to the overall trust value (e.g. [49]):

• the short term trust factor,
• the long term trust factor,
• the penalty factor.

These factors are then combined into one value of dynamic trust of a particular
connection between entities. The purpose of the factors can be generalized
as an effort to accommodate sudden deviation in the normal behavior of an
entity (so-called oscillation) together with long term behavior observation. The
penalty factor is used to make a reaction of the system (decrease or increase
of trust).
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In the following equation we generalized the dynamic trust definition ac-
cordingly to our observation:

Tab(t) = f(TPab
(t), TDb

(t), Ma(t)) (2.4.2)

where

• Tab(t) stands for the trust of entity a to entity b.
• TPab

(t) is a personal observation of the entity b by entity a based on the
history of interaction between the entities.
• TDb

(t) stands for the reputation of entity b given by the other entities.
• Ma(t) is a model of behavior of an entity a, through which a personal-

ization is achieved. We consider the personalization as a very important,
since in the huge networks users will probably differ in the handling of
trust.

All components consist of long as well as short time factors.
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Chapter 3

Objectives

This section describes in details and more precisely the objectives of the
thesis.

Let us begin with a short citation from [55] where demands for ideal security
solution supporting trust are given as:
“The ideal solution would be a scalable distributed security approach where trust
is easily discovered and realized and used to securely extend site autonomy to
support collaborative work”.
Our understanding of security corresponds narrowly to the given one.

The main objective of the thesis is to propose, implement and verify a
new security model for distributed environments that fulfills at least
the following:

• General requirements

– the security model must capture human intuition about trust, thus
being appropriate for securing human style communication,

– all entities involved in communication must be able to infer trust,
– the model should support personalization.

• Implementation requirements

– the model must be able to work across distributed environments,
– the model must be able to handle the dynamic aspects of trust for-

mation and trust evolution.
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3.1 Justification

The known approaches consider each entity as individual being responsible
for its own relationships. Even the reputation systems where a non-direct
trust can be inferred, consider entities as individuals. The same can be said
for dynamic trust models.

In contrast, our proposal surpasses the known models for building trust in
the interpretation of trust. In our point of view, the trust level is common for
a group of users rather than a single user. In this way trust is not a single
value for particular pair of entities but rather a shared value for a set (group)
of entities. As the groups can differ in purpose1, one entity can be member of
more groups. Trust between two entities is then inferred based on their group
memberships. Such model allows building trust between mutually unknown
entities more easily and with less communication and computation load.

3.2 Dynamic Aspects

The human notion of trust is a long time driven process with possible se-
vere oscillation phases followed by steady phases.

The proposed model M with several parameters a1, a2, . . . , an is able to de-
scribe dynamics of a systems of groups (dynamics corresponds to states in the
following):

Ck+1 α
←M(a1, a2, . . . , an)× Ck (3.2.1)

where Ck is a state after k interactions and Ck+1 is a state after k + 1 inter-
actions, α is the condition triggering the interactions.

The initial state C0 is given as

C0 ← f(I) (3.2.2)

where I is an input structure describing existing relationships and trust among
users transformed by a function f into starting state of the model.

The model M should fulfill the following requirements:

• stability: model must not degenerate into any of limiting cases (one
huge group of users, or many tiny groups)
• model must preserve overall as well as local security of users
• self-organization and self-monitoring properties
• low time complexities.

1There might be groups of tennis players as well as lawyers, researchers, musicians,
friends,...
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Chapter 4

Mathematical Model

The chapter introduces the mathematical model and the terminology used
in the rest of the thesis.

4.1 Basic Definitions

Definition 4 An undirected graph G = (V, E) is defined as a set of ver-

tices V and a set of edges E. Every edge eij ∈ E connects a pair of distinct
vertices vi and vj.
We call Adj(v) the adjacency set of vertex v, and we call the ordered pair
(v, w) ∈ E an edge.
Clearly

(v, w) ∈ E if and only if w ∈ Adj(v).
If (v, w) ∈ E(G) then v and w are adjacent, vertices of G, and the vertices

v and w are incident with the edge (v, w). We call a loop an edge which
joins a vertex to itself.

Definition 5 The neighbor of vertex v (N(v)) is defined by

N(v)={v}+Adj(v).

Definition 6 The degree di of a vertex vi is defined as the size of the
adjacent set of vertex vi (|Adj(vi)|).
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Definition 7 A directed graph (digraph) G consists of a finite set V and
an irreflexive binary relation on V .
We call V the set of vertices.
The binary relation may be represented either as a collection E of ordered

pairs or as a function from V to its power set,

Adj : V → P (V ).

Definition 8 The weighted graph G is a quadruple (V, E, WV , WE), where
V is a set of vertices, E is a set of edges, and WV and WE present weights of
vertices and edges, respectively. (The weights are mappings from V and E to
the set of reals.)

Definition 9 A graph G is complete if every pair of distinct vertices is ad-
jacent. The complete graph on n vertices is usually denoted by Kn.

Definition 10 Given a subset A ⊆ V of the vertices, we define the subgraph

induced by A to be GA = (A, EA), where

EA = {xy ∈ E|x ∈ A and y ∈ A}.

Definition 11 Clique: A subset A ⊆ V of r vertices is an r-clique if it
induces a complete subgraph, i.e. GA

∼= Kr.

Definition 12 Stable set is a subset X of vertices no two of which are ad-
jacent.

Definition 13 A proper c-coloring is a partition of the vertices
V = X1 + X2 + . . . + Xc such that each Xi is a stable set
(the members of Xi may be “painted” with the same color i and adjacent ver-
tices have to receive different colors).

Definition 14 χ(G) is the smallest possible c for which there exists a proper
c-coloring of G; it is called chromatic number of G.
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Definition 15 A sequence of vertices [v0, v1, v2, . . . , vm] is a path from v0 to
vm of length m in G provided vi−1vi ∈ E for i = 1, 2, . . . , m.

Definition 16 Strongly connected graph is a graph in which for any two
vertices x and y there exists a path in G from x to y.

Definition 17 A subgraph of a graph G = (V, E) is any graph H = (V ′, E ′)
satisfying V ′ ⊆ V and E ′ ⊆ E.

Definition 18 Let G = (V, E) be a simple directed graph without loops.
A triad is a subgraph induced by a given set of three vertices.

Definition 19 A hypergraph H = (U, N) is defined as a set of vertices U
and a set of hyperedges (nets) N among the vertices.
Every hyperedge nj ∈ N is a subset of the set of vertices U .
The vertices in a hyperedge nj are called its pins and they are denoted as
pins[nj ].
The set of hyperedges connected to a node uj is denoted as hyperedges(uj).

Definition 20 The size of a hyperedge nj is given as:

sj = |pins[nj ]|.

Definition 21 The degree of a vertex vi is equal to the number of hyper-
edges it is connected to (di = |hyperedges[vi]|).

Definition 22 A weighted hypergraph H is a quadruple (U, N, WU , WN),
where U is a set of vertices, N ∈ 2U is a set of hyperedges, and WU and WN

present vertex and edge weights, respectively.
The weights are mappings from U and N to the set of reals.
(For simplicity, we will consider U = {1, ..., n}).

For hypergraphs a great deal of terminology like paths, coloring, etc. can
be defined similarly as for graphs.
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4.1.1 Partitioning problem

Linear system of equations are today widely solved by iterative solvers on
parallel computers.
The parallelization is necessary as the size of the real matrix might be huge.
The goal of the partitioning is to enable parallelization of the following
sparse-matrix vector product of the form of

y = Ax (4.1.1)

where A is an m×m sparse square matrix, y and x are dense vectors.

In order to avoid the communication of vector components during the linear
vector operations a partition scheme is adopted. It means all vectors used in
the solver are decomposed conformally with the row partitioning to the column
partitioning in the rowwise or columnwise decomposition schemes, respectively.

Graph Model for Decomposition

Π = P1, P2, · · · , PK is a K-way partition of graph G = (V, E) if the following
conditions hold:

• each Pi, 1 ≤ i ≤ K; Pi 6= ⊘ non-emptiness
• Pi ∩ Pj = ⊘ for all 1 ≤ i < j ≤ K disjoint

•
⋃K

i=1
Pi = V completeness

A K-way partition is called to be balanced if each part Pi satisfies the balance
criterion:

Wi ≤Wavg(1 + ǫ), for i = 1, 2, · · · , K. (4.1.2)

where

• the weight Wi of a part Pi is
∑

vi∈Pi
wi, Wavg = (

∑
vi∈V wi)/K stay for

the weight of each part under the perfect load balance condition,
• ǫ represents maximum acceptable imbalance.

A K-way partition is called multiway if K > 2 and a bipartition iff K = 2.
In a partition Π of G, an edge is said to be cut if its pair of vertices belong

to two different parts, and uncut otherwise.
The cut and uncut edges are also referred as external and internal edges, re-
spectively.
The set of external edges of a partition Π is denoted as ǫE .
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The cutsize definition for representing the cost χ(Π) of a partition Π is:

χ(Π) =
∑

eij∈ǫE
cij

where each cut edge eij contributes its cost cij to the cutsize. Hence, the graph
partitioning problem can be defined as the task of dividing a graph into two
or more parts such that the cutsize is minimized, while the balance criterion
4.1.2 on part weights is maintained.

The Graph model nevertheless faces some limitations1 in this context there-
fore the hypergraph model was proposed instead.

Hypergraph Model for Decomposition

K-way partitioning of hypergraphs is defined similarly to that of graphs.
In a partition Π of H , a hyperedge having at least one pin (vertex) in a part
is said to connect that part.
Connectivity set Λj of a hyperedge nj is a set of parts being connected by nj .
Connectivity λj = |Λj| of a hyperedge nj denotes the number of parts connected
by nj .
A hyperedge nj is said to be cut (external) if it connects at least 2 parts
(λj > 1), and uncut (internal) otherwise. The set of external hyperedges is
denoted as NE .
The cutsize representing the cost Π(P ) of a partition P is given as.

X(Π) =
∑

nj∈NE

cj(λj − 1) (4.1.3)

In the column hyperedge model, a matrix A is represented as a hypergraph
HR = (VR, NC), where vertex and hyperedge sets VR and NC corresponds to
the rows and columns of matrix A, respectively.
Each vertex vi ∈ VR corresponds to the atomic task of computing the inner
product of row i and column vector x.
The hyperedges of HR represent the dependency relations of the atomic tasks
on the x-vector components in rowwise decomposition.

The most important advantage of the hypergraph model is the ability to
fit the real communication need better.

1e.g. the graph model does not allow to express directly the real communication volume
implied by the partitions.
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4.2 Security Model for Dynamic Distributed

Environments

This section describes relations between the given terminology and our
security model together with the general requirements on the security model.

4.2.1 Security Model Requirements

The security model should fulfill at least the following requirements:

1. ability to describe complicated relationships between users

2. ability to describe dynamic aspects of groups of users

3. efficient implementation

4. distributed implementation

4.2.2 Security Model Proposal

Currently available solutions (mentioned in the Related Work Section) con-
cern concrete trust between members1 where a direct relationship exists or
where a transitive relationship can be found. Such approaches can be very
naturally modeled as oriented weighted graphs where vertices correspond to
members and edges represent relationships. Level of trust is simply described
by weight of edges and can vary over time.
Graph model is sufficient in the case of complicated relationships among mem-
bers, but modeling groups of users efficiently could pose problems. A group of
users can be modeled as a graph where group members are connected by edges
with the same weights, but such approach suffers by a space load overhead.
From practical point of view more accurate model is necessary. In hypergraphs
a hyperedge connects arbitrary many vertices2 and one vertex can be a pin of
more hyperedges. Figure 4.2.1 shows a simple example of a hypergraph with
4 hyperedges and 10 vertices.

From the figure it follows that a hypergraph can describe a very complicated
structure of groups of users straightforwardly. In addition, weights can be
used in order to describe a structure of users in more details, not just who
is connected to whom, but also reliability, security, error proneness or other
additional properties.

Let us step back to the list of the model requirements given and check the
items for the hypergraph model:

1In the rest of the thesis we will use terms members and users as equivalent.
2The upper bound is naturally given by the number of vertices |U | of a hypergraph and

the lower bound is 1 vertex.
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n1

n2

n3
n4

Figure 4.2.1: Example of a Hypergraph Representation (consisting of 10 ver-
tices and 4 hyperedges corresponding to a system of 4 distinct groups with
possibly different level of trust between 10 users)
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G
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Figure 4.2.2: Example of a Graph Representation (the same situation as in
Figure 4.2.1, but now described by a graph – edges in the same line type
and width describe the same level of trust; orientation is omitted for better
lucidity)

1. ability to describe complicated relationships between users - weighted hy-
pergraph can describe arbitrarily complicated groups of users – a hyper-
edge corresponds to a group of users.

2. ability to describe dynamic aspects of groups of users - a weighted hyper-
graph can be easily reconfigured by adding/deleting vertices as well as
hyperedges.

3. efficient implementations - there exist several efficient implementations
of hypergraphs proposed for numerical mathematics problems (e.g. hy-
pergraph model for decomposition).

4. distributed implementation - a hypergraph model can be easily distributed
so that each vertex can store the set of hyperedges it is a pin.
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4.2.3 Security Model Representation of a DVO

Our model uses hypergraphs for the description of groups of users.
In the following we explain relations between a hypergraph
H = (U, N, WU , WN) and the structure of groups of users:

1. vertices U represent users
2. the weight of a vertice Wui

represents user ui attributes
3. hyperedges N represent groups of users
4. the weight of a hyperedge Wni

represents trust shared by the group
5. pins of a hyperedge pins(ni) represent the members of the group described

by the hyperedge ni

6. hyperedges(u) represents set of groups of a user u

In the rest of the thesis Virtual Organization term will be extended from its
primary definition [27]. In our case the VO is not a temporal but rather long-
live coalition of users with the same or very similar intentions. Furthermore,
in a particular VO the trust between members is the same. The proposed
model does not consider the only one VO but it is rather concern with a set of
interconnected VOs. Therefore in the rest of the thesis we will denote a system
of interconnected VOs with dynamic changes in the relationships between users
as Dynamic Virtual Organization (DVO).
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Chapter 5

Proposal of Algorithms

The chapter describes a security model SecGrid built on the hypergraph
model presented in the previous chapter. The SecGrid model comprises the
algorithm for transformation of an input structure into the hypergraph model,
algorithms preserving consistency of the structure of DVOs and the security
subsystem.

5.1 G2H Algorithm

It is known and accepted that graph structures can suitably describe rela-
tionships between users and they are used in this way. Since our security model
uses hypergraphs for description of dynamic Virtual Organizations (DVO), a
transformation of a general graph input structure into the hypergraph one is
needed.

For generality, we will assume that the input structure representing trust be-
tween users is given in form of a directed graph1 G = (V, E, WV , WE) where
the following holds 2:

• a user is represented by a vertex vi ∈ V
• relationship between users vi and vj is represented by a directed edge

(vi, vj) ∈ E
• trust between users vi and vj connected by an edge is represented by the

weight of the edge (vi, vj)
• a user vi related information (name, address, abilities, interests, etc.) is

represented by weight of the vertex Wvi

In the rest of this sub-section we will describe how the Graph-to-Hypergraph
(G2H) Algorithm is used for transformation of the input graph structure into
the hypergraph model.

1Note the direction of edges is very important since trust may not be mutual.
2See Figures 4.2.1 for graphical representation of groups of users.
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The transformation cannot be done arbitrarily. It should respect at least
the following items important for getting a realistic model. The first two reflect
the transformation, whereas the last two are important for implementation.

1. A hyperedge represents a group of users sharing the same level of trust
– the pins of the hyperedge have to be represented by “closely related”
vertices in the input graph where closely related means:

• type of relationships,
• level of trust.

2. The “orientation” of relationships has to be considered.
3. Transformation of dense as well as sparse input graphs.
4. Possible distributed implementation.

5.1.1 Transformation of an Input Graph

In our proposal, the Graph-to-Hypergraph (G2H) Algorithm realizes the
needed transformation. The G2H Algorithm takes a weighted directed graph
G = (V, E, WV , WE) as the input. It creates possibly non-disjoint subsets Vi

of the vertex set V :

V =

L⋃

i=1

Vi (5.1.1)

where L is the number of hyperedges and Vi are sets of pins of hyperedges for
i = 1, . . . , L.

Currently, we use two modifications of the G2H Algorithm;

• based on search for strongly connected components,
• based on search for the so called triads[56].

G2H Algorithm Based on Strongly Connected Components

The main idea of this version of the G2H Algorithm relies on the fact
that any two vertices of the same strongly connected component are reachable
through a path (see definition (16)).

From the social network point of view, such vertices (users) have direct
knowledge of themselves or can infer mutual relationship via the other vertices
(users). Therefore, vertices in the same strongly connected component are
good candidates for the formation of a new group (hyperedge).

The implementation of this version of the G2H Algorithm is based on the
very efficient Tarjan’s [57],[58],[59] algorithm. The Tarjan’s algorithm can be
straightforwardly implemented in a distributed environment with the message
passing (MPI [60]) therefore fulfilling all required properties (see section 5.1)
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except for the ability to cope with dense input graphs as was shown by our
experiments.

The time complexity is driven by the complexity of the Tarjan’s algorithm
given as:

O(N) (5.1.2)

where N is the number of vertices in the input graph.

G2H Algorithm Based on Triads

The basic G2H Algorithm based on the search for strongly connected com-
ponents is known to be unable to cope with dense input graphs. Therefore,
we here propose an improved version of the G2H Algorithm based on search
for triads3.

Algorithm 1 The G2H Algorithm

1: procedure SearchSeed(G = (V, E))
2: for all a ∈ V do

3: if (∃b ∈ V )(a→ b ∈ E ∧ b→ a ∈ E) then

4: add a, b into hi ∈ H
5: AppendSeed(G, hi, max(|a→ b|, |b→ a|))
6: i = i + 1
7: end if

8: end for

9: end procedure

10: procedure AppendSeed(G, h, max)
11: while (∃x ∈ V : x /∈ h, a ∈ h, b ∈ h)(a→ x ∈ E ∧ x→ b ∈ E)
∨(b→ x ∈ E ∧ x→ a ∈ E) do

12: if (|a→ x→ b| ≥ max) ∨ (|b→ x→ a| ≥ max) then

13: add x into h
14: end if

15: end while

16: end procedure

In the Algorithm 1 the improved version of the G2H Algorithm is described
in a pseudo code, where

• “→” denotes a directed edge,
• “|b→ a|” denotes the weight of the directed edge between vertices a, b,
• “|b→ x → a|” denotes the minimum weight of all edges in the directed

path through vertices b, x, a,

3In the rest of the thesis by the G2H Algorithm will be meant the G2H Algorithm based
on triads.
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• “|b→ x→ a|” equals to 0 if no such directed path exists.

The algorithm is divided into two parts represented by

• SearchSeed procedure: The SearchSeed procedure analyzes all vertices
in the input graph and creates seeds hi. The seeds are basic graphs
obtained from complete graphs of size 2 (K2) for which are created vertex
subsets Vi (see lines 3 and 4).
• AppendSeed procedure: If any seed has been found by the SearchSeed

procedure then the AppendSeed procedure tries to identify a vertex that
is interconnected with the seed by a triad with required orientation (line
11). The triads accepted by the algorithm are shown in Figures 5.1.1
and 5.1.2 (the seed is shown in the dotted ellipse in both cases). If such
vertex x exists then it is added to the seed (line 13).

a b
e1

e2

x

e3 e4

Figure 5.1.1: Accepted Triad “1”

a b
e1

e2

x

e3 e4

Figure 5.1.2: Accepted Triad “2”
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e1

e2
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a+b

x

e3 e4

a) Base K2

c) Merging K2

b) vertex x
connected to K by an

oriented path with
length 3

2

d) Situation after
merging was done K2

Figure 5.1.3: G2H Algorithm Transforming Edges into Hyperedges

In Figure 5.1.3 is depicted the G2H Algorithm graphically with comments
provided.

a) The creation of a seed from vertices a and b.
b) The AppendSeed procedure searches for any vertex x connected to the

seed by an acceptable triad.
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c) The addition of vertices a and b into a new hyperedge – the vertices are
now represented as one vertex.

d) The emerge of a new K2 between the seed and vertex x – vertex x is
added into the hyperedge; return to a).

The G2H Algorithm works in this way until all vertices (vj ∈ V ) are examined
by the SearchSeed procedure resulting in partition of vertices {Vi} of the input
graph.

The partitioned vertices of the input graph are then the input for the
transformation operation itself. The output hypergraph will be in the form:

H = (U, N, WU , W1N , W2N) (5.1.3)

where the following relations between the input graph G = (V, E, WV , WE)
and the output hypergraph H hold:

• vertices U in H correspond to vertices V in G,
• weights of vertices WN in H correspond to weights of vertices WV in G,
• pins of a hyperedge pins(ni) in H correspond to a partition of vertices
{Vi} in G,
• the weight of hyperedge W1N in H corresponds to the maximal weight

of the edges in the K2 seed of Vi,
• the weight of hyperedge W2N in H corresponds to the difference between

the weight of edges in K2 seed of Vi,

whereas W1N denotes maximal level of trust (remind that weight of an edge
represents a level of trust between users) in the K2 seed, W2N represents
difference in the level of trust in the K2 seed.

The AppendSeed procedure of the G2H Algorithm uses the weights of the K2
seed for the formation of the group from triads (line 12). This step protects
groups from penetration of users that do not satisfy condition on maximal
level of trust and difference in weights during the group formation process.
Generally, the more secure group (with higher level of trust) the higher W1N

(maximal weight) and lower W2N (difference between the weight).
Apparently, the G2H Algorithm based on search for triads poses the finite

termination property.
Time complexity of the G2H Algorithm based on triads is given by

O(
∑

v∈V

|Adj(v)|) (5.1.4)

The complexity is given by the fact that SearchSeed has to identify K2 seeds
in the input graph. This can be done by searching the adjacency sets of vertices
in

∑
v∈V |Adj(v)| steps. If any seed has been detected, then the AppendSeed

procedure traverses the vicinity of the seed. This traverse has complexity
O(|Adj(v)|). The overall time complexity is dominated by the complexity of
the SearchSeed procedure.
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5.2 Structure Dynamics

During the specification of the objectives we stressed the requirement on
the dynamics of the security model. In other words, the security model should
be able to cope with the fact that relationships among users subject to changes.
Therefore, this section introduces our concept of the dynamic part of the se-
curity model – the Structure Dynamic (SD) Algorithm.

5.2.1 SD Algorithm

The main task of the SD Algorithm is the preservation of the local security
of the dynamic groups of users (DVO). Since the security model should be in
practice fully distributed, it is not an easy task.

Compute

Intersection

Create group_new =

(group_old - user1 -

user2)

group_old=(user2+user1+not

in intersection)

A new relation

Compare

weights of groups

Add user1 to

group2

Merge groups

End

Split

group2

Split

group1

Create group_new =

(group_old - user1 -

user2)

group_old=(user2+user1+not

in intersection)

[diff<=epsilon OR not {intersection}]

diff = |weight of group1 - weight of group2|

[weight of group2 < weight of group1] [weight of group2 > weight of group1]

user1 from group1 is invited by user 2 to join group2

{intersection}

[diff>epsilon AND is {intersection}]

Figure 5.2.1: UML Activity Diagram (describing the procedures of the SD
Algorithm).

The input of the SD Algorithm is the tuple (user1, group1, user2, group2),

41



with the following interpretation: the user1 from the group1 is invited by the
user2 from the group2 to join the group2. The SD Algorithm is described in
the UML activity diagram format in Figure 5.2.1.

The algorithm begins with two procedures. The Compare weights of groups
compares the weights (levels of trust) of group1 and group2 and returns the
difference as diff. The second one Compute Intersection tries to identify the
members of both groups by computing the intersection.

• If the difference diff is less than a predefined positive threshold ǫ or
there are no members in the intersection, the user1 is simply added to
the group2,
• otherwise the split group procedure splits the group with the higher level

of trust.

At the end the Merge groups procedure is triggered merging groups with the
intersection larger than a positive threshold λ and with shared levels of trust
differing less the ǫ.

Let us describe the parts of SD Algorithm less formally. The Compare
weights of groups procedure computes the difference in the levels of trust be-
tween the groups and the Compute Intersection identifies the intersection –
members common for both groups.

• If this difference is lower or equal than the threshold ǫ, then groups share
the same or almost the same trust and the new user is welcome to join
the group2 (the Add user1 to group2 procedure in Figure 5.2.1).
• In addition, if there are no members in the intersection, then none of

current group members can identify potential dangerousness of incom-
ing user1 as no member of group2 knows trust shared in the group1.
Therefore the user1 is added to the group2.
• If the difference is higher than the threshold ǫ then the Split groupx

procedure preserves the trust of the group by isolating potentially un-
trustworthy users.

A non-empty intersection and the difference between levels of trust of
group1 and group2 larger than the threshold ǫ suggests possible security vio-
lation.
In other words there are two groups (group1, group2) with different levels of
trust. The difference is in addition to that larger that the allowed difference
ǫ of group2. The important point here is that the difference in trust of the
groups can be revealed only by user(s) being member of both groups. If no
such user exists, that no one can reveal the threat and invited user is simply
added.
Therefore, the group with the higher level of trust is split into group old and
group new. The group old contains users not in the intersection together with
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user1 and user2, whereas the group new comprises members of the former
group2 apart from the user1 and the user2. This splitting preserve local secu-
rity of the users, because both potentially malicious users (user1 and user2)
are isolated in group with lower level of trust and the group new with higher
level of trust comprises only users not involved in the invitation. On the other
hand, as some users may remain members of both groups (new and old ones),
it is possible in the future to merge these groups, if user1 and user2 have been
proved to be the “good” ones (remain the Merge groups procedure).

a1

a5

a2

user1

a4
ab1

b1

b3

user2

ab2

Level of trust of group2=100Level of trust of group1=10

group1 group2

user1 from group1 has received
an invitation to group2 by user2

Figure 5.2.2: Initial Configura-
tion

a1

a5

a2

user1

a4

ab1

b1

b3

user2

ab2

Level of trust of group_old=100

Level of trust of group1=10

group1

group_old

group_new

Level of trust of group_ new=200

Figure 5.2.3: Situation After
Splitting

Figures 5.2.2 and 5.2.3 graphically show the procedure described above. At
the beginning (Figure 5.2.2) there are two groups with different levels of trust
and two users in the intersection (ab1, ab2). The user2 issues the invitation
for user1 to join the group2. The next Figure 5.2.3 shows the final state
after splitting. Whereas group1 remains unchanged, group2 is divided into
group2 old and group2 new.
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Chapter 6

Security Sub-system

The algorithms mentioned previously take care for the transformation of a
general input into the hypergraph model and for handling dynamics of groups
of users. The security sub-system proposed in this chapter is responsible for
treating threats and basic operations emerging during the model evolution.

The chapter first introduces the known threats to reputation systems and
then a detailed proposal of the security sub-system followed by discussion on
expected security improvements is presented.

6.1 Threats to Reputation Systems

The following list briefly describes general techniques available to adver-
saries to infiltrate or disturb a reputation system [61].

• Traitors. Malicious peers behave properly for a period of time in order
to build up a strongly positive reputation. Once having the reputation
build, they begin defecting. This technique is mostly effective when
stronger positive reputation gives a peer additional privileges.
• Collusion. Multiple malicious peers cooperate together to cause more

damage. This is especially true in peer-to-peer reputation systems, where
covert affiliations are untraceable and the opinions of unknown peers
impacts one’s decisions [62].
• Front peers (“moles”). Malicious colluding peers always cooperate with

others in order to receive strong reputation [63]. Then they provide
misinformation to promote actively malicious peers. This form of attack
is particularly difficult to prevent in an environment where there are no
pre-existing trust relationships and peers guide their interactions only on
the word and actions of others [64].
• Whitewashers. Peers that purposefully leave and rejoin the system

with a new identity in an attempt to shed any bad reputation they have
accumulated previously [65].
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6.2 Security Sub-system Design Principles

Our security sub-system utilizes basic principles of reputation systems
based on social networks, together with:

1. Avoiding long-term secrets. Even though long-term secrets are often
used for security management, they may present a real security threat.
Such long-term secrets require a storage to be hard or impossible to
replicate, audits, repairs or regeneration. In long time scenario, such
secrets are likely to leak, resulting in extraordinarily difficult corrections.

2. Avoiding rapid changes. In dynamic system changes are inevitable,
but there is never a need for a rapid change. A system making changes to
the system of groups (addition of new members, merging of groups,...) so
quickly that users are overflowed by number of announcements of changes
or users are unable to track such changes is not suitable.

3. Reduced impact of third-party reputation. Third-party reputation
provides very useful information, however if used incautiously it may
cause more damages than advantages (especially in long-term dynamic
systems).

6.3 Security Sub-system Proposal

It is important to note the fact that in our point of view, the trust is not
a single value valid for a particular pair of users, but it is a shared one for a
group of users.

The list bellow contains the main building stones of the security sub-system:

1. tKey. The local security of a group is maintained by tKeys.
tKeys are exchanged between users in order to verify their group(s) mem-
berships (see section 6.3.1).

2. Shadow groups. In order to avoid the rapid changes in groups of users,
each group maintains a shadow group. The shadow group contains users
invited to join the group that have not been accepted by the enough
group members (see 6.3.2 for further details).

3. tKey Management Schema. Dynamics of groups requires an efficient
tKeys management schema preserving the local security of groups (see
6.3.3 for more details).
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6.3.1 tKey

A user maintains one tKey for each group he/she is member.
A tKey (Figure 6.3.1) comprises 7 fields:

• The Group field contains identification of the group.
• The GroupFrom presents a group from which the member was invited.
• The Base|user field contains fingerprint(s)1 of the member that issued

the invitation plus the fingerprint of the user himself/herself, followed by
the user identification itself (separated by |).
• The Signu1 . . . Signun field contains signatures received up to now from

full privilege members of the group.
• The Trust field represents the level of trust of the group.
• The parameters λ and ǫ drive the Split group and the Merge group pro-

cedures of the SD Algorithm.
• The parameter α represents amount of signatures required for full privi-

lege membership.
• TTL is a time validity of the tKey.

Sign ... Signu1 unBase|user TTLGroupFromGroup l e aTrust

Figure 6.3.1: tKey Structure

6.3.2 Shadow Groups

Whenever a user is invited to join a new group, he/she receives a new tKey
and he/she becomes a member of the corresponding shadow group. Shadow
group members:

• contact the full privilege group members in order to receive the required
amount2 of signatures (a personal mark of a group member) approving
their invitation,
• have limited privileges:

– he/she cannot invite a new user,
– he/she cannot trigger splitting or merging of groups,
– shadow group members do not contribute to the size of intersections

calculated for merging.

The full privilege members may apply restrictions on requests coming from
shadow group members.

1Fingerprints can be realized for example by public/private keys,...
2Required amount of signatures may differ from group to group and it is set up by the

group members.
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6.3.3 tKey Management and Verification Schemata

The SD Algorithm presented previously relies on the fact that users can find
out from which group and by whom was a new user invited, which may not be
easy in the totally decentralized SecGrid model. In the following techniques
for managing each operation of the SD Algorithm together with the verification
of tKeys in the SecGrid model are described.

We use the following notations:

• tKey(u, n) . . . represents a value of the tKey of the user u for the group n
• tKey(u, n) : base . . . represents base field of the tKey of the user u for

the group n
• tKey(u, n) : signs . . . represents signatures of the tKey of the user u for

the group n
• tKey(u, n) : TTL . . . represents TTL field of the tKey of the user u for

the group n
• |tKey(u, n) : base| . . . represents number of fingerprints in the base field

of the tKey of the user u for the group n
• |tKey(u, n) : signs| . . . represents number of signatures of the tKey of

the user u for the group n
• fingerprint(u) . . . represents the fingerprint of the user u

Creation of a New tKey

Let there be two users ua and ub of distinct groups na and nb, respectively.
Furthermore, assume that ua has received an invitation from ub. A new tKey
for ua for group nb is created as follows:

1. ub firstly sends to ua tKey(ub, nb) : base together with a new TTL

2. ua appends his/her fingerprint to the base of the received tKey
tKey(ua, nb) : base = tKey(ub, nb) : base + fingerprint(ua)

3. ua is a member of the shadow group of nb until the following condition
holds valid:

|tKey(ua, nb) : base| > α + |tKey(ua, nb) : signs| (6.3.1)

where parameter α drives the required amount of signatures.

4. If condition (6.3.1) is invalid, the user ua became a full privilege member
of nb. From this point TTL is not further important.

Members of a group are able to express their verdicts on the new members
users through the corresponding shadow group. If a shadow group member has
not received the needed amount of signatures in time (set by TTL), his/her
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tKey became invalid. All users are aware of this, since every user can verify
inequality (6.3.1) and TTL value in the tKey received with a request3.

tKey Verification

The motivation scenario (sub-section 1.1.1) was based on the fact that users
were able to deduce their common groups. In the SecGrid model this is put
into effect by tKeys and the following verification schema:

1. Users exchange their tKeys.
2. Users examine group fields of each tKey: in case of match users verify

the tKey by:

(a) verify whether the tKey has been signed according to condition
(6.3.1)

(b) if succeeded, examine the base field which expresses by whom was
the tKey holder invited,

(c) otherwise check TTL against current time to verify shadow group
members.

After this verification is done, both users know:

1. whether a common group(s) exists, if so then also:

(a) whether users are full privilege or shadow group members
(b) who has up to now signed their tKeys
(c) by whom were users invited
(d) until what time shadow group membership is valid

su0u0|u2 TTLu2su0u0|u1 TTLu1

u0 TTLu0

s su2 u6u0u1u3u6|u8 TTLu8

#n1

#n1

#n1

#n1

s su0 u1u0u1|u4 TTLu4

s s su0 u1 u4u0u1u4|u6 TTLu6

su6u0u1u3u6|u7 TTLu7

#n1

#n1 #n1

Figure 6.3.2: tKeys Tree Structure (representing sequence in which users were
invited. Parameters trust, λ, ǫ and α are omitted for better lucidity.)

An example situation is given in Figure 6.3.2, where is shown a tree dia-
gram of a model group #n1 (assume parameter α = 1).

3Note that users exchange their tKeys in order to infer their common groups used for
trust derivation.
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There are all together 7 members in the figure.
Members marked as u7 and u8 are in the shadow group as they are short in
number of signatures for α = 1, |tKey(u8, #n1) : base| = 4 and
|tKey(u8, #n1) : sign| = 2 violates the condition (6.3.1). In addition, by ver-
ifying tKey(u6, #n1) one can found:

• member was invited by the member with base u0u1u4 (member u4),
• up to now the tKey(u6, #n1) has been signed by members u0,u1,u4,
• the user is a full privilege member, condition (6.3.1) does not hold.

6.4 Handling SD Algorithm Actions by tKeys

The management and verification schemata presented above provide users
with information needed to handle each of the SD Algorithm actions, parti-
cularly:
Addition of a new user: when a new user1 from the group1 receives an
invitation from user2 from group2, a new tKey(user1, group2) is created. The
user1 remains a member of the shadow group while condition (6.3.1) holds.
Splitting of groups: the splitting procedure is driven by the difference (given
by the parameter ǫ) in weights of groups. The SecGrid model enables users
to react on an invitation by checking members in the shadow group. For this
purpose the tKey contains GroupFrom field and base field; any member can find
out from which group the new user was invited and by whom – all information
needed to trigger splitting.
Merging of groups: two groups are merged if number of common members is
higher than a threshold λ. The number of common users (size of intersection)
of groups contains the base fields of tKeys. For example assume three groups
#n1, #n2 and #n5 and three representative members u11, u15, u23 with the
following tKeys:

Sign ... Signu1 unBase|user TTLGroupFromGroup l e aTrust

s s s su2 u5 u6 u8, , ,u ,u ,u ,u ,u |u1 3 6 8 9 11 ......#n1 1 30 290

s s s s ,su1 u3 u7 u8 u14, , ,u ,u ,u , u ,u |u1 8 12 4 5 10 5u , ......#n3 3 20 2115

s s s s ,s ,su1 u2 u3 u6 u8 u9, , ,u ,u ,u , u ,u |u1 3 4 5 9 10 23u , ......#n5 3 10 1110

Figure 6.4.1: Merging of Groups Example: tKeys for Groups #n1, #n3, #n5

with the General tKey Structure (Fields not involved in the merging procedure
are filled with ”. . .”).
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By examining the base fields of the tKeys in the example (Figure 6.4.1)
the following can be found:

intersection(n1, n3) = (u1, u8) (6.4.1)

intersection(n1, n5) = (u1, u3, u9) (6.4.2)

intersection(n3, n5) = (u1, u4, u5, u10) (6.4.3)

The following conditions must hold in order to merge group #nx with group
#ny (see the SD Algorithm in sub-section 5.2.1):

|intersection(nx, ny)| > λnx
(6.4.4)

|trustnx
− trustny

| < ǫnx
(6.4.5)

where

• |intersection(nx, ny)| is the number of common members of groups nx

and ny,
• |trustnx

− trustny
| is the difference in the levels of trust of groups nx and

ny.

The following list gives an overview on merging of three groups in the example
(Figure 6.4.1):

• group #n1 being merged with group #n3:

– |intersection(n1, n3)| = 2 (6.4.1), λn1
= 1

– |trustn1
− trustn3

| = 25, ǫn1
= 30

– implying that members of group #n1 agree on merging with #n3.

• group #n1 being merged with group #n5:

– |intersection(n1, n5)| = 3 (6.4.2), λn1
= 1

– |trustn1
− trustn5

| = 20, ǫn1 = 30
– implying that members of group #n1 agree on merging with #n5.

• group #n3 being merged with group #n1:

– |intersection(n3, n1)| = 2 (6.4.3), λn3
= 3

– |trustn3
− trustn1

| = 25, ǫn3
= 20

– implying that members of group #n3 disagree on merging with
#n1.

• group #n5 being merged with group #n1:

– |intersection(n5, n1)| = 3 (6.4.2), λn5
= 3

– |trustn5
− trustn1

| = 20, ǫn5
= 10

– implying that members of group #n5 disagree on merging with
#n1.
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• group #n3 being merged with group #n5:

– |intersection(n3, n5)| = 4 (6.4.3), λn3
= 3

– |trustn3
− trustn5

| = 5, ǫn3
= 20

– implying that members of group #n3 agree on merging with #n5.

• group #n5 being merged with group #n3:

– |intersection(n5, n3)| = 4 (6.4.3), λn5
= 3

– |trustn5
− trustn3

| = 5, ǫn5
= 10

– implying that members of group #n5 agree on merging with #n3.

From the list it follows that only groups #n5 and #n3 can be merged as
fulfill the conditions (6.4.4) and (6.4.5).

The most important fact is that the information needed in order to trigger
merging are accessible for every user without any support of a centralized unit,
thus making users conscious about the state of the group by exchanging their
tKeys in the SecGrid model.

In other words, whenever the user1 sends his/her tKey to user2, user2
receives a new base. Note that the freshest base field contains tKeys of novice
members, therefore in order to make the updates to the base fields of group
members more efficient, we suggest to use some kind of reconciliation protocol
[66].

6.5 Back to the Security Sub-system Design

Principles

1. Avoiding long-term secrets. The SecGrid model requires a private
identification of a user in the system - a fingerprint.
A user can issue a new fingerprint whenever needed (e.g. the old become
compromised). The new fingerprint is valid if signed by the enough
number of the other members (see section 6.6.4 below).

2. Avoiding rapid changes. The SecGrid model makes use of shadow
groups to avoid rapid changes.

3. Reduced impact of third-party reputation. Note that in the SecGrid
model there are only members of groups. No transitive (corresponds to
third-party reputations in the graph model) group membership is allowed
(members cannot access groups where they are not members).
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6.6 Analysis of Attacks

Even thought the world with only honest users would be a wonderful place
to live, the current world is not the case. Therefore, in the following we
put the SecGrid model under investigation against the well known attacks on
reputation systems.

6.6.1 Traitors

Traitors build strong positive reputations, which correspond to the mem-
bership in highly trusted groups of users in the SecGrid model, and then start
defecting.

The SecGrid model treats potentially dangerous users by splitting groups.
In this way, dangerous users are isolated in groups with a lower level of trust.

The splitting procedure splits group if any current full privilege member is
conscious about difference in the trust of the groups included in the invitation
– potential dangerousness of the newly invited member. The splitting makes
the potentially malicious users isolated in groups with lower level of trust. The
important point here is, that the loyal users that triggered splitting, remain in
the group with the lower level of trust as well. In this way, the SecGrid model
maintains knowledge (history) about potentially dangerous users. Moreover,
the malicious users have no direct knowledge about the splitting. Whereas
the splitting creates a new group with a new tKey from possibly only non-
malicious members, the possibly malicious ones remain in the old group with
no change to their tKeys. Thereby the malicious users have no direct way to
reveal having been detected as possible threats.

The SecGrid model resistance against traitors is getting stronger with
groups of users getting more interconnected – with non-empty intersections.
The larger intersections mean more users being able to detect and reveal
traitors to the others (see experiments section 7.3.1).

6.6.2 Collusion

In the SecGrid model, a collusion equals to the fact that some users try
to infiltrate trusted groups and then cause some harm. The SecGrid model
copes with this attack very naturally by the shadow groups and the parameter
α. If a member would like to invite a (malicious) user into a group, he/she
must issue a new base. Moreover, the invited user cannot do any harm until
he/she has received requested number of signatures from the current full priv-
ilege members of the corresponding group. In addition, the members of the
group can through the base field reveal that the member has systematically
been inviting new users or that some members have signed tKeys by the same
members – collusive members.
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Note that, as in the case of traitors, malicious users are not rejected from
the group, but the well-behaving members create a new group leaving the
malicious ones behind keeping the knowledge about the malicious ones in the
old group.

We consider this feature of the SecGrid model as important, as the collusion
is a very severe and hard to solve attack for most reputation systems.

6.6.3 Front peers

The SecGrid model copes with front peers very naturally by the shadow
groups and the parameter α in the same manner as in the case of collusion.

6.6.4 Whitewashers

This kind of attack is a real danger to the SecGrid model as some kind
of identification (fingerprint) is required. Fortunately, the same system as
for tKeys can be used for issuing identification. A user generates its own
credential and until such credential has not been signed by required amount of
full privilege members, it remains invalid (in some point view, such system is
similar to PGP [67]). This technique also enables members to reveal a group
of malicious users in the same manner as in the case of collusion.

It is worth noticing that such functionality can be implemented in the
same way as tKeys, thus requiring no additional tools allowing full privilege
members to generate new credentials if needed, thus fulfilling the requirement
for no long-time secrets.

6.7 Personalization

Personalization is a very important feature of the SecGrid model allow-
ing members to drive their own security policies. Among the parameters for
personalization belong:

• parameter α - even though the parameter was consider to be common
for the whole group, each member can handle this parameter differently.
This corresponds to a different level of confidence of group members to
novices.
• level of trust - even the level of trust field can be handled differently by

different members.
• TTL value - personalization of this attribute allows current members to

treat novices differently (e.g. to reduce time for collecting signatures)
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Chapter 7

Experimental Results

The proposed security model SecGrid comprises several parts;

• the G2H and SD Algorithms, and
• the security sub-system.

The experimental results presented in this section follow the same structure.

7.1 G2H Algorithm Experiments

The G2H Algorithm transforms a general graph input describing relation-
ships between set of users into the hypergraph model of SecGrid. The main
purpose of the experiments for the both versions of the G2H Algorithm was
to verify their usability.

The input graphs used for the experiments can be generally divided into
two main categories:

1. manually created graphs,
2. testing graphs describing a real societies.

The main purpose of the manually created graphs is the verification of the
behavior of the G2H Algorithm against cases where the correct output can
be verified by a human user. The second category examines behavior of the
algorithm on data describing concrete parts of reality.

7.1.1 Manually Created Input Graphs

The main aim of the first series of experiments was to verify the ability of
both modifications of the G2H Algorithm to transform correctly basic input
graphs.
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The first example (Figure 7.1.1) contains 13 users with relationships de-
noted by oriented edges. In this case, reader can easily identify 3 groups of
users, particularly:

• group 1 with users 5,6,7,8,9,
• group 2 with users 10,11,13,
• group 3 containing users 1,2,3,4,12.
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Figure 7.1.1: An Input Graph.
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Figure 7.1.2: Groups Identified by the G2H Algorithm (based on strongly
connected components).
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Figure 7.1.3: Groups Identified by the G2H Algorithm (based on triads).

In Figure 7.1.2 are shown groups created by the G2H Algorithm based
on strongly connected components, and groups created by the G2H Algorithm
based on triads in Figure 7.1.3. In Figure 7.1.2 users of the same group are
shown in the same color. From the figure it is clear, that resulted groups
correspond exactly to the expected results. In the case of the G2H Algorithm
based on triads (Figure 7.1.3) members (denoted by red squares) of the same
group are interconnected by the same hyperedge (denoted by a blue circle and
bounded by an ellipse). Even in this case, groups are identified accordingly to
the expectations.
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Figure 7.1.4: An Input Graph.

The second example of the input graph is given in Figure 7.1.4. This input
graph poses a real problems to the G2H Algorithm based on strongly connected
components (Figure 7.1.5). In this example input, there are two sets of users
that have direct relationships; 5,6,7 and 1,2,4. Note that user 3 does not have
direct (bilateral) relationships with any user, thus he/she cannot be added into
any group. In this case, only the G2H based on triads (Figure 7.1.6) provides
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reasonable grouping. This is due to the fact, that the input graph contains
only one strongly connected component including all users resulting in creation
of one group from all users in the case of the G2H Algorithm based on strongly
connected components.
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Figure 7.1.5: Groups Identified by the G2H Algorithm (based on strongly
connected components).
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Figure 7.1.6: Groups Identified by the G2H Algorithm (based on triads).

The second example of input graph shows the main disadvantage of the
G2H Algorithm based on strongly connected components – in most real input
graphs, users are highly interconnected (graphs are often dense), thereby prob-
ability that a few strongly connected components containing majority of users
is high.
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7.1.2 Real Input Graphs

In the second series of experiments, input graphs describing a real societies
were examined, particularly:

1. EIES social network structure [71]. EIES is broadly used for benchmark-
ing algorithms for social network analysis (SNA),

2. records of calls realized in a mobile network in the Slovak republic.

Figure 7.1.7: Input Graph for EIES Experimental Data.

In Figure 7.1.7 is shown the EIES input graph. It is clearly visible that the
users are highly connected.

Figure 7.1.8 shows an output of the G2H Algorithm based on strongly con-
nected components. In this case, the main disadvantage mentioned previ-
ously shows up and all users are transformed as members of the same group.

In the following Figure 7.1.9 result of the G2H Algorithm based on triads
is shown. In this case, the input structure is divided into several groups (con-
nected by the same hyperedges denoted as blue circles).

In the second experiment real data from a mobile operator from the Slovak
republic were taken as an input. The input graph consists of 7898 vertices and
8609 edges1 (note that many vertices are isolated). In this case, only the G2H
Algorithm based on triads is used for experiments, for the G2H Algorithm
based on strongly connected components identifies only one group with all
users within (apart from isolated ones). The resulted grouping given by the
G2H Algorithm based on triads consists of 112 groups (hyperedges). In fact
the majority of vertices is isolated therefore not included in grouping.

1For the size of the input graph we do not provide graphical representation as it would
be of no legibility.
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Figure 7.1.8: The Output of the G2H Algorithm (based on strongly connected
components).

Figure 7.1.9: The Output of the G2H Algorithm (based on triads).

Distribution of the users into groups is shown in Table 7.1.1. The most
groups are of size 2 followed by groups of size 3, 5 and 6. The G2H Algorithm
based on triads therefore tends to create smaller groups with most of them
created from complete graphs of size 2 (it corresponds to the seeds identified
by this version of the G2H Algorithm). With respects to the results presented
in the SD Algorithm experiments (see section 7.2), it can be asserted that
starting configuration of groups with rather smaller groups provided by the
G2H Algorithm based on triads is a good starting point for the SD Algorithm.
In other words, it is safer to create smaller groups.
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Table 7.1.1: G2H Algorithm Results - Distribution of Users Between Groups
Group size Amount of groups of this size

2 104
3 6
5 1
6 1

Summarizing the experiments:

1. G2H Algorithm based on strongly connected components has lower time
complexity, but it is unable to cope with a real input data.

2. The G2H Algorithm based on triads, on the contrary, can cope with dense
as well as sparse inputs, but has rather higher complexity.

It is worth noticing that other techniques known in SNA [68] can be used
for identification of groups. On the other hand, as the G2H Algorithm only
prepares an input for the heart of the SecGrid model – the SD Algorithm
realizing the dynamics. As the grouping provided by the G2H Algorithm based
on triads is sufficient we did not pursue further experiments in the thesis.

7.2 SD Algorithm Experiments

The main aim of experiments for the SD Algorithm was to verify its sta-

bility.
The stability stands for the ability of the SD Algorithm to cope with dynamic

changes in the structure of groups of users without creating :

1. One group containing all users in the system.
As the SecGrid model derives level of trust between users based only on
group memberships, if all users (malicious and “good” ones) are members
of only one group, each and very pair of users in the system shares the
same level of trust.

2. Many very small groups (containing typically one or two users).
In such a case the SecGrid model has consequently very limited ability
to infer trust between users, while most of them share no common group.
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Behavior of the SD Algorithm can be generally driven by parameters λ and
ǫ, where :

• λ influences joining of groups – the higher λ the more joining,
• ǫ controls splitting of groups – the lower ǫ the higher probability of

splitting.

The stability was investigated by two sets of experiments:

1. input data of a cellular network operator from the Slovak republic,
2. input data for three different statistic distributions of random numbers

representing invitation issued between users.

7.2.1 Cellar Network Input Data Experiments

The input to the SD Algorithm is extracted from a database containing
records of calls made in a cellular network in the Slovak republic. Records
are stored in the database as quartets (recipient, sender, type of the request,
duration). For the experiment we extracted 161 404 phone calls between 121
672 users for the same type of request.

Results presented here show behavior of the SD Algorithm for three differ-
ent combinations of the parameters λ and ǫ. For the sake of clarity, let us give
a list of parameters and expected behavior of the SD Algorithm:

• λ = 1, ǫ = 1 leading to less joins and more splits.
This combination suggests that splitting of groups will override the join-
ing of groups, thus leaving a system with rather smaller groups behind.
• λ = 1, ǫ = 3 leading to less joins and less splits.

In this case, at the beginning of the evolution users are simply added
into groups, which suggest a system with rather bigger groups.
• λ = 3, ǫ = 1 leading to more joins and more splits.

This case starts from the very beginning by joining groups. Even thought
splitting is also stimulated, the joining will provide more significant
changes as splitting leaves users out of intersections between groups un-
touched. Therefore, in this combination a system with larger groups is
expected.

At the beginning an initial system of 908 groups1 (starting amount of groups
will be in the rest of the thesis denoted as Ω) each containing 134 users was
randomly created with an equal level of trust.

1We chose this number as it is common multiple close to 1000 giving reasonable large
groups.
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Description of the Experiment: During the experiments records are fetched
from the database and put as the input to the SD Algorithm. Each record in
the input expresses that the recipient invites the sender from randomly chosen
sender’s group to randomly chosen recipient’s group. For the input data does
not include information about grouping (the input data represents communi-
cation between users) we had to choose the groups randomly. Each invitation
represents one cycle (iteration).

For better readability of the results, the evolution of the system of groups
is shown as histograms representing relative frequency of groups (in percents)
as a function of size of groups. We use the size of classes for histograms 20.
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Figure 7.2.1: Histograms for λ = 1, ǫ = 1, Ω = 908
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Figure 7.2.2: The Final Histogram (λ = 1, ǫ = 1, Ω = 908)

In the first combination of parameters (Figure 7.2.1), as well as in the
other cases, the first histogram (cycle : 0) represents starting configuration
– 100% of groups contain 134 users. With increasing number of processed
cycles (histograms from from left to right and top to bottom) distribution
changes. In the first three histograms (cycles : 16000, 32000, 48000), changes
are easily visible. With more cycles processed changes to the system are more
subtle. The final state (Figure 7.2.2) represents the fact that more than 50
% of groups contain around 140 users. Most groups created are larger than
starting configuration with a peak for 210 members per group and maximum
at 240 members per group. A final resume is given at the end of this section.

Next series of histograms (Figure 7.2.3) represent evolution for parameters
λ = 1, ǫ = 3. As was mentioned previously, this configuration suggests less
splits and less joins with many adding at the beginning. The result of ini-
tial adding is clearly visible in the histogram for cycle : 16000 where growth
of groups of size 150 is mostly stimulated (compared to the previous case).
With the increasing amount of processed cycles, the system of groups tends to
achieve a stable configuration as probability of splitting and joining increases.
The final histogram (Figure 7.2.4) presents very similar distribution of users
into groups as in the previous case, apart from lower percentage of group of size
130 and more larger groups, two smaller peaks at 170 and 200 and maximum
at 240 members per group.
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Figure 7.2.3: Histograms (λ = 1, ǫ = 3, Ω = 908)
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Figure 7.2.4: The Final Histogram (λ =1, ǫ = 3, Ω = 908)

The last combination of parameters presented in Figure 7.2.5 shows the
simulation for the parameters λ = 3, ǫ = 1. Under this configuration, the SD
Algorithm should tend to process more joining of groups. It is clearly visible
in histograms for cycle : 16000, 32000, 48000 where percentage of groups of the
lowest size (130) is the minimum of all tested combinations of the parameters.
Nevertheless, with increased number of cycles the system tends to achieve a
stable configuration as well as in the previous cases. In the final histogram
shown in Figure 7.2.6 the joins cause creation of larger groups, which is clearly
visible for sizes of groups 200 up to 220.

66



50 100 150 200 250
0

20
40
60
80

100

Size of group

R
e

l.
 
f
r
e

q
.
[
%

]

cycle:0

50 100 150 200 250
0

20
40
60
80

100

Size of group

R
e

l.
 
f
r
e

q
.
[
%

]

cycle:16000

50 100 150 200 250
0

20

40

Size of group

R
e

l.
 
f
r
e

q
.
[
%

]

cycle:32000

50 100 150 200 250
0

20

40

Size of group

R
e

l.
 
f
r
e

q
.
[
%

]

cycle:48000

50 100 150 200 250
0

20

40

Size of group

R
e

l.
 
f
r
e

q
.
[
%

]

cycle:64000

50 100 150 200 250
0

20

40

Size of group

R
e

l.
 
f
r
e

q
.
[
%

]

cycle:80000

50 100 150 200 250
0

20

40

Size of group

R
e

l.
 
f
r
e

q
.
[
%

]

cycle:96000

50 100 150 200 250
0

20

40

Size of group

R
e

l.
 
f
r
e

q
.
[
%

]

cycle:112000

50 100 150 200 250
0

20

40

Size of group

R
e

l.
 
f
r
e

q
.
[
%

]

cycle:128000

50 100 150 200 250
0

20

40

Size of group

R
e

l.
 
f
r
e

q
.
[
%

]

cycle:144000

Figure 7.2.5: Histograms (λ = 3, ǫ = 1, Ω = 908)
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Figure 7.2.6: The Final Histogram (λ = 3, ǫ = 1, Ω = 908)

Discussion of the Experiments: The SD Algorithm has been shown to be
stable against the data describing a real society. The stability seems to be
only gently affected by the parameters at the end, but the parameters play
important rule in the beginning of the evolution.

• In the case of low λ and low ǫ (λ = 1, ǫ = 1 in Figure 7.2.2), the first
several cycles create a system of rather smaller groups. This is due to the
more splits. Even in the final histogram (Figure 7.2.1) it is visible the
highest distribution of users toward smaller group for all combinations
presented.
• The second combination λ = 1, ǫ = 3 (Figure 7.2.4) creates at the

beginning a system with larger groups, as expected.
• The last combination λ = 3, ǫ = 1 tends to preserve the starting config-

uration least of all combinations. This is mainly due to the high proba-
bility of joining and splitting at the beginning.

In general, it can be said that the SD Algorithm is stable. Our experiments
have shown that round 50% of users remain very close to the starting config-
uration. This feature fully supports the requirements from sub-section 6.2 on
a conservative system that makes slow changes in the system of groups.
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7.2.2 Input Data for Different Statistical Distributions

The experiments presented previously illustrated the ability of the SD Algo-
rithm to preserve a stable system of groups. In the following set of experiments
the SD Algorithm is investigated for existence of any dependency between sta-
bility and a type of input.

The experiments use randomly generated input data for the following sta-
tistical distributions of invitations between users:

1. uniform distribution,
2. normal distribution,
3. exponential distribution.

The parameters of the SD Algorithm were chosen (λ = 2, ǫ = 1), for this
configuration seems to be balanced (we used more different combinations of
the parameters but without a noticeable influence on the results). Results are
also shown in histograms with the same meaning of axes as previously.

69



-10 0 10 20 30 40 50 60
0

20
40
60
80

100

Size of group
R

e
l.
 
f
r
e
q
.
[
%

]

cycle:0

-10 0 10 20 30 40 50 60
0

20

40

Size of group

R
e
l.
 
f
r
e
q
.
[
%

]

cycle:200

-10 0 10 20 30 40 50 60
0

20

40

Size of group

R
e
l.
 
f
r
e
q
.
[
%

]

cycle:400

-10 0 10 20 30 40 50 60
0

20

40

Size of group

R
e
l.
 
f
r
e
q
.
[
%

]

cycle:600

-10 0 10 20 30 40 50 60
0

20

40

Size of group

R
e
l.
 
f
r
e
q
.
[
%

]

cycle:800

-10 0 10 20 30 40 50 60
0

20

40

Size of group
R

e
l.
 
f
r
e
q
.
[
%

]

cycle:1000

-10 0 10 20 30 40 50 60
0

20

40

Size of group

R
e
l.
 
f
r
e
q
.
[
%

]

cycle:1200

-10 0 10 20 30 40 50 60
0

20

40

Size of group

R
e
l.
 
f
r
e
q
.
[
%

]

cycle:1400

-10 0 10 20 30 40 50 60
0

20

40

Size of group

R
e
l.
 
f
r
e
q
.
[
%

]

cycle:1600

Figure 7.2.7: Histograms for Uniform Distribution (λ = 2, ǫ = 1, Ω = 20).

70



−10 0 10 20 30 40 50 60
0

10

20

Size of group

R
el

. f
re

q
 [

%
]

Final state

Figure 7.2.8: The Final Histogram for Uniform Distribution (λ = 2, ǫ = 1,
Ω = 20).

Uniform Distribution

Uniform distribution (Figure 7.2.7) of random input data corresponds to
randomly issued invitations between users. Due to the uniformity of this dis-
tribution, during the first cycles (the histogram for cycle : 200) there is a lot of
adds – invitations are spread onto many users creating most groups of size 2.
With increasing amount of cycles processed, splits and joins override adding
resulting in stabilization of the system of groups. The final histogram (Figure
7.2.8) shows that invitations generated randomly with uniform distribution
tends to preserve the starting configuration the least of all cases (see the next
sub-sections).
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Figure 7.2.9: Histograms for Normally Distribution (λ = 2, ǫ = 1, Ω = 100).
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Figure 7.2.10: The Final Histogram for Normal Distribution (λ = 2, ǫ = 1,
Ω = 100).

Normal Distribution

The normal distribution is used as a model of quantitative phenomena
in natural and behavioral sciences due to the fact that many psychological
measurements and physical phenomena can be approximated by the normal
distribution. This is the main reason why we chose this distribution for the
verification of the SD Algorithm.

Input data generated for normal distribution places most invitations onto
a limited set of users, thus creating a system with groups having larger inter-
sections (many common users). This fact is clearly visible from histograms in
Figures 7.2.7 (the uniform distribution) and 7.2.9 (normal distribution), where
histograms for cycle : 200 differs in much. Particularly, the uniform distribu-
tion creates many new groups with size 2, whereas normal distribution creates
larger groups with descending tendency. The following histograms in Figure
7.2.9 shows that increasing amount of cycles causes stabilization of the groups.

Nevertheless in the final histogram (Figure 7.2.10) is clearly visible that in
the case of the normal distribution of input data, the SD Algorithm preserves
the starting configuration more than in the case of the uniform distribution.
In addition to this the system contains less larger groups than in the case of
the uniform distribution (see for instant interval 20-30) . This is due to the
input data, that places many invitations onto a limited number of users. This
results in system of groups where a few users are members of many groups,
while the others remain in the starting configuration (they have not received
any or few invitations).
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Exponential Distribution

The last distribution chosen for the experiments is the exponential distri-
bution. In this case, invitations are generated for even more limited number
of users. Histograms in Figure 7.2.11 show very similar evolution of groups as
in the case of the normal distribution presented above.
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Figure 7.2.11: Histograms for Exponential Distribution (λ = 2, ǫ = 1, Ω = 10).
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Figure 7.2.12: The Final Histogram for Exponential Distribution (λ = 2, ǫ = 1,
Ω = 10).

The final histogram of distribution of users into groups in Figure 7.2.12
shows very similar distribution to the case of the normal distribution. The
mostly visible difference is the percentage of frequency of groups of size 4 and
6. In the case of exponential distribution there is more groups of size 6. That
exponential distribution generates invitation for even more limited number of
users than in the former case, which leads to the more joins at the beginning
of the evolution (see Figure 7.2.11).

The experiments presented in this section illustrate that the input has an
impact on the distribution of users into groups. Apart from subtle different
final distributions, these experiments illustrate the SD Algorithm to be stable
even in the case of different input data. The mostly visible difference of the
evolution and the final distribution of users into groups in the case of normally
distributed invitations.
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7.3 Experiments for Security Sub-system

The precedent experiments concentrated on the stability of the SecGrid
model, particularly of the SD Algorithm. The SecGrid model, on the other
hand, contains also a security component. Therefore, this section presents the
test of the security aspects of the SecGrid model together with properties of
the hypergraph model.

7.3.1 Overlapping of Groups

The SecGrid model uses the hypergraphs for the representation of a system
of groups. We argued that the model provides better support for building
direct trust between users (see section 4.2.2). In our hypergraph model users
from the same group have a direct trust relationship with each other. In the
graph model users have direct trust relationship only if they have been in direct
contact. In the following experiments we investigate differences between direct
trust relationships in graph and hypergraph model.

Amount of users having direct relationships equals in graph model to the
size of the set of edges (|E|). In hypergraph model, on the other hand, amount
of direct relationships is given by amount of edges of complete graphs1 con-
structed for each hyperedge. Note that number of directed edges constructed
for a complete graph with n vertices is given by:

|E| = n · (n− 1) (7.3.1)

In addition, one vertex can be a pin of more hyperedges. Hereby, it is
possible that one vertex contributes to more complete graphs representing
hyperedges.

For better understanding of the experiment, let us firstly explain what
happens during the splitting and joining phases of the SD Algorithm. In
Figure 7.3.1 case a) an example of two groups being connected by two users
E and B is shown. Assume that combination of group weights and parameter
ǫ triggers the splitting of groups. The possible result of splitting procedure
is depicted in Figure 7.3.1 case b), which now consists of three groups. It is
clearly visible that intersections between groups are now larger including 7
users (E, B, I, J, H, D, G) instead of two users E, B in case a).

1This corresponds to clique-net representation of hyperegraphs used in numerical mathe-
matics [69],[70].
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User is invited by
user

G
C

a) b)

Figure 7.3.1: Contribution of the Splitting Procedure (to enlargement of the
set of direct relationships between users in the hypergraph model).

case a) case b)

5.4 = 20 6.5 = 30 (7.3.2)

7.6 = 42 6.5 = 30 (7.3.3)

5.4 = 20 (7.3.4)

−−−−− −−−−−

62 80 (7.3.5)

In expressions 7.3.2-7.3.5 are given calculations of direct relationships be-
tween users for examples given above in Figure 7.3.1. In the first column a
calculation of number of edges for complete graphs created for hyperedges in
case a) is given. As there are two hyperedges with 5 and 7 vertices, total
number of edges is 62. In case b), on the contrary, there are 3 hyperedges; two
with 6 and one with 5 vertices – three complete graphs with totally 80 edges.
In this example, the splitting added 18 new direct relationships.
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The same can be asserted for the case of joining (shown in Figure 7.3.2).
In case a) there are two groups with 7 and 5 users, respectively. By joining of
these groups one group containing all (10) users is created. Equations 7.3.6-
7.3.8 show the calculations illustrating the enlargement of the set of direct
relationships.

a) b)

Figure 7.3.2: Contribution of the Joining Procedure (to the enlargement of the
set of direct relationships between users in the hypergraph model).

case a) case b)

5.4 = 20 10.9 = 90 (7.3.6)

7.6 = 42 (7.3.7)

−−−−− −−−−−

62 90 (7.3.8)
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User is invited by
user

G
C

a) b)

Figure 7.3.3: Contribution of the Splitting Procedure (to the decreasing of the
set of direct relationships between users in the hypergraph model).

On the other hand, one might object that this is not valid for all cases.
For example in Figure 7.3.3 a situation is shown where initial configuration of
two groups (case a)) is split into three groups (case b)). In this case the split-
ting does not contribute but counteract to the number of direct relationships.
Expressions 7.3.9-7.3.12 show that the total amount of direct relationships is
reduced by 6.

case a) case b)

8.7 = 56 8.7 = 56 (7.3.9)

7.6 = 42 6.5 = 30 (7.3.10)

3.2 = 6 (7.3.11)

−−−−− −−−−−

98 92 (7.3.12)

That joining might also result is the decrease of direct relationships is straight-
forward. For example, assume configuration given in Figure 7.3.4 where given
groups differ only by one user G. Joining of groups results in one group with
10 users. In this case, as shown by expressions 7.3.13-7.3.15, the decrease is
by 72 direct relationships.

case a) case b)

10.9 = 90 10.9 = 90 (7.3.13)

9.8 = 72 (7.3.14)

−−−−− −−−−−

162 90 (7.3.15)
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a) b)

Figure 7.3.4: Contribution of the Joining Procedure (to the decrease of the set
of direct relationships between users in the hypergraph model).

Based on the examples discussed above, it can be stated that:

1. larger intersections between groups – splitting as well as joining cause
the lessening of the total amount of direct relationships,

2. smaller intersections between groups – splitting as well as joining
cause the enlargement of the total amount of direct relationships.

Thereby, it would be advantageous for the clarity of the experiments to
know relations between parameters of the SD Algorithm and the size of inter-
sections:

1. ↓ λ, ↑ ǫ – less joins and less splits cause larger intersections,
2. ↑ λ ↓ ǫ – more joins and more splits cause smaller intersections,

where ↑ represents larger value, and ↓ represents smaller value of the parame-
ters.

In the following sets of figures, results for experiments illustrating the prece-
dent statements are presented. The SD Algorithm is tested for various input
data and with different combinations of the parameters. Concretely, input
data are generated by uniform, normal and exponential distributions and the
combinations of parameters are:

1. λ = 1, ǫ = 1;
2. λ = 1, ǫ = 3;
3. λ = 3, ǫ = 1.

The input for the SD Algorithm comprises 2000 pairs (user1, user2) corre-
sponding to an invitation issued by user1 for user2 from randomly chosen
user2 group to randomly chosen user1 group. The starting configuration is
created as each user has its own group and levels of trust are the same.
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In the following figures graphs for all three combinations of parameters are
given (the amount of direct relationships is represented on y-axis and cycles
are on x-axis).

For uniform distribution of input data, the resulted graphs are shown in
Figures 7.3.5, 7.3.6 and 7.3.7. Graphs show dependency of number of direct
relationships of the graphs model (shown in red dash-dot-line), number of
direct relationships in SecGrid with the hypergraph model (in magenta dash-
and-dot line), and also SecGrid with the bare hypergraph model (in green
doted line). The bare SecGrid hypergraph model represents amount of direct
relationships between users, where each group (hyperedge) is represented as a
complete graph and each pair of vertices is connected by at most one edge. In
this model, a user can contribute to the overall number of direct relationships
only in one of group (this model is presented for comparisons).
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Figure 7.3.5: Uniform Distribution (λ = 1, ǫ = 1).
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Figure 7.3.6: Uniform Distribution (λ = 1, ǫ = 3).
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Figure 7.3.7: Uniform Distribution (λ = 3, ǫ = 1).

In the first three graphs (7.3.5,7.3.6,7.3.7) it is clearly visible that the graph
model offers the lowest number of direct relationships. The full SecGrid model,

82



on the other hand, surpasses the graph model dramatically. Even the bare
model provides better (corresponding to approximately two times higher) num-
ber of direct relationships than the graph model.
The figures also confirm the preliminary assertion that combination λ = 3,
ǫ = 1 provides the highest number of direct connections as was expected. In
the same way, combination λ = 1, ǫ = 3 results in the lowest number of
relationships.
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Figure 7.3.8: Normal distribution, λ = 1, ǫ = 1
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Figure 7.3.9: Normal distribution, λ = 1, ǫ = 3
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Figure 7.3.10: Normal distribution, λ = 3, ǫ = 1

In the case of the normal distribution of random input data (Figures 7.3.8,
7.3.9, 7.3.10) the best results are also given by the combination λ = 3, ǫ = 1.
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The combination λ = 1, ǫ = 3, on the other hand, overcame the combina-
tion λ = 1, ǫ = 1, which is different from the case of uniform input data
distribution. Here is different distribution of invitations issued by users. The
uniform distribution spreads all 2000 invitations uniformly onto all users, un-
like the normal distribution, which concentrates most invitations only onto
limited number of users. In this way, normally distributed input data implies
less splits with more joins resulting in larger groups with smaller intersections
(the same can be seen in the stability experiments).
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Figure 7.3.11: Exponential distribution, λ = 1, ǫ = 1
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Figure 7.3.12: Exponential distribution, λ = 1, ǫ = 3
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Figure 7.3.13: Exponential distribution, λ = 3, ǫ = 1
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The last set of figures (7.3.11, 7.3.12, 7.3.13) presents the results for ex-
ponential distribution of random invitations. In this case it is noticeable that
final direct relationships in the graph model is 685, although one should expect
2000. The reason lies in the distribution of invitations. In the exponential dis-
tribution most invitations are concentrated between smaller number of users,
which results in multiple invitations between the same users. The other inter-
esting fact is the shape of curve for parameters λ = 3, ǫ = 1 (Figure 7.3.13).
This is due to the distribution of invitation as well, while bigger concentration
of invitations between a few users creates a system of groups with larger in-
tersections at the beginning. Nevertheless, with additional invitations groups
are split into smaller groups with smaller intersections – resulting in the rapid
increase in number of direct relationships.

The main aim of the presented experiments was to show advantages of the
hypergraph model used by SecGrid over the graph model used in most contem-
porary trust building systems. The question whether the hypergraph model
has any advantages in building direct trust between users has been positively
answered by the experiment.
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7.3.2 Trustworthiness of the SecGrid Model

The precedent experiments were oriented towards the stability of the SD
Algorithm. In the following experiment we concentrated on the security as-
pects of the SecGrid model.

This sub-section is organized as follows:

• firstly we describe the experiment,
• followed by the list of experimental results given for eight different com-

binations of the parameters;
• at the end we provide summary of the experiment.

Description of the Experiment

By a good user will be called a user that causes no harm to the others.
A malicious user is a user that independently or in cooperation with other

malicious users behaves in order to boost its own profit on the good users’
coat-tails.

The scenario used for the experiment is described (in a pseudo code) in the
following algorithm:

Algorithm 2 Trustworthiness of the SecGrid Model

1: Run the SD Algorithm for n cycles
2: for k steps do

3: Get randomly a malicious user um ⊲ get user only once
4: Get randomly a good user ug

5: for all ni ∈ hyperedges(ug) do

6: for all nj ∈ hyperedges(um) do

7: if ni ∩ nj 6= {0} then

8: Create a new group nnew, which contains all users,
9: except um and users invited by um

10: end if

11: end for

12: end for

13: end for

The SD Algorithm is run for n cycles creating a system of groups (line 1).
Subsequently the following is repeated for k steps:

1. (lines 3-4) a pair of a good user (ug) and a malicious user (um) is randomly
generated,

2. (line 5) to preserve its own as well as the overall security, the good user
(ug) spreads his knowledge about the malicious one (um) into all his/her
groups,
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3. (lines 8-9) each group that contains the good user (ug) and also a mali-
cious user (um) is split, so that a new group contains all users except:

• the malicious one (um) and
• all users invited by the malicious one.

The newly created group has an increased level of trust (see bellow).

In this way the SecGrid model does not punish malicious users (e.g. by de-
creasing their reputation), but it creates a new group for users not invited by
the malicious one with increased level of trust.

The SecGrid model further preserves knowledge about the malicious users
by maintaining the old group (note that the old group remains unchanged).
This is particularly important, as good users remain conscious about the users
left behind. This allows them to block later attempts to infiltrate any of their
trusted groups.

In the experiment the parameters were chosen as follows:

• n = 300 (amount of cycles for the SD Algorithm - chosen accordingly to
the stability experiments in section 7.2),
• k = 30 (amount of steps for the security sub-system - this amount was

shown by the experiments to be appropriate)
• 50 users (this amount seems to be upper bound enabling visual compar-

ison of results)

Furthermore we used the following combinations of parameters (λ, ǫ) of the
SD Algorithm:

1. λ = 1, ǫ = 1,
2. λ = 4, ǫ = 1,
3. λ = 1, ǫ = 4.

These combinations lead the SD Algorithm to make changes more quick (see
section 7.2), thus creating the system of groups used for the next part of the
security experiments.

89



Each user in the system was marked as a good or a malicious one. We used
eight different ratios between good and malicious users expressed as percentage
(further marked as Ψ):

1. Ψ = 95% (system with most of good users),
2. Ψ = 90%.
3. Ψ = 80%,
4. Ψ = 70%,
5. Ψ = 50% (system with half good and half malicious users),
6. Ψ = 30%,
7. Ψ = 20%,
8. Ψ = 10% (system with majority of malicious users).

For each ratio we randomly generated an input for the SD Algorithm con-
taining three sets of invitations:

• good users invite good users (1/3 in the input),
• malicious users invite malicious ones (1/3),
• combination of invitations between the good users and the malicious ones

(1/3).

This concrete input of three sets of invitations will be called ”well mixed”.

The trustworthiness of the SecGrid model is higher if malicious users are iso-
lated in groups with lower level of trust and groups with higher level of trust
contain mostly good users. Therefore in the following we investigate ability of
the SecGrid model to isolate malicious users in the groups with lower level of
trust.

Interpretation of Results: The trustworthiness of the SecGrid model is
shown in 3 graphs for each combination of parameters and various percentage
of good users in groups (further denoted as Φ):

1. The first graph shows progress of average Φ as a function of cycles
(case a)). The group splitting preserves the old group unchanged, there-
fore the average Φ computed for a new cycle shows the trend in the
evolution.

2. The second graph shows starting configuration created by the SD
Algorithm as histogram with the same axes as in the previously men-
tioned experiments (case b)).

3. The last graph shows evolution of each group in the system.
On the x-axis are shown cycles and on the y-axis is shown percentage of
good users in groups (Φ).

• Each small circle in the graph corresponds to a group.
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• In blue small circles are plotted stable groups (they have existed
for a certain period of time).
• By a blue solid line is shown life time of a stable group until

it is split into a new and an old one (according to Algorithm 2).
• The new group is shown in a red asterisk.
• A red dash-dot line connects the stable group and the new

group. It goes upwards in case the new group contains more good
users, downwards otherwise.
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Results for Selected Parameters

The first set of experiments is for Ψ = 95%. This suggests a trusted system
with majority of good users. Let start with parameters λ = 1, ǫ = 1. Such
combination leads the SD Algorithm to a system of rather smaller groups
with bigger intersections. Figure 7.3.14 a) shows that changes to the overall
trustworthiness occurred only during the first 3 steps and the changes lead to
the increase of the trustworthiness. In the rest of the 26 cycles no changes
were triggered.
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Figure 7.3.14: Evolution of Trustworthiness (λ = 1, ǫ = 1, Ψ = 95%).

Figure 7.3.15 shows that each new group created during splitting has 100%
of good users. From the figure it is also visible that the splitting occurred only
during the first three steps. This is mostly for low number of the malicious
users in the system. Note that some groups with less then 100% of good
users were not involved in splitting (no good user triggered splitting) – these
groups corresponds to red circles on the y-axe connected with no blue line in
Figure 7.3.15 (on the next page).
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Figure 7.3.15: Evolution of Groups (λ = 1, ǫ = 1, Ψ = 95%)

The following list summarizes meaning of the Figure 7.3.15:

• more red asterisks on the top of the graph suggest that new groups
contain more good users,
• longer blue lines represent latter splitting,
• longer upwards red lines represent larger increase of good users in new

groups,
• longer downwards red lines represent larger decrease of good users in new

groups.

(Ideally, the figure should contain only short blue lines, long upward red lines
and most red asterisk at 100% of good users.)

The final summarization for all combinations of Ψ and parameters of the SD
Algorithm is given at the end of this section.
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The next combination of parameters ( λ = 4, ǫ = 1) leads the SD Algorithm
to create a system of more interconnected (ǫ = 1) rather larger groups (λ = 4).
This is visible in Figure 7.3.16 b). Even in this case the splitting occurred only
during the first three cycles.
The most important result can be seen in Figure 7.3.17, as each group (except
for the one with no good users in) had 100% of good users in at the end of
the first three cycles. It corresponds to the fact that after only three splitting
each group in the system with higher level of trust contains only good users.
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Figure 7.3.16: Evolution of Trustworthiness (λ = 4, ǫ = 1, Ψ = 95%).
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Figure 7.3.17: Evolution of Groups (λ = 4, ǫ = 1, Ψ = 95%)
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The last combination of parameters (λ = 1, ǫ = 4) provides very similar
increase of trustworthiness (see Figure 7.3.18 a)) as the previous one. This
is mainly due to the fact that for this combination of parameters the SD Al-
gorithm creates a systems of rather smaller but highly interconnected groups
(Figure 7.3.18 b)). Therefore every information about a malicious user should
propagate into groups easily. Even under this configuration each group in-
cluded in the splitting reached 100% of good users (Figure 7.3.19). Only two
groups did not split and remained un-split.
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Figure 7.3.18: Evolution of Trustworthiness (λ = 1, ǫ = 4, Ψ = 95%).
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Figure 7.3.19: Evolution of Groups (λ = 1, ǫ = 4, Ψ = 95%)

95



The second set of experiments is for Ψ = 80%. Figure 7.3.20 a) shows that
the security subsystem improves overall trustworthiness in 10 cycles.
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Figure 7.3.20: Evolution of Trustworthiness (λ = 1, ǫ = 1, Ψ = 80%).
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The important result comes from Figure 7.3.21 – besides the group split
at cycle 5 (percentage of good users had been around 18%) each group (with
a higher level of trust) reached 100% of good users. Even the group split at
cycle 5 improved to 50% of good users – this means by 32%. Compared to
the experiments for Ψ = 95% the splitting occurred more often and to more
groups. This is rather natural as number of malicious users was larger.
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Figure 7.3.21: Evolution of Groups (λ = 1, ǫ = 1, Ψ = 80%)
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The same can be asserted for the next combination of the parameters (Fig-
ures 7.3.22 and 7.3.23). In this case there are two groups that had not reached
100% of good users in. These groups are easily visible in Figure 7.3.23 at cy-
cles 7 and 11. Nevertheless both groups were split the new groups contained
majority of good users (an increase from 50% to around 68% and from 30%
to around 75%, respectively). The other groups in the system had 100% of
good users in at least at cycle 11. For the rest of cycles (from 12 up to 30) no
change occurred as there was no new information in the input data.
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Figure 7.3.22: Evolution of Trustworthiness (λ = 4, ǫ = 1, Ψ = 80%).
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Figure 7.3.23: Evolution of Groups (λ = 4, ǫ = 1, Ψ = 80%)

For the last combination of parameters, Figure 7.3.24 (λ = 1, ǫ = 4),
invitations of users from groups that differ more in the level of trust are allowed.
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Figure 7.3.24: Evolution of Trustworthiness (λ = 1, ǫ = 4, Ψ = 80%).
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Figure 7.3.25 shows that each group included in the splitting reached 100%
of good users in at least at cycle 10. On the other hand, Figure 7.3.25 shows
that most groups created by the SD Algorithm (shown on the y-axe) had had
at least around 60% of good users in.
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Figure 7.3.25: Evolution of Groups (λ = 1, ǫ = 4, Ψ = 80%)
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In the third set of experiments each second user in the system is a malicious
(Ψ = 50%).
In the first case of parameters λ = 1, ǫ = 1 (see Figure 7.3.26), the splitting
causes improvements of the overall percentage of good users in groups. On the
other hand, in this case of more malicious users in the system the splitting is
triggered for 26 cycles. In this way it differs from the experiments for Ψ = 80%
and Ψ = 95% where splitting was triggered at least at cycle 10.
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Figure 7.3.26: Evolution of Trustworthiness (λ = 1, ǫ = 1, Ψ = 50%).
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Figure 7.3.27 shows that new groups were created with a remarkably high
increase of number of good users (long red lines) – majority of newly created
group (groups with higher level of trust) had 100% of good users in. Around
half of groups had less or equal than 40% of good users in at the beginning
(cycle 0). These groups were split and most (except for 2) reached 100% of
good users. This is remarkable gain.
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Figure 7.3.27: Evolution of Groups (λ = 1, ǫ = 1, Ψ = 50%)

The next combination of parameters (λ = 4, ǫ = 1) presented in Figure
7.3.28 provides constant gain in the overall trustworthiness. Even in this case
the splitting by security sub-system ended at cycle 26.
Figure 7.3.29 shows that there were quite a lot of splits (more than in any
previous experiments). More than half of groups created by the SD Algorithm
had less than 50% of good users in. In this case the security sub-system ended
with one of the largest numbers of groups (around 10) that had less then 100%
good users (this number is comparable to systems with only 20% of good users
for which we provide experiment in the following). Nevertheless even in this
case the number of groups with higher level of trust and with the percentage
of good user equal or close to 100% is remarkably large.
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Figure 7.3.28: Evolution of Trustworthiness (λ = 4, ǫ = 1, Ψ = 50%).
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Figure 7.3.29: Evolution of Groups (λ = 4, ǫ = 1, Ψ = 50%)
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Figure 7.3.30 shows results for the last combination of parameters (λ = 1,
ǫ = 4). In this case, the shape of the curve presented in Figure 7.3.30 is not
so smooth as in the previous cases. It suggests that some splitting created a
group(s) with less good users in.
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Figure 7.3.30: Evolution of Trustworthiness (λ = 1, ǫ = 4, Ψ = 50%).
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Figure 7.3.31 provides details on splitting of groups by the security sub-
system. It shows that the SD Algorithm with the parameters λ = 1 and ǫ = 4
provides better grouping for the majority of groups with more than 50% of
good users in. Moreover, the splitting by the security sub-system worked also
better than in the previous case and the majority of groups had at the end of
the experiment 100% of good users in.
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Figure 7.3.31: Evolution of Groups (λ = 1, ǫ = 4, Ψ = 50%)
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Figure 7.3.32 a) shows the evolution of trustworthiness of the SecGrid
model for the first combination of the parameters (λ = 1, ǫ = 1) and only
20% of good users in the system. From the figure it is visible that the security
sub-system triggered splitting up to 24 cycles.

0 10 20 30
30

35

40

45

50

55

60

65

Cycle

G
o
o
d
 u

s
e
rs

[%
]

Avarage amount of good users

0 10 20 30
0

5

10

15

20

25

30

35

Size of groups

A
b
s
o
lu

te
. 
fr

e
q
. 
[%

]

Histogram for relative frequencies of groups

a) b)

Figure 7.3.32: Evolution of Trustworthiness (λ = 1, ǫ = 1, Ψ = 20%).
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The security sub-system further improves the trustworthiness by many
splitting (see Figure 7.3.33) for 24 cycles. Despite the low number of good
users in the system, the security sub-system together with the SD Algorithm
were able to improve the percentage of good users for majority of newly cre-
ated group up to 100%. This illustrates the ability of the SecGrid model to
work even in the environment with low number of good users.
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Figure 7.3.33: Evolution of Groups (λ = 1, ǫ = 1, Ψ = 20%).

107



Figures 7.3.34 and 7.3.35 shown a different combination of the parameters
λ = 4 and ǫ = 1. In this case the splitting is triggered only up to 18 cycles.
Even the splitting by the security sub-system (see Figure 7.3.35) shows a rather
lower number of events compared to the previous case.
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Figure 7.3.34: Evolution of Trustworthiness (λ = 4, ǫ = 1, Ψ = 20%).
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Figure 7.3.35: Evolution of Groups (λ = 4, ǫ = 1, Ψ = 20%).
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Figure 7.3.36 and 7.3.37 show the last combination of parameters λ = 1, ǫ =
4. This combination of parameters provided very similar results to parameters
λ = 4, ǫ = 1. The important point here shown in Figure 7.3.37 is that the
number of groups with 100% of good users in at the end of the experiment is
quite low compared to the previous cases. It suggests the combination λ = 1,
ǫ = 4 is not appropriate for system with low number of good users.
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Figure 7.3.36: Evolution of Trustworthiness (λ = 1, ǫ = 4, Ψ = 20%).
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Figure 7.3.37: Evolution of Groups (λ = 1, ǫ = 4, Ψ = 20%).
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Summary

We give here a full report on experiments for all combinations of parame-
ters. The results are summarized in table 7.3.1 bellow.

Table 7.3.1: Overview on Experiments for Trustworthiness of SecGrid (”well
mixed” input)

λ, ǫ Φ1 Φ2 ∆Φ |N |1 |N |2 ∆|N | Ψ

1,1 95 96 1 61 68 7
95%4,1 96 98 2 50 64 14

1,4 96 98 2 38 51 13
1,1 92 98 6 65 82 17

90%4,1 91 95 4 40 61 21
1,4 93 96 3 48 68 20
1,1 75 79 4 69 86 17

80%4,1 81 84 3 51 81 30
1,4 96 97 1 45 59 14
1,1 64 82 18 85 198 113

70%4,1 76 94 18 66 338 272
1,4 84 92 8 60 139 79
1,1 50 63 13 92 162 70

50%4,1 52 68 17 115 334 219
1,4 60 76 16 56 206 150
1,1 45 70 25 92 292 200

30%4,1 40 85 45 89 1145 1056
1,4 44 85 41 54 1867 1813
1,1 31 61 30 90 470 380

20%4,1 23 72 49 57 419 362
1,4 18 71 53 55 454 399
1,1 19 50 31 74 147 73

10%4,1 5 60 55 29 2541 2512
1,4 9 59 50 40 194 154

The meaning of symbols in the table:

• Φ1 - starting average of percentage of good users in groups created by
the SD Algorithm,
• Φ2 - final average of percentage of good users in groups,
• ∆Φ - gain of percentage of good users in groups,
• |N |1 - amount of groups created by the SD Algorithm,
• |N |2 - amount of groups created by the SD Algorithm plus groups created

by the security sub-system,
• ∆|N | - amount of groups created by the security sub-system,
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• Ψ - number of good users in system [%].

Interpretation of the Table 7.3.1. The security sub-system:

• always improves trustworthiness,
• works well even in the systems with low amount of good users,
• provides the best gain of the trustworthiness for system with low amount

of good users (it demonstrates its ability to cope with such systems).

The Table 7.3.1 also gives basic information about the SD Algorithm:

• the maximum number of groups was created by the SD Algorithm with
the parameters λ = 1, ǫ = 1. This combination supports splitting thus
creating more groups,
• the minimum number of groups was created for parameters λ = 1, ǫ = 4.

This combination supports adding thus creating smaller number of rather
larger groups,
• the SD Algorithm provided best total trustworthiness for parameters

λ = 1, ǫ = 4 for system with at least half of good users. In more secure
systems this combination suggests many adding which leads to higher
trustworthiness.
• the best total trustworthiness for systems with low number of good users

was on the other hand given by parameters λ = 1, ǫ = 1. (This combi-
nations makes a lot of splits thereby creating many smaller groups which
are less prone to infiltration.)

One could object that the input invitations generated for the experiments
create a system of groups where good users are concentrated in one set of
groups and malicious users in the second one. Input data consisted of three
sets of invitations (”well mixed” input) as mentioned at the beginning of this
section. Therefore in the following Table 7.3.2 results for input data gener-
ated randomly for all users in the system (”random” input) are shown. The
parameters and the experiment remained the same.
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Table 7.3.2: Overview on Experiments for Trustworthiness of the SecGrid
(”random” input)

λ, ǫ Φ1 Φ2 ∆Φ |N |1 |N |2 ∆|N | Ψ

1,1 95 96 1 83 101 18
95%4,1 95 97 2 79 145 66

1,4 95 97 2 59 78 19
1,1 92 94 2 81 111 30

90%4,1 92 95 3 66 136 66
1,4 91 94 3 74 114 40
1,1 83 85 2 89 121 32

80%4,1 77 82 5 98 190 92
1,4 80 84 4 69 108 39
1,1 70 74 4 100 183 83

70%4,1 73 77 4 135 448 313
1,4 68 76 8 85 232 147
1,1 72 69 -3 142 479 337

50%4,1 62 54 -8 124 422 298
1,4 69 66 -3 78 284 206
1,1 28 44 16 106 302 196

30%4,1 32 49 17 98 1213 1115
1,4 26 49 23 85 343 258
1,1 18 48 30 92 411 319

20%4,1 21 61 40 123 424 301
1,4 24 60 36 82 457 375
1,1 14 47 33 100 484 384

10%4,1 12 49 37 80 3877 3797
1,4 12 47 35 66 716 650

The SecGrid model provided very similar results to the ”well mixed” input
for systems with low or high number of good users. Even in this case uni-
formly generated invitations puts most invitation among only malicious users
or among only good users. This corresponds to the creation of stable basic sys-
tem of groups where malicious and good users are isolated in different groups,
as in the case of ”well mixed” input. Therefore the results provided for the
”well mixed” and the ”random” input data are comparable.

In systems with similar amount of good and malicious users (Φ equals to
approximately 50%) the security sub-system might cause a small decrease in
the overall trustworthiness.
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According to the experiments done we can state that the SD Algorithm
positively influence overall security, expressed by percentage of good users in
groups. In addition to this improvements the security sub-system increases
the overall security by isolating malicious users.

A remarkable feature of the SecGrid model is its ability to improve overall
security in systems where ratio between good and malicious users is low. In
this case the SecGrid model takes full advantages of the hypergraph model.
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Chapter 8

Experimental Implementation of

the SecGrid Model

In the previous chapters we proposed the SecGrid model – a model for
building trust in decentralized environments by managing groups of users.

In such system the users infer their level of trust based on the groups they
are members of. The SecGrid model is dynamic by supporting changes in the
structure. One of the main peculiarities of the SecGrid model is its natural
support of human intuition of trust. This was the reason why we wanted to
verify the SecGrid model usability in the real world by ordinary users.

We prepared a simple experimental implementation enabling exchange of keys
(e.g. tKeys) by devices and technologies accessible for mass users. We have
chosen mobile phones as the target device. The main reasons can be summa-
rized as:

1. mobile phones can be found everywhere around the world,
2. majority of today mobile phones offer enough computational and storage

capabilities,
3. users have their mobile phone ready almost anytime and anywhere,
4. users have different applications installed in their mobile phones, thus

using them for additional tasks (entertainment, scheduling, etc.).

The next step was the selection of communication technology used for trans-
mission of tKeys. Today mobile phones usually support infrared beam (IrDA),
GSM and Bluetooth (BT) [72] wireless communication standard. From our
point of view, the most suitable was Bluetooth (for its parameters and hard-
ware support).

Concerning the selection of mobile phones development environments, one
can use various development environments for programming applications for
mobile phones (e.g. Java Micro Edition [73], Symbian, etc.).
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Java Micro Edition (J2ME) fulfilled all our requirements:

1. supports Bluetooth communication standard (JSR-82),
2. enables creation of rich graphic user interface,
3. enable storage and retrieval of byte data (this format is supported by

J2ME),
4. it is supported by majority of modern mobile phone.

8.1 MyKeys Implementation

MyKeys (Figure 8.1.1) experimental implementation provides users with
basic functionality needed for the storage and the exchange of tKeys stored
in a mobile phone. MyKeys can be run on any mobile phones that fulfills the
following requirements:

• J2ME support,
• Connected Limited Device Configuration (CLDC) 1.0,
• JSR-82 Bluetooth package,
• graphic display.

The main functionality of MyKeys can be structurally given as:

• storage, display and management of user keys,
• concurrent exchange of keys between up to 8 devices,
• service discovery and acceptance through Bluetooth.

In Figure 8.1.2 the UML class diagram of the basic classes of MyKeys is shown.
The main idea behind the application is to program the Bluetooth server of-
fering the MyKeys service to clients. Clients search for services provided by

MyKeys
New friends have
not been closer to
you.

Figure 8.1.1: The MyKeys Splash Screen

Bluetooth server in their communication range and if found, then they try
to connect to the MyKeys service. For the purposes of running the server,
MyKey includes the server class (shown on the left in the Figure 8.1.2) and
also the client class for the purpose of service discovery (shown on the right in
Figure 8.1.2).
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BluetoothConnection

+ i:  int

+ inputStream:  InputStream

+ localName:  String

+ outputStream:  OutputStream

+ remoteName:  String

+ streamConnection:  StreamConnection

+ url:  String

+ BluetoothConnection(StreamConnection, String, String)

+ BluetoothConnection(String, String, String)

+ close() : void

+ connect() : void

+ getInputStream() : InputStream

+ getLocalName() : String

+ getOutputStream() : OutputStream

+ getRemoteName() : String

+ isClosed() : boolean

+ openStreams() : void

+ read(byte[], int) : void

+ readInt() : int

+ readString() : String

# setRemoteName(String) : void

+ writeInt(int) : void

+ writeString(String) : void

+ writeString_array(byte, String[]) : void

Client

+ attrbs:  int ([])

- attrSet:  int ([])

- block_client:  Object

+ BT_ADDR:  String ([])

+ btConnections:  BluetoothConnection ([])

- cached_devices:  Vector

- cached_services:  Vector

- cached_URL:  Vector

+ Client_data_ready:  boolean

+ Client_end_flag:  boolean

+ Client_receive:  boolean

+ Client_transmit:  boolean

+ connect_directly:  boolean = false

- currServRec:  ServiceRecord

- data_element_name:  DataElement

+ Data_remote:  byte ([])

+ discoveryAgent:  DiscoveryAgent

- IMAGES_NAMES_ATTRIBUTE_ID:  int = 0x4321

- listener:  Listener

- local_name:  String

+ localDevice:  LocalDevice

- MAJOR_DEVICE_CLASS_PHONE:  int = 0x0200

+ maxDevices:  int

- PICTURES_SERVER_UUID:  UUID = new UUID("F0E0D...

- remote_device:  RemoteDevice

- remote_name:  String

- SERVICE_NAME_BASE_LANGUAGE:  int = 0x0100

- serviceSearchTransId:  int

- serviceUUID:  String

+ simulation:  boolean = true

+ URL:  String ([])

+ URL_index:  int

- uuid:  UUID ([])

- uuidSet:  UUID ([])

+ Client()

+ Client_create_connection() : void

+ Client_run() : void

+ log(String) : void

- ServiceSearch() : void

DiscoveryListener

Client::Listener

+ deviceDiscovered(RemoteDevice, DeviceClass) : void

+ inquiryCompleted(int) : void

+ Listener()

+ servicesDiscovered(int, ServiceRecord[]) : void

+ serviceSearchCompleted(int, int) : void

Thread

Client::ReceiveThread

~ index:  byte

# ReceiveThread(byte)

+ run() : void

Thread

Client::

ClientThread

# ClientThread()

+ run() : void

cProfileData

+ diff:  int

+ group:  String

+ key:  String

+ weight:  int

+ cProfileData()

GameCanvas

Runnable

MakeConnection

# Client:  Client

- CMain:  MyKeys

- data_profile:  byte ([])

- klient:  int = 0

- mDisplay:  Display

- running:  boolean = true

# Server:  Server

+ destroy() : void

+ Get_remote_profile() : void

+ MakeConnection(MyKeys, int)

- Process_data_client() : void

- Process_data_server() : void

+ run() : void

+ start() : void

+ stop() : void

MIDlet

CommandListener

MyKeys

~ Alert: Alert = new Alert("Alert")

~ backCommand:  Command = new Command("Ba...

+ Client:  Client

+ connection:  MakeConnection

+ currentMenu:  String

+ display:  Display

~ exitCommand:  Command = new Command("Ex...

- choose:  List

- input: TextBox

+ keys:  cProfileData ([])

- keysText:  List

~ mainMenuCommand:  Command = new Command("Ma...

+ menu:  List

# PROFILE_STORAGE:  String = "MyKeys"

~ random:  java.util.Random = new java.util.R...

+ RemoteKeys:  cProfileData ([])

+ rms:  rmsManager

+ Server:  Server

~ Splash:  Splash

+ commandAction(Command, Displayable) : void

+ destroyApp(boolean) : void

# getConnectedClient() : void

# getConnectedServer() : void

# getRandomNumber(int) : int

# getRandomProfile() : cProfileData

+ log(String) : void

+ mainMenu() : void

+ MyKeys()

# openKeys() : int

+ pauseApp() : void

+ risenError(String) : void

# saveKeys(int) : void

- showLogo() : void

+ startApp() : void

# viewKeys() : void

property get

# getRemoteKeys() : void

rmsManager

# create:  boolean = false

# rms:  String

- rs:  RecordStore

# ver:  String = "1.0"

# clearData() : void

- clearRms() : void

# fromByteArray(cProfileData, byte[]) : void

# getDimension() : int

# getList(cProfileData[]) : int

# getnumOfRec() : int

+ getRMSVer() : String

# loadData(int) : cProfileData

- RMSClose() : void

# RMSCreate() : void

+ rmsManager()

- RMSOpen() : void

# saveData(cProfileData) : int

# saveData(cProfileData[]) : int

# toByteArray(cProfileData) : byte[]

Server

+ BT_ADDR_local:  String

+ btConnections:  BluetoothConnection ([])

+ Data_remote:  byte ([])

+ discoveryAgent:  DiscoveryAgent

- IMAGES_NAMES_ATTRIBUTE_ID:  int = 0x4321

+ local_name:  String

+ local_user_profile:  String ([])

+ localDevice:  LocalDevice

- PICTURES_SERVER_UUID:  UUID = new UUID("F0E0D...

+ previousDiscoverabilityMode:  int

- record:  ServiceRecord

+ server_connection:  StreamConnection

+ Server_data_ready:  boolean

+ Server_end_flag:  boolean

+ server_notifier:  StreamConnectionNotifier

+ Server_receive:  boolean

+ Server_transmit:  boolean

+ serviceUUID:  String

+ log(String) : void

+ Server()

+ Server_create_connection() : void

+ Server_run() : void

Thread

Server::ReceiveThread

~ index:  byte

# ReceiveThread(byte)

+ run() : void

Thread

Server::

ServerThread

+ run() : void

# ServerThread()

Canvas

Splash

+ backTo:  int = 0

+ bookmarkId:  int = 1

~ f:  Font

~ fh:  int

~ h:  int

- immg:  int = 0

~ midx:  int = 0

+ msgs:  Vector = new Vector()

- offImg:  Image

~ w:  int

~ x0:  int = 0

~ y0:  int = 0

+ add(String) : void

+ addImage(String) : void

+ addNoRepaint(String) : void

+ clear() : void

+ keyPressed(int) : void

# paint(Graphics) : void

+ Splash()

Util

+ attrTypeToName(int) : String

+ idToName(int) : String

+ majorServiceToName(int) : String[]

+ majorToName(int) : String

+ minorToName(int, int) : String

+ printDataElement(DataElement, int, String) : void

+ printLocalDevice(LocalDevice) : void

+ printObexHeaderSet(HeaderSet) : void

+ printRemoteDevice(RemoteDevice, DeviceClass) : void

+ printServiceRecord(ServiceRecord) : void

+ toHexString(int) : String

+ toHexString(byte[]) : String

+ toHexString(long) : String

- Util()

+ uuidToName(UUID) : String

+btConnections

~Splash

+Server

+rms

+RemoteKeys

+keys

+connection

+Client

#Server

-CMain

#Client

-listener

+btConnections

Figure 8.1.2: MyKeys UML Diagram
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The current version allows users to manually choose between running sever
or client through GUI. We plan to automatize this functionality so that mobile
phone will periodically1 switch between the server and the client and if the
MyKey service is discovered the user is notified.

Figure 8.1.3: Debugging Screen of MyKeys (providing detailed information
about the state of progress of the application used for experimental purposes.)

The rmsManager class (shown on the left-bottom corner in Figure 8.1.2)
realizes storage and retrieval of user tKeys. The RMS storage provided by a
mobile phone is used to store tKeys in stream of byte format. This storage
type is useful for possible encryption of stored tKeys. The last class worth
noticing is the splash class. This class realizes User Graphic Interface (GUI)
by extending canvas class. In this way, MyKeys provides rich graphic interface
for users.

We have implemented rich logs providing detailed information about cur-
rent state of the MyKeys. This is important in the case of testing connectivity
of mobile phones, as the Bluetooth communication range is naturally limited.
Figure 8.1.3 shows an example of screens of two mobile phones in the case of
running service discovery and the following connection establishment.

The server and client classes have been developed in cooperation with the
BlueGame [89] project supported by ČVUT-Ericsson-Vodafone R&D Centre
(RDC).

1The period must change for the de-synchronization reasons.
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8.2 MyKeys Experiments

For experiments two types of Nokia mobile phones1 with the MyKeys ap-
plication installed were used, particulary

• Nokia N70
• Nokia 6600

Both mobile phones are smart phones with the Symbian operation system.
Whereas the Nokia N70 is a representant of a relatively modern smart phone
the second one (Nokia 6600) is quite old (it was one of the first smart mobile
phones). We used these types of mobile phones to demonstrate the ability of
the MyKeys implementation to work on new as well as older mobile phones.

We have tested the ability of MyKeys application to exchange and store
tKeys in:

• an open area,
• an indoor environment (in the campus of the Technical university of

Liberec).

We concentrated on the main parameter influencing usability of the MyKeys
application – minimal distance needed for tKey exchange.

The results for minimal distance needed to establish connection have shown
that in an open air area without obstacles the mobile phones were able to
discover the other at distance of around 35 meters. On the other hand, the
mobile phones were able to discover the MyKey service at distance of 30 meters.
The results for indoor areas abilities are highly limited by the surroundings,
type of construction of the building, shape of corridors, etc. Due to this we
obtained really wide spectrum of distances varying from few meters (generally
round 10 meters) down to several dozen of centimeters in the case of connection
through a wall (Technical university of Liberec is generally built from bricks
thick walls (50 cm)).

From our experimental operation of the MyKeys application it also followed
that storage and retrieval of tKeys stored in the raw byte format posed no
problems for both mobile phones.

We have also provided (with my colleagues Pavel Pirkl and Lukaš Závorka)
some interesting results on energy consumption of Bluetooth modules in [89].
The main purpose of the experiments was to provide measurements summa-
rizing impact of different type of transmission (type of packet, length of packet
[72]) on energy consumption.

1The mobile phones were available thank to ČVUT-Ericsson-Vodafone R&D Centre
(RDC)[74]
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Conclusions

During my PhD. studies I have published several papers (see the list of au-
thor’s references at the end of the thesis) at various international conferences
(e.i. IEEE, ACM) as well as at local conferences including the mostly recog-
nized local database conference DATAKON. One of my posters was awarded
as one of the Best Poster at the international conference SOFSEM 2006.

In my PhD. studies I have concentrated on the security issues in distributed
environments, but I have also published several papers on routing protocols
for ad-hoc mobile networks and some papers in the field of the Semantic web.
Nevertheless, my main interest has been the security in distributed and dy-
namic environments.

The thesis presents a new approach for treating the trust in a totally de-
centralized environment.
The most important contribution of the proposal is a different notion of trust.
The majority of currently used approaches for trust management understand
trust as a value connected to a particular pair of users. From our point of
view, trust is a common phenomenon for a group of users. In this context,
trust between users is inferred based on groups they are members of.
For the notion of trust as a single value for a particular pair of users, the graph
model is used in a natural way. In the case of trust shared among group of
users, the graph model faces severe drawbacks. For this reason, we proposed
a new model representing a system of groups of users as a hypergraph, where
one group is represented as a hyperedge.

As our proposal uses the hypergraph model for the representation of system
of groups we proposed two versions of the algorithm for the transformation of a
general (graph) input into the hypergraph model. The transformation follows
specific requirements in order to provide a reasonable grouping.

Structure (which users share relationships) and weights (trust of the re-
lationships) of relationships between users may be subject to changes, conse-
quently we proposed an algorithm for managing the dynamics of the system
of groups while preserving the overall security.
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Our Structure Dynamic Algorithm manages basic security threats. We pro-
posed a security sub-system designed especially for the hypergraph model.
All our algorithms together with the security sub-system were designed for
totally distributed environments and experimentally implemented as SecGrid
in ANSI C.

The stability of the dynamic part of the proposal was tested by a set of
experiments in which our model proved its abilities against real social network
data and artificial input data generated according to three different statistical
distribution of random numbers.
The hypergraph model usage was verified by a couple of experiments where
hypergraph model showed its advantages against the graph model. The main
criterion of these experiments was the number of direct trust relationships be-
tween users: the hypergraph model outperformed the graph model by orders
of magnitude.
The security sub-system of the SecGrid model was tested by several experi-
ments in which SecGrid trustworthiness was proven even in the case of high
ratio of malicious users.

At the end of the thesis an experimental implementation MyKeys was pre-
sented. It provides users with methods for tKey exchange and management
through their mobile phones.

In the future I would like to continue in the work started and done during
my PhD. Studies, more precisely the one presented in this thesis.
Firstly, I plan to implement the SecGrid model in a real world environment for
data access and sharing (within my involvement in the Institute of Computer
Sciences of the Academy of Sciences of the Czech Republic).
Furthermore, I would like to concentrate more on the algorithms for the trans-
formation of the general input into hypergraph model as such algorithms can
be used in Social Network analysis tasks.
Finally, I will enhance the MyKey implementation in order to provide a full
SecGrid compliance.
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