
Compression of Concatenated Web Pages Using
XBW�

Radovan Šesták and Jan Lánský

Charles University, Faculty of Mathematics and Physics,
Department of Software Engineering

Malostranské nám. 25, 118 00 Praha 1, Czech Republic
radofan@gmail.com, zizelevak@gmail.com

Abstract. XBW [10] is modular program for lossless compression that
enables testing various combinations of algorithms. We obtained best
results with XML parser creating dictionary of syllables or words com-
bined with Burrows-Wheeler transform - hence the name XBW. The
motivation for creating parser that handles non-valid XML and HTML
files, has been system EGOTHOR [5] for full-text searching. On files of
size approximately 20MB, formed by hundreds of web pages, we achieved
twice the compression ratio of bzip2 while running only twice as long. For
smaller files, XBW has very good results, compared with other programs,
especially for languages with rich morphology such as Slovak or German.
For any big textual files, our program has good balance of compression
and run time.

Program XBW enables use of parser and coder with any implemented
algorithm for compression. We have implemented Burrows-Wheeler trans-
form which together with MTF and RLE forms block compression, dictio-
nary methods LZC and LZSS, and finally statistical method PPM. Coder
offers choice of Huffman and arithmetic coding.

1 Introduction

In this article we list results of compression of big XML files. Motivation for
this work has been compression of data from web. Speed is very important for
full-text searching and hence compression is not always the best choice. On the
other hand archiving of old versions of web pages requires vast amount of space
on disk. Also this data is not often used and hence compression could help with
insufficient dist space. XML format is very redundant and therefore very good
compression ratio can be achieved. Furthermore related web pages, with regard
to its origin, contain long sequences of identical data. These properties of data
enabled us to compress the data to tenth of original size.

We used for testing XML files from system EGOTHOR [5]. These files have
size around 20MB and were formed by concatenation of hundreds of web pages
and contain lots of text. Big files can be compressed more effectively due to
� This work was supported by Charles University Grant Agentur in the project ”Text

compression” (GAUK no. 1607, section A) and by the Program ”Information Soci-
ety” under project 1ET100300419.

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 743–754, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

744 R. Šesták and J. Lánský

following reasons. With the use of dictionary there is better ratio of size of
dictionary to size of file. And most importantly entropy of text files is decreasing
which means that following characters can be better predicted. Problematic is
the fact that these files do not have valid XML structure and often they are not
well formed. This lead us to creating our own parser since the parsers we know
of could not handle these files.

In the next section we describe parts of program XBW and their influence on
compression. Then we list results of measurements and comparison with common
compression programs.

1.1 Conflicting Name XBW

The XBW method was not named very appropriately, because it can be easily
mistaken by the name xbw used by the authors of paper [4] for XML trans-
formation into the format more suitable for searching. In another article these
authors renamed the transformation from xbw to XBW. Moreover they used it
in compression methods called XBzip and XBzipIndex.

Another confusion comes from the fact that originally XBW stood in our arti-
cles for combination of methods BWT+MTF+RLE using alphabet of syllables for
valid XML files. In what we know present as XBW the main idea of compression
XML using BWT is present, but otherwise significantly differs from original work.

2 Implemented Methods

In Figure 1 the connections of parts of program is shown. All parts are optional.
From algorithms RLE, LZC, LZSS and PPM at most one can be used because all
of these algorithms use coder. In XBW Huffman (HC) and arithmetic coder (AC)
are implemented. We have obtained the best results with combination of Parser
+ BWT + MTF + RLE + AC, which is used as default settings of the program.

Fig. 1. XBW architecture

2.1 Parser and TDx

Implemented parser uses syntax of XML files for shortening the output. It omits
closing characters and dynamically creates dictionary of tags and attributes. The
rest of the data is split into characters, syllables or words and these are added to

Compression of Concatenated Web Pages Using XBW 745

trie. This choice is one of the parameters of parser. The use of words as alphabet
is quite common for text compression, but its use for XML is not. The splitting
into words or syllables and coding of dictionary is based on work of Lnsk [11].

It is also possible to use parser in text mode in which the structure of XML
files is not taken into account and the input is only split into symbols of chosen
alphabet (characters, syllables or words). Another parameter for parser is the
choice of file coding; supported are dozens of codings for which we used library
iconv [16].

Dictionary, that is stored in memory in form of trie during processing the
file, is saved to output by coding its structure using methods TD1, TD2 or TD3
[12]. In method TD1 for each node we code the distance from left son, number
of sons and boolean value which determines if the node represents a string.
Methods TD2 and TD3 take advantage of the fact that we are coding syllables
and words from natural languages which satisfy special conditions and hence
better compression is achieved. Default method is TD3.

2.2 Block Compression

The class of methods for compression based on work of Burrows and Wheeler
[1], uses reversible transformation which is called Burrows-Wheeler Transform
(BWT). Often the combination of this transformation together with following
effective coding is called block compression. The name comes from the fact that
the input is split into block of fixed size and BWT is performed for each block. In
default settings of our implementation we combine BWT with algorithms MTF
and RLE. Decoding is significantly faster for BWT than coding.

Very important parameter of BWT is size of block to used. Larger blocks
have better compression ratio at cost of longer run time and higher memory
requirements. For example, in bzip2 algorithm, the maximum block size is 900
KB. In our program we use default setting of 50MB which can be changed.

Algorithm MTF used after BWT renumbers input and the result is string
which contains relatively small numbers and sequences of zero. We implemented
MTF using splay tree [7] which improves its speed especially for large alphabet.
After MTF algorithm RLE is run which outputs the character and number of
its occurrences. This is written in form of bits using coder.

We have RLE in three variants RLE1, RLE2 and RLE3 using RLE2 as default.
In variant RLE1 sequence of repeating characters is replaced by three symbols.
First one is escape sequence followed the character and number of occurrences.
Alphabet used is increased by this escape symbol. In variant RLE2 each character
there is also special escape symbol hence the resulting alphabet is twice the size
of original. Repeating sequence of characters is replaced by escape symbol of
the character and number of occurrences. In variant RLE3 we add to alphabet
for each character special symbol for each possible number of repeatings of the
character. We limit the length of sequence by fixed number. Hence in output
we replace each sequence by special symbol. This method is suitable for small
alphabets with small limit to length of sequence.

746 R. Šesták and J. Lánský

2.3 Dictionary Methods

Dictionary compression methods are usually adaptive; during coding they up-
date dictionary of phrases. During compression we search for longest match of
uncoded part of input with some phrase from dictionary. These methods work
especially well for inputs where short sequences are (max 5-15 characters) re-
peating which is true for textual data. These algorithms are frequently used,
because they are relatively fast and use little memory. When these algorithms
are used, XBW has similar results as Gzip which also uses dictionary methods.

There are two main types of methods one based on LZ77 [17] and on LZ78
[18]. Method LZ77 has dictionary represented by compressed part of document in
form of sliding window of fixed size which is moving right during compression.
Method LZ78 builds the dictionary explicitly. In each step of compression a
phrase from dictionary used for coding is lengthened by one character which
follows after this phrase in uncompressed part of input.

LZC. LZC [6] is an improved version of LZ78 which uses trie data structure for
dictionary and the phrases are numbered by integers in order of adding. During
initialization, the dictionary is filled with all characters from the alphabet. In
each step we search for maximal string S in dictionary being a prefix of non-coded
part of input. The number of phrase S is then sent to the output. Actual input
position is moved forward by the length of S. If the compression ratio starts to
get worse the dictionary is cleaned. During decoding, if we get number of phrase
that is in the dictionary we output the phrase. If the number does not stand for
any phrase in the dictionary we can create that phrase by a concatenation of the
last added phrase with its first character.

LZSS. LZSS [15] is improved version of LZ77 where the dictionary is repre-
sented by sliding window which we shift to the right during compression. We
search for the longest prefix of non-coded input which matches string S from
sliding window. LZ77 outputs always ordered triple < D, L, N >, where D is
the distance of found string S in sliding window from its beginning, L is the
length of S and N is the symbol following S in non-coded part of input. LZ77
has the disadvantage that if no match is found, hence S has zero length, output
has been unnecessarily long. So in LZSS minimal threshold value is used when to
code string S using D and L. If it is shorter, we code it as sequence of characters
N . We use one bit to signal if the match for S has been long enough. So the
output in each step is either < 0, D, L > or several tuples < 1, N >.

2.4 PPM Method

The newest implemented method is statistical method called Prediction by Par-
tial Matching (PPM) [2], which codes characters based on their probability after
some context. Probabilities of characters after contexts are counted dynami-
cally. This method, designed for compression of texts in natural languages, is
quite slow and requires lots of memory. We have implemented variants PPMA,
PPMB, PPMC with optional exclusions and setting for maximal context.

Compression of Concatenated Web Pages Using XBW 747

2.5 Coder

Final bit output is provided by coder. We implemented Huffman and arithmetic
coder. Both variants are implemented in static and adaptive version. Arithmetic
coder uses Moffat data structure and Huffman coder is implemented in canonic
version. The choice of either Huffman or arithmetic coder is given at compile
time. Default is the arithmetic coder, because it yield slightly better compression
ratio than Huffman, and it is significantly faster when adaptive versions are used.

Huffman coding is compression method which assigns symbols codes of fixed
length. It generates optimal prefix code which means that no code is a prefix
of another code. Codes of all symbols are in binary tree and the edges have
values 0 and 1. The code for symbol is given by the path from root to node
representing the symbol. In static version we know the frequencies of symbols
before construction of the tree. We sort symbols by their frequencies. In each
step we take two symbols A and B with the smallest frequencies and create new
one C which has frequency the sum of A and B they are his sons. In adaptive
version we start with tree with one node representing escape symbol which is used
for insertion of unencountered symbols. When adding node for unencountered
symbol we create node A for this symbol and node B for escape symbol. Both
have frequency one C representing original escape sequence is their father. When
we increase frequency for symbol we first move its node to the right of nodes
with equal frequencies. Then we increase its frequency and recursively repeat
this step on its father.

The idea of arithmetic coding is to represent input as number from interval
[0, 1). This interval is divided into parts which stand for probability of occurrence
of symbols. Compression works by specifying the interval. In each step interval
is replaced by subinterval representing symbols of alphabet. Since the arithmetic
coding does not assign symbols codes of fixed length, arithmetic coding is more
effective than Huffman coding.

3 BWT

We describe Burrows-Wheeler transform in more detail, because its use in opti-
mized version with input modified by parser allowed to get results we present.
BWT during coding requires lexicographical order of all suffixes. The resulting
string has on i-th place last symbol of i-th suffix. We assume that we have linear
order on set of symbols Σ, which we call alphabet. Symbol in this sense can be
character, syllable or word.

X ≡ x0x1...xn−1, ∀i ∈ {0, .., n − 1}, xi ∈ Σ is string of length n. i-th suffix
of string X is string Si = xixi+1..xn−1 = X [i..n − 1] . i-th suffix is smaller than
j-th suffix, if first symbol in which they differ, is smaller, or i-th suffix is shorter.
Si < Sj ⇐⇒ ∃k ∈ 0..n − 1 : Si[0..k − 1] = Sj [0..k − 1] & (Si[k] < Sj [k]
∨ (i + k = n & j + k < n)). We store the order of suffixes in suffix array SA, for
which the following holds: ∀i, j ∈ {0..n − 1}, i < j → SSA[i] ≤ SSA[j].

The result of BWT for string X is X̃. X̃ ≡ x̃0..x̃n−1 where x̃i = x|SA[i]−1|n .
Absolute values stand for modulo n, which is necessary in case SA[i] = 0.

748 R. Šesták and J. Lánský

Repetitiveness of the file influences the compression ration and run time of
coding phase of BWT. We denote longest common prefix or match length by
lcp(Si, Sj) = max{k; Si[0..k − 1] = Sj [0..k − 1]}. Average match length
AML ≡ 1

n−1

∑n−2
i=0 lcp(SSA[i], SSA[i+1]) is the value we use in text for measuring

repetitiveness of files.
We have implemented a few algorithms for sorting suffixes with different asymp-

totic complexity. The fastest algorithm for not too much repetitive files is (AML <
1000) is Kao’s modification of Itoh algorithm [9], which has time complexity
O(AML·n·log n). For very repetitive files algorithm due to Krkkainen and Sanders
[8] with complexity O(n). Note that the choice of algorithm for BWT does not in-
fluence compression ratio, but only time and memory requirements.

In block compression the file is split into blocks of fixed size and BWT is run
on each block. This method is used to decrease memory and time requirements,
because BWT requires memory linear in size of input. Time complexity of most
of algorithms for BWT is asymptotically super linear and BWT is the slowest
part of block compression during compression. However, use of smaller blocks
worsens the compression ratio.

The main reason why XBW has significantly better compression ration than
bzip2 is the use of BWT on whole file at once. Our program runs in reasonable
time thanks to preprocessing of the input by parser and the use of alphabet of
words, which shortens the input for BWT. Very important consequence of the
use of parser is the decrease of the value of AML. However use of parser requires
use of algorithms, which do not work with byte alphabet of size 256 characters,
but can work with 4 byte alphabet. When words are used as alphabet, for the
tested files, the size of alphabet created by parser is approximately 50 thousand.

4 Corpora

Our corpus is formed by three files which come from search engine EGOTHOR.
The first one is formed by web pages in Czech, the second in English and third
in Slovenian. Their size in this order are: 24MB, 15MB, 21MB and the values
of AML, describing their repetitiveness, are approximately 2000. Information
about compression ratio of XBW on standard corpora Calgary, Cantebury and
Silesia can be found in [10].

5 Results

First we list results of program XBW for various compression methods and the
effect of parser on the results. Then we show influence of alphabet. At the end
we compare results of XBW using optimal parameters with commonly used
programs Gzip, Rar and Bzip2.

All results have been obtained using arithmetic coder. BWT has been run
over whole input at once followed by MTF and RLE (parameter RLE=2). PPM
has run with parameters PPM exlusions=off a PPM order=5.

Compression of Concatenated Web Pages Using XBW 749

The size of compressed files includes coded dictionary which is created always
when parser is used. Compression ratio is listed in bits per byte.

The run time has been measured under Linux and stands for sum of system
and user time. This implies that we list time without waiting for disk. Measure-
ments has been performed on PC with processor AMD Athlon X2 4200+ with
2GB of RAM. The data is in megabytes in second where the uncompressed size
of file is used both for compression and decompression.

Table 1 shows the results of compression ratio for various methods for alphabet
of characters. These results show effect of XML, which improves the compression
ratio by approximately ten percent.

Next in Tables 2 and 3 we list the speed of program with and without parser
using alphabet of characters. Results show that in almost all cases the parser
degrades the speed. The reason is that we have to work with dictionary and the
time saved by slightly shortening the input does not compensate for the work
with dictionary. The exception is compression using BWT. Here the shortening
the input and decreasing its repetitiveness significantly fastens BWT, which is
the most demanding part of block compression.

Method commonly used for text compression is the use of words as symbols of
alphabet. In Table 4 we show the influence of alphabet on compression ratio. For
textual data in English best compression ratio is achieved with using words and
method BWT. For Czech and Slovenian the syllables are better, because these
languages have rich morphology. One word occurs in text in different forms and
each form is added into dictionary. With the use of syllables core of the word is
added, which can be formed by more syllables, and the end of word. But these
last syllables of words are common for many words and hence there are more
occurrences of then in the text. For dictionary methods LZx the words are by
far the best choice.

The effect of large alphabet on speed varies and is shown in Tables 5 and 6. For
all algorithms the decompression is faster for words than for characters. On the
other hand decompression when parser with words has been used is still slower
than decompression without parser see Table 1. The use of words increases the
speed of compression only when BWT is used. Significant increase in speed for
BWT is due to shortening the input and decreasing approximately three times
AML. Results for PPM and words are not shown since the program did not
finish within hour.

Previous results show that the best compression ratio has the algorithm BWT.
Also it is evident that parser improves compression ratio for all algorithms. The
fastest compression is achieved using LZC and fastest decompression using LZSS.

Our primary criterion is compression ratio and since method BWT has by
far the best compression ratio, we focus mainly on BWT. In case the speed is
priority choice of dictionary methods is advisable.

Table 7 contains comparison of compression ratios for different choices of
parser, which shows that words are best for English and syllables for Czech
and Slovenian. The choice of either words or syllables depends on the size of
file and on morphology of the language. For languages with rich morphology,

750 R. Šesták and J. Lánský

Table 1. Influence of parser on compression ratio for alphabet of symbols

bpB No Parser Text Parser XML Parser
BWT LZC LZSS PPM BWT LZC LZSS PPM BWT LZC LZSS PPM

xml cz 0,907 2,217 2,322 1,399 0,906 2,206 2,296 1,395 0,894 2,073 2,098 1,320
xml en 0,886 2,044 2,321 1,292 0,887 2,044 2,321 1,292 0,874 1,915 2,115 1,239
xml sl 0,710 1,982 2,010 1,205 0,710 1,979 2,003 1,204 0,700 1,850 1,797 1,129

TOTAL 0,834 2,093 2,213 1,305 0,833 2,087 2,200 1,303 0,822 1,957 1,998 1,234

Table 2. Influence of parser on compression speed

MB/s No Parser XML Parser - Symbols
BWT LZC LZSS PPM BWT LZC LZSS PPM

xml cz 0,368 3,587 1,498 0,106 0,457 2,668 1,418 0,091
xml en 0,419 4,028 1,297 0,125 0,544 2,915 1,249 0,104
xml sl 0,386 4,258 1,638 0,119 0,500 2,915 1,497 0,091

TOTAL 0,386 3,906 1,485 0,115 0,491 2,810 1,397 0,094

Table 3. Influence of parser on decompression speed

MB/s No Parser XML Parser - Symbols
BWT LZC LZSS PPM BWT LZC LZSS PPM

xml cz 4,260 4,724 5,257 0,117 2,577 3,156 3,415 0,096
xml en 4,417 4,999 5,417 0,142 2,705 3,397 3,606 0,110
xml sl 4,918 5,236 5,946 0,134 3,012 3,299 3,672 0,097

TOTAL 4,509 4,960 5,519 0,128 2,747 3,263 3,548 0,099

Table 4. Influence of alphabet on compression ratio

bpB XML Parser
Symbols Syllables Words

BWT LZC LZSS PPM BWT LZC LZSS PPM BWT LZC LZSS PPM
xml cz 0,894 2,073 2,098 1,320 0,854 1,796 1,841 N/A 0,857 1,683 1,654 N/A
xml en 0,874 1,915 2,115 1,239 0,836 1,626 1,785 N/A 0,830 1,514 1,558 N/A
xml sl 0,700 1,850 1,797 1,129 0,664 1,559 1,541 N/A 0,668 1,457 1,390 N/A

TOTAL 0,822 1,957 1,998 1,234 0,783 1,672 1,723 N/A 0,785 1,563 1,539 N/A

Table 5. Influence of Alphabet on compression speed

MB/s XML Parser - Symbols XML Parser - Words
BWT LZC LZSS PPM BWT LZC LZSS PPM

xml cz 0,457 2,668 1,418 0,091 1,587 0,279 1,477 N/A
xml en 0,544 2,915 1,249 0,104 2,009 0,920 1,093 N/A
xml sl 0,500 2,915 1,497 0,091 1,566 0,443 1,349 N/A

TOTAL 0,491 2,810 1,397 0,094 1,666 0,399 1,319 N/A

Compression of Concatenated Web Pages Using XBW 751

Table 6. Influence of Alphabet on decompression speed

MB/s XML Parser - Symbols XML Parser - Words
BWT LZC LZSS PPM BWT LZC LZSS PPM

xml cz 2,577 3,156 3,415 0,096 3,986 3,951 3,923 N/A
xml en 2,705 3,397 3,606 0,110 4,006 4,443 4,523 N/A
xml sl 3,012 3,299 3,672 0,097 4,241 4,157 4,237 N/A

TOTAL 2,747 3,263 3,548 0,099 4,076 4,135 4,167 N/A

Table 7. Compression ratio for BWT

bpB No Parser Text Parser XML Parser
Symbols Syllables Words Symbols Syllables Words

xml cz 0,907 0,906 0,859 0,862 0,894 0,854 0,857
xml en 0,886 0,887 0,842 0,836 0,874 0,836 0,830
xml sl 0,710 0,710 0,669 0,672 0,700 0,664 0,668

TOTAL 0,834 0,833 0,789 0,790 0,822 0,783 0,785

Table 8. Compression speed for BWT

MB/s No Parser Text Parser XML Parser
Symbols Syllables Words Symbols Syllables Words

xml cz 0,368 0,324 1,056 1,767 0,457 1,073 1,587
xml en 0,419 0,364 1,225 2,128 0,544 1,330 2,009
xml sl 0,386 0,331 1,102 1,790 0,500 1,135 1,566

TOTAL 0,386 0,336 1,110 1,853 0,491 1,150 1,666

Table 9. Decompression speed for BWT

MB/s No Parser Text Parser XML Parser
Symbols Syllables Words Symbols Syllables Words

xml cz 4,260 2,628 4,277 4,817 2,577 3,710 3,986
xml en 4,417 2,494 4,612 4,764 2,705 3,981 4,006
xml sl 4,918 2,639 4,686 5,442 3,012 3,685 4,241

TOTAL 4,509 2,598 4,494 5,002 2,747 3,765 4,076

Table 10. Running time for different parts of XBW

Seconds Compression Decompression
Parser BWT MTF RLE Parser BWT MTF RLE

xml cz 4,668 7,788 0,748 0,72 1,98 0,764 0,868 1,328
xml en 2,364 3,800 0,388 0,448 1,112 0,716 0,440 0,796
xml sl 3,352 7,404 0,496 0,504 1,592 0,676 0,556 0,916

TOTAL 10,384 18,992 1,632 1,672 4,684 2,156 1,864 3,04
Parser in text mode using words; BWT using Itoh; RLE - version 3

752 R. Šesták and J. Lánský

Table 11. Comparison of compression ratio

bpB XBW Gzip Bzip2 Rar
xml cz 0,857 1,697 1,406 1,161
xml en 0,830 1,664 1,299 0,851
xml sl 0,668 1,373 1,126 0,912

TOTAL 0,785 1,584 1,275 0,998
XBW: parser in text mode using words, Kao’s algoritm for BWT

Gzip: gzip -9; Rar: rar -m5; Bzip2: bzip2 -9

Table 12. Comparison of compression speed

MB/s Compression Decompression
XBW Gzip Bzip2 Rar XBW Gzip Bzip2 Rar

xml cz 1,732 10,320 3,170 2,708 4,087 25,004 9,430 3,955
xml en 2,058 11,587 3,454 2,689 4,309 46,926 11,722 6,137
xml sl 1,758 13,713 3,245 3,190 4,614 46,986 13,132 4,775

TOTAL 1,812 11,634 3,262 2,853 4,313 34,629 11,045 4,640
XBW: parser in text mode using words, Kao’s algoritm for BWT

Gzip: gzip -9; Rar: rar -m5; Bzip2: bzip2 -9

and for smaller files the syllables are better. Choice of either words or syllables
effects the number of occurrences of symbols from dictionary for the input text.
In program XBW we have implemented a few methods for splitting words into
syllables. Results have been obtained using the choice Left. More details can be
found in [10]. Interesting is the fact that the XML mode of parser has small
influence on compression ratio. This is not due to incorrect implementation of
parser, but due to properties of BWT for large blocks. For example for LZx
methods the effect is significant. Again more detailed results are in [10].

Table 8 show the influence of parser on the speed of program. The fastest by far
is the choice of words as symbols of alphabet for compression. For decompression
(see table 9) the differences are small. In order to improve the speed it is better
to use parser in text mode instead of XML mode for words.

There are many algorithms for sorting suffixes in BWT. The choice of this
algorithm has big impact of overall performance of compression. Without the
use of parser, sorting suffixes for big blocks amount up 90% of run time of whole
program. More details are in [14]. For all files the fastest is Kao’s modification
of Itoh’s algorithm [9] and it has been used in all measurements when BWT has
been used.

Run time of separate parts of program are in Table 10. These times show in
which parts there is the most room for improvement.

6 Comparison with Other Programs

For comparison we show the results of programs Gzip, Rar and Bzip2. Programs
for compression of XML data such as XMLPPM [3] and Xmill [13] can not cope

Compression of Concatenated Web Pages Using XBW 753

with non-valid XML files. Hence we could not get their results on our data.
For programs Gzip, Rar and Bzip2 we used parameters for the best available
compression. In Table 11 we list compression ratios. Our program compresses
all files the best and is significantly better for files which are not in English.

In Table 12 are the results for speed of compression and decompression. The
fastest is Gzip, but it also has the worst compression ratio and hence we compare
speed of XBW only with Rar and Bzip2. Compression for XBW takes less twice
the minimum of Rar and Bzip2. Decompression if comparably fast as for Rar
and Bzip2 is approximately three times faster.

The performance of XBW is sufficient for common use, however it is slower
than the speed of hard disks, and hence where speed is priority, it is better
to use program based on dictionary methods such as Gzip. XBW has the best
compression ratio and therefore it is suitable especially for long term archiving.

7 Future Work

In future work on XBW we aim to focus on two directions. The first is creation
of parser which could be used also on binary data. The later is improving the
run time of program where again we see the biggest potential in parser.

References

1. Burrows, M., Wheeler, D.J.: A Block Sorting Loseless Data Compression Algo-
rithm. Technical report, Digital Equipment Corporation, Palo Alto, CA, U.S.A
(2003)

2. Cleary, J.G., Witten, I.H.:Data compression using adaptive coding and partial string
matching. IEEE Transactions on Communications COM-32(4), 396–402 (1984)

3. Cheney, J.: Compressing XML with Multiplexed Hierarchical PPM Models. In:
Storer, J.A., Cohn, M. (eds.) Proceedings of 2001 IEEE Data Compression Confer-
ence, p. 163. IEEE Computer Society Press, Los Alamitos, California, USA (2001)

4. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Structuring labeled trees
for optimal succinctness, and beyond. In: FOCS 2005. Proc. 46th Annual IEEE
Symposium on Foundations of Computer Science, pp. 184–193 (2005)

5. Galamboš, L.: EGOTHOR, http://www.egothor.org/
6. Horspool, R.N.: Improving LZW. In: Storer, J.A., Reif, J.H. (eds.) Proceedings of

1991 IEEE Data Compression Conference, pp. 332–341. IEEE Computer Society
Press, Los Alamitos, California, USA (1991)

7. Jones, D.W.: Application of splay trees to data compression. Communications of
the ACM 31(8), 996–1007 (1988)

8. Kärkkäinen, J., Sanders, P.: Simple linear work suffix array construction. In:
Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003.
LNCS, vol. 2719, pp. 943–955. Springer, Heidelberg (2003)

9. Kao, T.H.: Improving suffix-array construction algorithms with applications. Mas-
ter Thesis. Gunma University, Japan (2001)

10. Lánský, J., Šesták, R., Uzel, P., Kovalčin, S., Kumičák, P., Urban, T., Szabó, M.:
XBW - Word-based compression of non-valid XML documents,
http://xbw.sourceforge.net/

http://www.egothor.org/
http://xbw.sourceforge.net/

754 R. Šesták and J. Lánský

11. Lánský, J., Žemlička, M.: Compression of a Dictionary. In: Snášel, V., Richta, K.,
Pokorný, J. (eds.) Proceedings of the Dateso 2006 Annual International Workshop
on DAtabases, TExts, Specifications and Objects. CEUR-WS, vol. 176, pp. 11–20
(2006)

12. Lánský, J., Žemlička, M.: Compression of a Set of Strings. In: Storer, J.A., Mar-
cellin, M.W. (eds.) Proceedings of 2007 IEEE Data Compression Conference, p.
390. IEEE Computer Society Press, Los Alamitos, California, USA (2007)

13. Liefke, H., Suciu, D.: XMill: an Efficient Compressor for XML Data. In: Proceedings
of ACM SIGMOD Conference, pp. 153–164 (2000)

14. Šesták, R.: Suffix Arrays for Large Alphabet. Master Thesis, Charles University in
Prag (2007)

15. Storer, J., Szymanski, T.G.: Data compression via textual substitution. Journal of
the ACM 29, 928–951 (1982)

16. The Open Group Base: iconv. Specifications Issue 6. IEEE Std 1003.1 (2004),
http://www.gnu.org/software/libiconv/

17. Ziv, J., Lempel, A.: A Universal Algorithm for Sequential Data Compression. IEEE
Transactions on Information Theory 23(3), 337–342 (1977)

18. Ziv, J., Lempel, A.: Compression of Individual Sequences via Variable-Rate Coding.
IEEE Transactions on Information Theory 24(5), 530–536 (1978)

http://www.gnu.org/software/libiconv/

	Compression of Concatenated Web Pages Using XBW
	Introduction
	Conflicting Name XBW

	Implemented Methods
	Parser and TDx
	Block Compression
	Dictionary Methods
	PPM Method
	Coder

	BWT
	Corpora
	Results
	Comparison with Other Programs
	Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

