
Extending E-R for Modelling XML Keys

Martin Necasky
Faculty of Mathematics and Physics,

Charles University, Prague, Czech Republic
martin.necasky@mff.cuni.cz

Jaroslav Pokorny
Faculty of Mathematics and Physics,

Charles University, Prague, Czech Republic
jaroslav.pokorny@mff.cuni.cz

Abstract

With the growing popularity of XML there is a need not
only to describe the structure of XML data but also its se-
mantics. For the conceptual modelling of XML we can use
existing conceptual models. However, special features of
XML require extensions of these models. In this paper, we
study conceptual modelling of XML keys. We extend the no-
tion of E-R keys to be suitable for modelling the semantics
of XML keys and we show how to express them on the XML
logical level.

1. Introduction

Recently, XML [11] has become an important format for
data representation and exchange. Usually, we describe the
structure of the XML data by schema languages such as
XML Schema [10]. Moreover, for the design and further
maintenance of the XML data it is also important to de-
scribe its semantics. However, the schema languages are
not suitable for such a description. Therefore, there is an
emerging area of the conceptual modelling for XML. It is
the same idea as in the case of relational data where we use
E-R for example.

However, E-R is not suitable for the conceptual mod-
elling of XML data that has special features such as irreg-
ular structure, ordering, mixing structured and unstructured
data, or hierarchical structure. Therefore, it is necessary to
provide new approaches suitable for the modelling of these
special features. We provide a survey of this area in [6]
where we identify two groups of approaches.

The approaches in the first group are based on extending
E-R with new modelling constructs (for example [3], [7], or
[8]). However, modelling the required hierarchical structure
is problematic with these approaches. It is either left on the
system that derives the hierarchical structure automatically
or it is left on the designer who denotes the required hierar-
chical structure directly in the conceptual schema by special
hierarchical relationship types.

However, there is a common situation where we need to
represent concepts such as books and their authors in two
or more different hierarchical structures. The first structure
can be a list of books and for each book a list of authors and
the second structure can be a list of authors and for each
author a list of his or her books. This can not be neither
determined automatically by the system without any further
extensions of the model nor specified by explicit hierarchi-
cal relationship types in the conceptual schema because the
modelled semantics of the data would be hidden among a
huge number of hierarchical relationship types.

The approaches in the second group emerge from hierar-
chical structure (for example [2]). The conceptual schemes
are trees where the nodes are entity types and edges are re-
lationship types. In the previous example with books we
can model each required hierarchy with the separate hier-
archical conceptual schema. However, while in E-R or its
extensions we can model books by one entity type, in this
approach books are represented by two different nodes, one
in each schema. Consequently, the modelled semantics is
hidden in the hierarchical structures.

The weak points of these approaches result from the
modelling of the semantics and the hierarchical structure
of the data on the same level. Therefore, it is necessary to
further extend recent conceptual models to be suitable for
modelling XML data. In [5] we proposed a new conceptual
model for XML data called XSEM. We tried to precede the
problems mentioned above by dividing the modelling pro-
cess to two levels. The semantics of the data is modelled
on the first level with an extension of the E-R model while
the hierarchical organization in XML documents is speci-
fied on the second level. Therefore, XSEM preserves the
advantages of E-R, mainly its simplicity and clearness, and
adds the ability to model different hierarchical structures.

In this paper, we further extend XSEM with new con-
structs for conceptual modelling of XML keys. Compared to
relational keys, XML keys can be relative, i.e. not valid on
the whole XML document but only on its parts. Moreover,
we can have a key valid over several XML elements of dif-
ferent types. For example, we can have a common key label

1-4244-1476-8/07/$25.00 ©2007 IEEE.

- 236 -

Figure 1. XML Tree

identifying the descendants representing chapters and sec-
tions in the context of book. Therefore, if we need to model
XML keys on the conceptual level the classical approach
using E-R keys is not sufficient.

Hierarchical structure of XML makes the description of
the full semantics of keys hard or even impossible. Suppose
Fig. 1 showing an XML document as a tree. Suppose a
relative XML key specifying that in the context of each el-
ement targeted by a path /customer/branch the child el-
ements dealer are identified by their name child element.
There is a formalism for the specification of such XML keys
proposed in [1]. In this formalism the key is specified as a
triple (/customer/branch, dealer, {name}) composed of
an absolute path targeting the context of the key, a relative
path targeting the target elements of the key, and a set of
relative paths targeting the elements composing the key, re-
spectively.

Such a key does not describe the semantics sufficiently.
Each element dealer represents a dealer executing orders
(represented by the child elements order) ordered by a cus-
tomer (represented by the grandparent element customer)
from a branch (represented by the parent element branch).
The key only specifies that for a branch element there are
no two child elements dealer with the same value of name.
However, what is the semantics of name? Does it identify
dealers as real-world objects absolutely or only in the con-
text of branches? This question can not be answered by the
XML key itself.

There are more complex situations requiring the knowl-
edge of the semantics of XML keys. In our example we
have orders ordered by customers from branches. Each
branch is a part of a company. Suppose a company and
all branches of the company. We have orders each having
a value of an attribute ordno com. This attribute identi-
fies an order in the context of all orders ordered from the
branches, i.e. if there are two different orders from the
same company they have different value of ordno com.
However, two different orders from two different com-
panies can have the same value of the attribute. Such
a key can not be expressed by an XML key in our ex-
ample XML tree at Fig. 1 because the company is not

represented as an ancestor element of the element rep-
resenting the order. We can only specify an XML key
(/customer/branch, dealer/order, {ordno com}). It
specifies that no two order elements that are descendants
of the same branch element have the same value of their
child element ordno com. However, the full semantics is
not captured.

The knowledge of the full semantics of XML keys is cru-
cial for the correct processing of XML data such as query-
ing and transformation. Suppose that we want to transform
the structure of our XML document displayed at Fig. 1. We
want to swap the elements customer with their child ele-
ments branch, i.e. for each branch represented as a root ele-
ment branch there will be a list of child elements customer
representing the customers who ordered some orders from
the branch. Without the knowledge of the semantics of the
key ordno com we would have to change the context of
the XML key to /branch/customer because we do not
know the real semantics of the key. With this knowledge,
we set the context correctly to /branch. With an addi-
tional transformation that swaps branch elements with their
company child element, we should set the context of the
key to /company according to the semantics. Without the
knowledge of the semantics we would set the context of the
key to /company/branch.

In spite of the importance of the knowledge of the se-
mantics of XML keys, a research into this problem has not
been sufficient in recent approaches in the area of concep-
tual modelling. These approaches just adopt simple E-R
keys and do not discuss neither the special features of XML
keys nor the suitability of the adopted keys for the concep-
tual modelling of XML keys. Consequently, an extension
of E-R keys suitable for XML keys is still missing.

The contributions of this paper are the following:

• We address the new problem of the conceptual mod-
elling of XML keys.

• We extend basic E-R keys for the conceptual mod-
elling of XML keys.

• We show the representation of extended keys in XML
schemes and demonstrate that the full representation is
not always possible.

This paper is organised as follows. In Sect. 2 we intro-
duce XSEM briefly. In Sect. 3 we propose the extension
of E-R keys. In Sect. 4 we show how to express the ex-
tended keys on the XML schema level using XML Schema
constructs.

2. XSEM Model

XSEM builds on HERM [9] which is an extension of
the E-R model. XSEM is composed of two parts, XSEM-

- 237 -

Figure 2. XSEM-ER Schema

ER and XSEM-H. We start modelling with XSEM-ER. Fig.
2 shows an XSEM-ER schema modelling part of a simple
business domain. In the schema we use the classical mod-
elling constructs:

• Entity types defined by a name and a list of attributes.
There are strong entity types such as Company
modelling companies and weak entity types such as
Branch modelling branches of companies. A weak
entity type has assigned a set of one or more entity
types called determinants. For example, Branch has
one determinant Company.

• Relationship types defined by a name and a list of at-
tributes and connecting two or more entity types called
participants such as Item modelling that products are
items in orders.

The only extension is that the list of attributes of an en-
tity or relationship type is ordered. Moreover, we use the
following extending constructs:

• Data node types defined by a name and assigned to
entity types. They are displayed as ellipses. We use
them for modelling unstructured data. For example a
data node type PTxt assigned to Paragraph models
unstructured content of paragraphs.

• Cluster types that are used for modelling irregular
structure and mixing structured and unstructured data.
They are displayed as circles with inner ’+’. In our
example, we model figures and paragraphs in sections
by Figure and Paragraph, respectively, and unstruc-
tured content of sections by SText. The cluster type
specifies that the figures and paragraphs are mixed
with the unstructured text in each section.

An XSEM-ER schema describes the semantics of the
data. It does not describe any hierarchical structure. This
is left to the designer who derives hierarchical schema from
the XSEM-ER schema for each of the required hierarchical
structures using XSEM-H. A schema in XSEM-H is a hi-
erarchical view on the XSEM-ER schema. It does not add

Figure 3. XSEM-H Views

any semantics. There can be several XSEM-H hierarchical
views on the same XSEM-ER schema. It allows to specify
more different hierarchical structures of the same data.

Fig. 3 shows three XSEM-H views on the XSEM-ER
schema from Fig. 2. The views (a) and (b) specify two dif-
ferent hierarchical structures for orders. The view (c) spec-
ifies the hierarchical structure for user manuals.

There is a formal background behind XSEM. It serves as
the binding between the non-hierarchical XSEM-ER level
and the hierarchical XSEM-H level. Because of the lack of
the space, we describe it only briefly. An XSEM-H view is a
tree with labeled oriented edges. Each node in the tree rep-
resents a component of the XSEM-ER schema. Edges spec-
ify how instances of the components are organised in hier-
archical XML data. Each edge connects only two nodes.
However, there can be n-ary relationship and weak entity
types as shown at Fig. 2. We need to decompose them
to binary relationships that can be represented in XSEM-H
views. For this we use so called hierarchical projections.

Suppose the weak entity type Order modelling orders
ordered by customers from branches of companies and ex-
ecuted by dealers. For example, we can specify a projec-
tion of Order to Customer and Branch. By this, we get
the pairs of customers and branches such that for each pair
the customer ordered some orders from the branch. More-
over, we need to specify which of the entity types is supe-
rior to the other. In our example, we require Customer to
be superior. It is formally specified as a hierarchical pro-
jection Order[Customer → Branch] where the arrow
goes from the superior entity type. The projection spec-
ifies how the parts of orders composed of customers and
branches are organised in hierarchical XML data. For each
customer we have the list of branches that are in a pro-
jection pair with the customer. This hierarchical projec-
tion is represented in the example XSEM-H view (b) by
the edge going from Customer to Branch. Further, we
need a projection of Order to Branch and Dealer as it

- 238 -

is shown in (b). However, it can not be a simple projec-
tion to pairs of branches and dealers. We must compre-
hend this projection in the context of Customer. It must
specify that for each branch in the context of the supe-
rior customer (given by the previous projection) we want
the list of dealers who executed some orders ordered by
the customer from the branch. It is formally specified as
OrderCustomer[Branch → Dealer] where Customer is
called context of the hierarchical projection. It is repre-
sented in (b) by the edge going from Branch to Dealer.
To complete the decomposition of Order we specify the
last projection OrderCustomer,Branch[Dealer → Order]
that is represented in (b) by the edge going from Dealer to
Order.

For hierarchical projections we specify cardinality con-
straints. For example, we can specify that the cardinal-
ity of Branch in Order[Customer → Branch] is (0, ∗)
which specifies that for a given branch there is 0 or more
customers who ordered some orders from the branch. Fur-
ther, we can specify that the cardinality of Branch in
OrderCustomer[Branch → Dealer] is (0, 5) which spec-
ifies that for a branch in the context of a customer there is
from 0 to 5 dealers executing orders ordered by the cus-
tomer from the branch.

3. Extended E-R Keys

In this section we extend the simple E-R keys for mod-
elling XML keys. We work with XSEM-ER, because we
model XML data. We start with examples. For Section
from Fig. 2 we can specify an E-R key label. Because
Section is weak, the key is relative to its determinant, i.e.
Chapter. It means that label identifies a section only in
the context of its chapter. However, we need the key to be
relative to UserManual and not only to Chapter. More-
over, we need label to be a common key of Chapter and
Section. This can not be described by E-R keys.

For the modelling of these features on the conceptual
level we need a similar mechanism to XPath [12] that is
used for the specification of keys in XML schemes. There-
fore, we propose paths in XSEM-ER schemes that are
used for targeting entity types and their determinants (re-
cursively). A path is composed of one or more steps sep-
arated by ’.’. The first step must be the name of an en-
tity type. Each following step is the name of an entity
type or it is a special symbol denoting an arbitrary en-
tity type. Moreover, each step except the first one can
be specified as a Kleene closure denoted by ∗. For ex-
ample, we can specify paths Order.Branch.Company or
Paragraph. ∗ .UserManual.

A path P targets a set of instances of entity types. If P
is composed only of one step which is the name of an entity
type E it targets the whole set of instances of E. Other-

wise P is a path P ′.S where S is the last step of P . We
have the set of instances targeted by P ′. P targets a set
of instances reachable by S from the instances targeted by
P ′. Assume that S is not a Kleene closure. We take an
instance e targeted by P ′. Let it be an instance of an en-
tity type E. If there is a determinant D of E having the
name specified with S then the target set of P contains an
instance d of D that is a value of the determinant D of e.
If S is a Kleene closure, we repeat the step recursively.
For example, assume the path Order.Branch.Company.
The first step targets all Order instances. The second
step targets each Branch instance that is a determinant
value of an Order instance targeted by the previous step.
The last step targets each Company instance that is a de-
terminant value of a Branch instance from the previous
step. In other words, it identifies each company for which
there exists an order from any of its branches. The path
Paragraph. ∗ .UserManual targets all user manuals that
contain a paragraph.

Paths in XSEM-ER schemes are the basic formalism for
our extension of E-R keys called relative weak keys. A rel-
ative weak key K is an expression

(context(K), target(K), attr(K))key

where target(K) is a non-empty set of entity
types E1, . . . , En, called target set of K, such that⋂n

i=1 attr(Ei) 6= ∅ (where attr(E) denotes a list of
attributes of an entity type E), attr(K) is a non-empty
subset of

⋂n
i=1 attr(Ei), and context(K) = {P1, . . . ,

Pk}, k ≥ 0, is a set of zero or more expressions called
context of K such that for each E ∈ target(K) and for
each P ∈ context(K) the expression E.P is a path.

K specifies the following condition:

(∀E,E′ ∈ target(K))
(∀e1 ∈ (E.P1)C ∩ (E′.P1)C , . . . ,

∀ek ∈ (E.Pk)C ∩ (E′.Pk)C)
(∀e ∈ EC , e′ ∈ E′C : (∀1 ≤ i ≤ k)(e.Pi = e′.Pi = ei))

[(∀A ∈ attr(K)) (e(A) = e′(A)) → (e = e′)]

where EC denotes a set of instances of an entity type E,
PC denotes a set of instances targeted by a path P , and
e.P , where e is an instance of an entity type E and E.P is a
path, denotes a set of instances targeted by E.P not starting
in the whole EC but only in e. The key K specifies that
the attributes from K are a common key of the entity types
from target(K) but relative to the specified context.

For example, a relative weak key
({}, {Product}, {title})key has an empty context
and specifies that title is an absolute key of Product,
i.e. two different instances of Product have not the same
value of title. A relative weak key ({ ∗ .UserManual},

- 239 -

{Section, Chapter}, {label})key specifies that in a user
manual there are no two sections or chapters with the same
value of label. More formally, if we take two different
instances e and e′ from SectionC ∪ ChapterC such
that both e. ∗ .UserManual and e′. ∗ .UserManual
target the same instance of UserManual then e and
e′ have different values of label. For Order we can
specify a key ({Customer}, {Order}, {ordno cus})key

specifying that each order is identified by its ordno cus
in the context of the customer who ordered the order. We
can also specify a key ({Branch.Company}, {Order},
{ordno com})key specifying that each order is identified
by its ordno com in the context of the company from
which the order was ordered. Finally, we can spec-
ify a key ({Branch.Company, Dealer}, {Order},
{ordno deal})key specifying that each order is identified
by its ordno deal in the context of the company from
which the order was ordered and the dealer executing the
order.

4. Expressing Keys on Logical Level

From the XSEM-H views we derive XML schemes. The
derivation is straightforward. We suppose the XML Schema
language in this paper. Briefly, each node in the XSEM-H
view is represented as a complex type definition and each
edge is represented as an element declaration with the la-
bel of the edge as the name. However, the representation of
conceptual relative weak keys in the XML schema is not so
straightforward. The resulting XML key depends not only
on the relative weak key itself but also on the hierarchical
structure described by an XSEM-H view. Therefore, for
each XSEM-H view there can be a different XML key de-
rived from the same relative weak key. We also show that
there can be an XSEM-H view for which we can not derive
an XML key that fully represents the relative weak key.

In Sect. 1 we adopted the formalism for XML keys pro-
posed in [1]. An XML key expressed by this formalism
can be easily represented by an XML Schema key. Briefly,
an XML key has a form (pc, ps, {pf,1, . . . , pf,k}) where pc

is an absolute path and ps, pf,1, . . . , pf,k are relative paths.
The path pc specifies the elements that are the context of the
corresponding XML Schema key. The path ps is the selec-
tor path and pf,1, . . . , pf,k are the field paths of the XML
Schema key. Therefore, the XML key corresponds to the
following XML Schema key:

<xsd:key>
<xsd:selector xpath=”pt”/ >
<xsd:field xpath=”pf,1”/ >
· · ·
<xsd:field xpath=”pf,k”/ >

< /xsd:key>

declared in the declarations of the elements specified by pc.
In this section we show how to derive a logical XML key

from a conceptual XSEM-ER relative weak key. Because
of the lack of the space we demonstrate the derivation on
a set of examples without complex technical details. These
examples however explain the ideas sufficiently. The exam-
ples also show that it is not always possible to express the
full semantics of conceptual relative weak keys. We show
the derived XML keys in the formalism adopted from [1].
These XML keys can be directly represented as an XML
Schema key as shown above.

First, suppose the relative weak key
({}, {Product}, {title})key , that has an empty con-
text, and the example XSEM-H view (a) at Fig. 3.
Even though title identifies instances of Product ab-
solutely we can not specify an absolute XML key
(/company, .//prodinfo, {title}) because a product can
be ordered in several different orders. Therefore, it can be
represented by more elements in an XML document. For
these elements we can not use the absolute key.

To specify the correct XML key we have to find the high-
est node U in the XSEM-H view such that an instance of
Product is not represented by more elements in the context
of U . For this we use cardinality constraints proposed in
Sect. 2. The node representing Product in the XSEM-H
view is a part of a hierarchical representation of Item. The
cardinality of Product in ItemOrder[Item → Product]
is (0, 1), i.e. in an order a product is not ordered at all
or only once. Therefore, an instance of Product is not
represented by more elements in the context of the ele-
ment representing the order. Further, the cardinality of
Product in Item[Order → Product] is (0.∗), i.e. a prod-
uct can be ordered in zero or more orders. There can be
more orders represented in the XML document. An in-
stance of Product is represented by an element for each
order where it was ordered. Therefore, the node repre-
senting Order is the highest node satisfying the condition.
Therefore, the relative weak key specifies in the hierarchi-
cal structure given by the example XML view (a) an XML
key (//order, item/prodinfo, {title}). In a similar way
we can find an XML key for ({}, {Dealer}, {name})key

which is (/company/branch, dealer, {name}) for the
structure specified by the example XSEM-H view (a).

For a relative weak key that has not an empty con-
text we can find the corresponding XML key in a simi-
lar way. However, the context further restricts the con-
text of the XML key. Suppose the relative weak key
({Branch.Company}, {Order}, {ordno com}). With
the previous procedure we find out that for the hierar-
chical structure specified by the view (a) each Order
instance is represented by exactly one element in the
XML data. Therefore, the context for the correspond-
ing XML key is not restricted by the hierarchical struc-

- 240 -

ture. However, it is restricted by the context of the
relative weak key and therefore we get an XML key
(/company, branch/dealer/order, {ordno com}). For
the hierarchical structure specified by the view (b) the node
representing Company is not an ancestor of the node rep-
resenting Order and therefore it can not be the context
node for the XML key. We can specify only an XML
key (/customer/branch, dealer/order, {ordno com}).
However, this XML key does not describe the full seman-
tics of the original key. This example shows that it is not
always possible to fully express the semantics of a relative
weak key with an XML key.

Assume further a situation where the context of a rel-
ative weak key of an entity type is not represented in the
hierarchical structure as an ancestor but as a descendant
of the node representing the entity type. In such a case
the context of the relative weak key does not restrict the
context of the corresponding XML key as in the previ-
ous cases. Assume for example the relative weak key
({Customer}, {Order}, {ordno cus})key and the exam-
ple XSEM-H view (a). The weak key is relative to the entity
type Customer. However, Customer is represented as a
descendant of the node representing Order.

In such a case we must represent the context of
the relative weak key by complementing the attributes
of the relative weak key with the attributes of rela-
tive weak keys of the entity types composing the con-
text of the relative weak key. In our example, we get
an XML key composed of the attributes of the relative
weak key complemented with the attributes of the rela-
tive weak key of Customer (i.e. the attribute name).
Therefore, the relative weak key specifies an XML key
(/company, .//order, {ordno cus, custinfo/name}). If
there is not any relative weak key of Customer it would
not be possible to fully represent the relative weak key with
an XML key.

At the end, we discuss the relative weak key ({ ∗
.UserManual}, {Section,Chapter}, {label})key . The
difference from the previous situations is that it is the
common key for Section and Chapter. We can repre-
sent this relative weak key as in the previous cases for
each of the entity types Section and Chapter and to
merge the resulting XML keys. For the structure speci-
fied by the example XSEM-H view (c) we get an XML key
(/usermanual, .//chapter|.//section, {label}).

5. Conclusions

In this paper we addressed the important problem of con-
ceptual modelling of XML keys. Capturing the full seman-
tics of XML keys on the conceptual level is important for
correct XML data processing including querying and trans-
formation. We introduced a conceptual model for XML

data called XSEM and proposed in this model a formal ex-
tension of the basic E-R keys motivated by special features
of XML keys. We showed that an extended conceptual key
can be expressed by different XML keys depending on the
required structure of the XML data. We also showed that it
is not always possible to fully represent the conceptual key
in an XML schema.

6. Acknowledgment

This paper was supported by the National programme
of research (Information society project 1ET100300419)
and by Grant Agency of Charles University (GAUK), grant
number 204-10/257190.

References

[1] P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan: Keys
for XML. Computer Networks, 39(5), 473-487, 2002.

[2] G. Dobbie, W. Xiaoying, T.W. Ling, M.L. Lee: ORA-SS:
An Object-Relationship-Attribute Model for Semi-Structured
Data. TR21/00, Dpt. of Computer Science, National Univer-
sity of Singapore, 2000.

[3] D.W. Embley, S.W. Liddle, R. Al-Kamha: Enterprise Mod-
eling with Conceptual XML. In Proc. ER 2004, Shanghai,
China, 150-165.

[4] W. Fan and J. Simeon. Integrity constraints for XML, JCSS,
66(1), 2003, 254291.

[5] M. Necasky: XSEM - A Conceptual Model for XML. In Proc.
of APCCM2007, Ballarat, Australia. CRPIT, 67, 2007, 37-48.
http://crpit.com/confpapers/CRPITV67Necasky.pdf

[6] M. Necasky: Conceptual Modeling for XML: A Survey. TR
2006-3, Dpt. of Software Engineering, Faculty of Mathe-
matics and Physics, Charles University, Prague, 2006, 54 p.
http://www.necasky.net/papers/tr2006.pdf

[7] G. Psaila: ERX: A Conceptual Model for XML Documents.
In Proc. of the 2000 ACM Symposium on Applied Comput-
ing, Como, Italy, 2000, 898-903.

[8] A. Sengupta, S. Mohan, R. Doshi: XER - Extensible Entity
Relationship Modeling. In. Proc. of XML 2003, Philadelphia,
USA, 2003, 140-154.

[9] B. Thalheim.: Entity-Relationship Modeling: Foundations
of Database Technology. Springer Verlag, 2000, Berlin, Ger-
many. ISBN: 3-540-65470-4

[10] W3C. XML Schema: Primer Second Edition. Recommenda-
tion, October 2004.http://www.w3.org/TR/xmlschema-0

[11] W3C. Extensible markup language (XML) 1.0
(third edition). Recommendation, February 2004.
http://www.w3.org/TR/2004/REC-xml-20040204

[12] W3C. XML Path Language (XPath) Version 1.0. Recom-
mendation, November 1999. http://www.w3.org/TR/xpath

- 241 -

