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ABSTRACT 
The recurrent neural network capable to provide the Boolean factor analysis of the binary data 
sets of high dimension and complexity is applied to discovery of voting patterns in the 
Russian parliament. The new method of sequential factor extraction based on the Lyapunov 
function is discussed in deep. Efficiency of the new method is shown on simulated data and 
on real data from Russian parliament as well. 
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1. Introduction 
Theoretical analysis and computer 
simulations performed in [3] revealed 
Hopfield-like neural networks capability of 
performing the Boolean factor analysis of 
signals of high dimension and complexity. 
Factor analysis is a procedure which maps 
original signals into the space of factors. 
The principal component analysis (PCA) is 
a classical example of such a mapping in 
the linear case. Linear factor analysis 
implies that each original N-dimensional 
case can be presented as  

X S ε= ⊗ ⊕F                            (1) 

where F  is a matrix N L×  of factor 
loadings, S is a L-dimensional vector of 
factor scores and ε  is an error. (Please 
mention that statisticians often use another 
notation equivalent to mentioned above 
X S ε= ⊗ ⊕T T T TF , this incomes from 

tabular format of source data – observation 
– where X T  is row in the table). Here each 
component of S gives contribution of a 
corresponding factor in the original signal. 
Columns of loading matrix F  give vectors 
presenting corresponding factors in the 
signal space. In the following namely these 
vectors are termed factors. The mapping of 
the original feature space to the factor 
space means, that original signals are 
represented by vectors S of dimension, 
lower than the input signals X. 
Dimensionality of vectors S is much 
smaller than the dimensionality of signals 
X. Thereby the factor analysis provides 
high compression of original signals.  
Boolean factor analysis implies that a 
complex vector signal has a form of the 
Boolean sum of weighted binary factors:  
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iX S i C= ⊗ ≤F∪ .            (2) 
First this means that the original signals, 



factor scores and factor loadings are binary 
and secondly that the mapping of the 
original signal to the factor space means 
discovery of factors that were mixed in the 
signal. The mean number of factors mixed 
in the signals we term signal mean 
complexityCµ . 
For the case of large dimensionality and 
complexity of signals it was a challenge 
[3] for us, to utilize the Hopfield-like 
neural network with parallel dynamics for 
the Boolean factor analysis. Binary 
patterns X of the signal space are treated 
as activities of N  binary neurons (1 – 
active, 0 – nonactive) with gradually 
ranging synaptic connections between 
them. During the learning stage patterns 

( )mX  are stored in the matrix of synaptic 
connections ′J  according to the Hebbian 
rule: 

( ) ( ) ( ) ( )

1
( )( )

0

M
m m m m

ij i j
m

ii

X q X qJ

i j J
=

= − − ,′

′≠ , = ,

∑     (3) 

where M  is the number of patterns in the 

learning set and bias ( ) ( )
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the total activity of the -thm  pattern. This 
form of bias corresponds to the 
biologically plausible global inhibition 
being proportional to an overall neuronal 
activity.  
Additionally to N  principal neurons of the 
Hopfield network described above we 
introduced one special inhibitory neuron 
activated during the presentation of every 
pattern of the learning set and connected 
with all principal neurons by bidirectional 
connections. Patterns of the learning set 
are stored in the vector ′′J  of the 
connections according to the Hebbian rule:  
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= /∑  is a mean activity 

of the -thi  neuron in the learning set and 
q  is a mean activity of all neurons in the 
learning set. It is also supposed that the 
excitability of the introduced inhibitory 
neuron decreases inversely proportional to 

the size of the learning set being 1 M/  after 
storing of all its patterns. 
Due to the Hebbian learning rule (3), 
neurons which represent one factor and 
therefore tend to fire together, become 
more tightly connected than neurons 
belonging to different factors, constituting 
an attractor of network dynamics. This 
property of factors is a base of the 
proposed two-run procedure of factor 
search. Its initialization starts by 
presentation of a random initial pattern 

(in)X  with ( ) ( )in ink r N=  active neurons. 
The activity ( )ink  is supposed to be much 
smaller than the activity of all factors. 
After presentation of (in)X to neural 
network, its activity X  evolves to an 
attractor. The evolution is determined by 
the parallel dynamics equation for discrete 
time. At each time step:  
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where ih  are components of the vector of 
synaptic excitations  
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Θ  is a step function, and ( )T t  is an 
activation threshold. The first term in (6) 
gives synaptic excitations provided by the 
principal neurons of the Hopfield network 
and the second one by the additional 
inhibitory neuron. The use of the inhibitory 
neuron is equivalent to the substraction of 
(1 ) ( )( )i j i jM M q q q qJ J/ = − −′′ ′′  from the 
matrix ijJ ′ . Thus (6) can be rewritten as 
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q  is a vector with components iq q−  and 
Tq  is a transposed q . As shown in [3] the 

replacement of the common connection 
matrix ′J  by J , first, completely 
suppressed two global attractors, which 
dominate in network dynamics for large 
signal complexity C , and second, made 
the size of attractor basins around factors 
to be independent of C . 
At each time step of the recall process the 
threshold ( )T t  was chosen in such a way 



that the level of the network activity was 
kept constant and equal to ( )ink . Thus, on 
each time step ( )ink “winners” (neurons 
with the greatest synaptic excitation) were 
chosen and only they were active on the 
next time step. To avoid uncertainty in the 
choice of winners, when several neurons 
had synaptic excitations at the given level 
of the activation threshold, a small random 
noise was added to the synaptic excitation 
of each individual neuron. The amplitude 
of the noise was put to be less than the 
smallest increment of the synaptic 
excitation given by formula (6). This 
ensured that neurons with the highest 
excitations were kept to be winners in spite 
of the random noise added to the neurons’ 
synaptic excitations. The level of noise 
added to individual neurons excitation was 
fixed during the whole recall process to 
provide its convergence. As shown in [6], 
this choice of activation thresholds allows 
for stabilization of the network activity in 
point or a cyclic attractor of length two. 
When the activity stabilizes at the initial 
level of activity ( )ink , ( ) 1ink +  neurons with 
maximal synaptic excitation are chosen for 
the next iteration step, and the network 
activity evolves to some attractor at the 
new level of activity ( ) 1ink + . Then the 
level of activity increases to ( ) 2ink + , and 
so on, until the number of the active 
neurons reaches the final level ( )fr N  with 

( )fr p> . Here  1p <<  (see [2]), is 
relative level of activity of the just 
revealing factor. Thus, one trial of the 
recall procedure contains ( ) ( )( )f inr r N−  
external steps and several steps inside each 
external step to reach some attractor for a 
fixed level of activity. 
At the end of each external step the relative 
Lyapunov function was calculated by 
formula  

( 1) ( ) ( )X t X t rNΛ = + / ,T J         (7) 
where ( 1)X t +T  and X( )t  are two network 
states in the cyclic attractor (for a point 
attractor ( 1) ( )X t X t+ =T ). The relative 
Lyapunov function is a mean synaptic 
excitation of neurons belonging to some 
attractor at the end of the external step with 

k rN=  neurons.  
Attractors with the highest Lyapunov 
function would be obviously winners in 
most trials of the recall process. Thus, 
more and more trials are required to obtain 
a new attractor with a relatively small 
value of the Lyapunov function. To 
overcome this problem the dominant 
attractors should be deleted from the 
network memory. The deletion was 
performed according to the Hebbian 
unlearning rule by substraction ijJ j i∆ , ≠  
from synaptic connections ijJ  where  
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( )J X  is the average synaptic connection 
between active neurons of the attractor, 

( 1)X t −  and ( )X t  are patterns of network 
activity at last time steps of the iteration 
process, r  is the level of activity, and η  is 
an unlearning rate. Here we have to 
mention that for point attractors holds 

( ) ( 1)X t X t= − , and for cyclic attractors 
( 1)X t −  and ( )X t  two states of attractor 

occur. 
There are three important similarities 
between the described procedure of the 
Boolean factor analysis and the linear 
PCA. First, PCA is based on the same 
covariation matrix as the connection 
matrix in a Hopfield network. Second, 
factor search in PCA can be performed by 
the iteration procedure similar to that 
described by equations (5) and (6). The 
only difference is that the binarization of 
synaptic excitations using the step function 
must be replaced by their normalization: 

( 1) ( ) ( )i iX t h t t+ = / | |h . Then the iteration 
procedure starting from any random state 
converges to the eigenvector 1f  of the 
covariation matrix with the largest 
eigenvalue 1Λ . Just this eigenvector is 
treated as the first factor in PCA. Third, to 
obtain the next factor, the first factor must 
be deleted from the covariation matrix by 
the substraction of 1 1 1

TΛ f f , and so on. The 
substraction is similar to Hebbian 
unlearning (8).  



However, the Boolean factor analysis by 
the Hopfield-like network has one 
principal difference from the linear PCA. 
Attractors of the iteration procedure in 
PCA are always factors while in Hopfield-
like networks the iteration procedure can 
converge to factors (true attractors) and to 
spurious attractors which are far from all 
factors. Thus, two main questions arise 
from the point of view of the Boolean 
factor analysis by the Hopfield-like 
network. First, how often would network 
activity converge to one of the factors 
starting from a random state? Second, is it 
possible to distinguish true and spurious 
attractors when network activity converges 
to some stable state? Both these questions 
are answered in the next Section.  
There are many examples of data in the 
sciences when the Boolean factor analysis 
is required [1]. In our previous papers [4, 
5, 6] we used this neural network to 
analyze textual data. Here we apply our 
method to parliament voting data. The 
results are discussed in Section 3.  
 
 
2. Artificial signals 
To reveal peculiarities of true and spurious 
attractors we performed computer 
experiments with simulated data.  
We generated factors in such a way that 
each one contained exactly n pN=  entries 
1 and (1 )p N−  entries zero. Thus, for each 
factor l N

nB∈f , and analogously for each 
score L

CS B∈  holds:  

1

{0 1}
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i
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Each pattern of the learning data set 
(observation) was generated to be a 
Boolean factor loadings superposition of 
exactly C  factors. We supposed that factor 
loadings and factor scores are statistically 
independent (factors can overlap each 
other).  
Then we analyzed Lyapunov function 
behavior during recall processes. As an 
example, Fig. 1 demonstrates changes of a 
relative Lyapunov function for 3000N = , 

5300L = , 0 02p = .  and 10C = . The 

recall process started at 0 005inr = . . 
Trajectories of network dynamics form 
two separated groups. As shown in Fig. 2, 
the trajectories with higher values of the 
Lyapunov function are true and with lower 
ones are spurious. This Figure relates 
values of the Lyapunov function for 
patterns of network activity at points r p=  
to maximal overlaps of these patterns with 
factors. 
The overlap Ov  between two patterns (1)X  
and (2)X  with Np  active neurons was 
calculated by formula  

(1) (2) (1) (2)

1

1Ov( ) ( )( )
(1 )

N

i i
i

X , X X p X p
Np p =

= − −
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According to this formula the overlap 
between two equal patterns is equal to 1 
and the mean overlap between independent 
patterns is equal to 0. Patterns with a high 
Lyapunov function have high overlap with 
one of the factors, while the patterns with a 
low Lyapunov function are far from all the 
factors. It is shown that true and spurious 
trajectories are separated by the values of 
their Lyapunov functions. In Figs. 1 and 2 
the values of the Lyapunov function are 
normalized by a mean value of this 
function over true attractors at the 
point r p= .  
 

 
Fig. 1 Relative Lyapunov function λ  in 

dependence on the relative network 
activity r .  

The second characteristic feature of true 
trajectories is the existence of turning point 
at a point r p=  where the level of network 
activity coincides with that in factors (see 
Fig. 1). If r p< , then the increase of r  
results in almost linear increase of the 



relative Lyapunov function. 

 
Fig. 2 Values of normalized Lyapunov 

function in relation to overlaps with the 
closest factors.   

The increase of r  occurs in this case due 
to the joining of neurons belonging to the 
factors that are strongly connected with 
other neurons of the factor. Then the 
joining of new neurons results in 
proportional increase of mean synaptic 
excitation to the active neurons of a factor 
that is just equal to their relative Lyapunov 
function. When r p> , the increase of r  
occurs due to joining of some random 
neurons that are connected with the factor 
by week connections. Thus, the increase of 
the relative Lyapunov function for a true 
trajectory sharply slows and it tends to the 
values of the Lyapunov function for 
spurious trajectories. The use of these two 
features of true trajectories provides 
reliable tool for recognition of factors. This 
phenomenon was clearly confirmed in our 
previous papers [4, 5, 6] where our method 
was used for textual data analysis. Here we 
apply neural network Boolean factor 
analysis technique to the analysis of 
parliament voting.  
 
 
3. Analysis of parliament voting 
For the following analysis we used as data 

source results of roll-call votes in the 
Russian parliament in 2004 [7]. Each vote 
is represented by a binary vector with 
component 1 if the correspondent deputy 
voted affirmatively and 0 negatively. The 
number of voting during the year was 
3150. The number of deputies 
(consequently the dimensionality of the 
signal space and the network size) was 430 
(20 deputies who voted less than 10 times 
were excluded from the analysis).  
Fig. 3 shows the Lyapunov function 
trajectories starting from 1500 random 
initial states. One can distinguish only four 
trajectories as a result. Two of them have 
obvious turning points (kinks) and 
therefore were identified as two factors. 
The factor with the highest Lyapunov 
function consists of 50 deputies and 
completely coincides with the fraction of 
the Communist Party (CPRF).  
Another factor consists of 36 deputies. All 
of them belong to the fraction of the 
Liberal-Democratic Party (LDPR) that has 
37 chairs in the parliament in total. Thus 
one of the members of this fraction fell out 
of the corresponding factor. The pointed 
kinks at the corresponding trajectories give 
evidence that these fractions are the most 
disciplined and their members vote 
coherently. 
Fig. 4 demonstrates trajectories after 
deleting of the two mentioned factors. 
1500 runs of our algorithm starting from 
randomly selected initial network states 
resulted only into two trajectories in this 
case. On one of them we can see the 
turning point but it is not as strict as for 
CPRF and LDPR factors. 
We hypothesized that the point where the 
second derivative of the Lyapunov 
function by k  has minimum corresponds 
to the third factor. The factor consists of 37 
deputies. All of them belong to the fraction 
“Motherland” (ML) which consists of 
totally 41 deputies. Thus 4 of its members 
fell out of the factor. The fuzziness of kink 
at the trajectory gives evidence that this 
fraction is not as homogeneous as the two 
first ones and actually the fraction split up 
in two fractions in 2005.  



 
Fig. 3 Relative Lyapunov function λ  for 

parliament data in dependence on the 
number of active neurons. Thick points, on 
the trajectory, correspond to the first and 

the second factor.  

 
Fig. 4 The same as in Fig. 3 after deleting 

two first factors. The thick point on the 
trajectory corresponds to the third factor. 

Matching of neurons along the second 
trajectory in Fig. 4 with the list of deputies 
has shown that they correspond to the 
members of the fraction “United Russia” 
(UR). This fraction is the largest one, 
consist totally of 285 deputies, but it is less 
homogeneous. Therefore the Lyapunov 
function along the trajectory is relatively 
low and it has no turning point. 
Fig. 5 shows trajectories of neurodynamics 
after additional deleting the third factor 
from the network. Two remaining 
trajectories contain members of UR and 
independent deputies (ID). The upper 
trajectory contains only members of UR 
and lower one – mainly ID but also 
members of UR. This is an additional 
evidence of UR heterogeneity. Factors UR 
and ID were identified by minimums of the 
second derivatives along the corresponding 

trajectories. The general relation between 
the parliament fractions and obtained 
factors is shown in Table 1.  

 Tab. 1. Relation between parliament 
fractions and factors 

  1 2 3 4 5 
CPRF 0 / 0 51/49  0 / 0   0 / 2   0 / 0   
LDPR 1 / 2  0 / 0  36/ 35   0 / 0   0 / 0   
ML  3 / 3  0 / 0  0 / 0  37/ 38  1 / 0   
ID 1 / 14  0 / 0  0 / 1   0 / 1  15 / 0  
 
The fit between the fractions and the 
factors was evaluated by F-measure [9]. 
Averaged over all fractions it amounted to 
0.98.  
 

 
Fig. 5 The same as in Figs. 3 and 4 after 

deleting three first factors.  
 

 
 
 

Fig. 6 Two-dimensional map of voting 
parliament members. Thin lines - borders 

of clusters. ♦ - UR,  +  – CPRF,  –
 LDPR, •  - ML,   – ID. 

We compared our results with those 
obtained using some traditional clustering 
methods [8]. First, we clustered the 
parliament members with the direct use of 
a similarity matrix. Similarity between two 



deputies was calculated by comparison of 
vectors of their voting. We used different 
measures of similarity: Euclidian distance, 
cosine, Jaccard and Dice. Both hierarchial 
and -meansk  clustering gave clusters far 
from parliament fractions: all fractions 
intersected in clusters and fraction LDPR 
could not be separated from ER at all. 
Second, we performed mapping of 
parliament members by the method of 
multidimensional scaling. The results are 
shown in Fig. 6. This map was clustered. 
The borders of clusters are shown by thin 
lines. Generally, as factors obtained before, 
clusters coincide with parliament fractions 
except for independent deputies. The 
results of clustering and factorization are 
compared in the Table. The mean  
F-measure amounted to 0.95 that is slightly 
smaller than that obtained for factors.  
 
 
4. Conclusion 
 
The Hopfield-like neural network is 
capable of performing Boolean factor 
analysis of the signals of high dimension 
and complexity. We described the new 
method of sequential factor extraction 
based on the Lyapunov function value and 
change during the neural network active 
dynamics. This method is based on the two 
phenomena discovered by means of the 
neural network behavior analysis using the 
simulated data. Then we demonstrated 
procedure effective application on the real 
data. In our previous papers we showed its 
high efficiency in case of textual data 
analysis. Here its ability is demonstrated in 
the field of politics.  
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