A General Tableau Method for Deciding Description Logics, Modal Logics and Related First-Order Fragments

Dmitry Tishkovsky

joint work with Renate A. Schmidt

School of Computer Science The University of Manchester

dmitry.tishkovsky@manchester.ac.uk

PRAGUE, CZECH REPUBLIC

Outline

Introduction

- Increasing demand for reasoning tools
- Reasoning tools
- Prover synthesis approach
- Tableau termination problem
- Motivation summary

2 General framework

- Syntax and semantics
- Closure operator
- Filtration
- Tableau calculus
- Common tableau rules
- Blocking mechanism
- Constructive completeness and sub-compatibility
- General termination

Description logics form a basis for web ontology languages, OWL DL and OWL 1.1

Modal and dynamic logics are useful in multi-agent reasoning

- Metric logics are intended to be helpful in classification problems
- Fuzzy logics ..., etc

- Description logics form a basis for web ontology languages, OWL DL and OWL 1.1
- Modal and dynamic logics are useful in multi-agent reasoning
- Metric logics are intended to be helpful in classification problems
- Fuzzy logics ..., etc

- Description logics form a basis for web ontology languages, OWL DL and OWL 1.1
- Modal and dynamic logics are useful in multi-agent reasoning
- Metric logics are intended to be helpful in classification problems
- Fuzzy logics ..., etc

- Description logics form a basis for web ontology languages, OWL DL and OWL 1.1
- Modal and dynamic logics are useful in multi-agent reasoning
- Metric logics are intended to be helpful in classification problems
- Fuzzy logics ..., etc

- Description logics form a basis for web ontology languages, OWL DL and OWL 1.1
- Modal and dynamic logics are useful in multi-agent reasoning
- Metric logics are intended to be helpful in classification problems
- Fuzzy logics ..., etc

• Tableau provers: FACT++, RACERPRO, PELLET, DLP, ...

- Resolution provers: MSPASS, VAMPIRE, ...
- Generic interactive platforms: ISABELLE, COQ, ...
- Tableau prover engineering platforms: LWB, TWB, LoTREC,
- Other: KAON2, ...

• Tableau provers: FACT++, RACERPRO, PELLET, DLP, ... are highly optimised but not generic

- Resolution provers: MSPASS, VAMPIRE, ...
 are difficult to tune to decide a particular logic (a first-order fragment)
- Generic interactive platforms: ISABELLE, COQ, ...
- Tableau prover engineering platforms: LWB, TWB, LoTREC,
- Other: KAON2, ...

• Tableau provers: FACT++, RACERPRO, PELLET, DLP, ...

are highly optimised but not generic

- Resolution provers: MSPASS, VAMPIRE, ... are difficult to tune to decide a particular logic (a first-order fragment)
- Generic interactive platforms: ISABELLE, COQ, ...
- Tableau prover engineering platforms: LWB, TWB, LoTREC,
- Other: KAON2, ...

• Tableau provers: FACT++, RACERPRO, PELLET, DLP, ...

are highly optimised but not generic

• Resolution provers: MSPASS, VAMPIRE, ... are difficult to tune to decide a particular logic (a first-order fragment)

• Generic interactive platforms: ISABELLE, COQ, ...

- do not provide automated decision procedures
- Tableau prover engineering platforms: LWB, TWB, LOTREC, ...
- Other: KAON2, ...

• Tableau provers: FACT++, RACERPRO, PELLET, DLP, ...

are highly optimised but not generic

- Resolution provers: MSPASS, VAMPIRE, ... are difficult to tune to decide a particular logic (a first-order fragment)
- Generic interactive platforms: ISABELLE, COQ, ...

do not provide automated decision procedures

- Tableau prover engineering platforms: LWB, TWB, LOTREC, ...
- Other: KAON2, ...

• Tableau provers: FACT++, RACERPRO, PELLET, DLP, ...

are highly optimised but not generic

- Resolution provers: MSPASS, VAMPIRE, ... are difficult to tune to decide a particular logic (a first-order fragment)
- Generic interactive platforms: ISABELLE, COQ, ...

do not provide automated decision procedures

- Tableau prover engineering platforms: LWB, TWB, LOTREC, ...
- Other: KAON2, ...

• Tableau provers: FACT++, RACERPRO, PELLET, DLP, ...

are highly optimised but not generic

- Resolution provers: MSPASS, VAMPIRE, ... are difficult to tune to decide a particular logic (a first-order fragment)
- Generic interactive platforms: ISABELLE, COQ, ...

do not provide automated decision procedures

- Tableau prover engineering platforms: LWB, TWB, LoTREC, ... allow to play with rules but do not always ensure termina
- Other: KAON2, ...

• Tableau provers: FACT++, RACERPRO, PELLET, DLP, ...

are highly optimised but not generic

- Resolution provers: MSPASS, VAMPIRE, ... are difficult to tune to decide a particular logic (a first-order fragment)
- Generic interactive platforms: ISABELLE, COQ, ...

do not provide automated decision procedures

- Tableau prover engineering platforms: LWB, TWB, LOTREC, ... allow to play with rules but do not always ensure termination
- Other: KAON2, ...

• Tableau provers: FACT++, RACERPRO, PELLET, DLP, ...

are highly optimised but not generic

- Resolution provers: MSPASS, VAMPIRE, ... are difficult to tune to decide a particular logic (a first-order fragment)
- Generic interactive platforms: ISABELLE, COQ, ...

do not provide automated decision procedures

- Tableau prover engineering platforms: LWB, TWB, LOTREC, ... allow to play with rules but do not always ensure termination
- Other: KAON2, ...

• Tableau provers: FACT++, RACERPRO, PELLET, DLP, ...

are highly optimised but not generic

• Resolution provers: MSPASS, VAMPIRE, ... are difficult to tune to decide a particular logic (a first-order fragment)

• Generic interactive platforms: ISABELLE, COQ, ...

do not provide automated decision procedures

- Tableau prover engineering platforms: LWB, TWB, LOTREC, ... allow to play with rules but do not always ensure termination
- Other: KAON2, ...

• Tableau provers: FACT++, RACERPRO, PELLET, DLP, ...

are highly optimised but not generic

• Resolution provers: MSPASS, VAMPIRE, ... are difficult to tune to decide a particular logic (a first-order fragment)

• Generic interactive platforms: ISABELLE, COQ, ...

do not provide automated decision procedures

- Tableau prover engineering platforms: LWB, TWB, LOTREC, ... allow to play with rules but do not always ensure termination
- Other: KAON2, ...

Our Approach Tableau Prover Synthesis

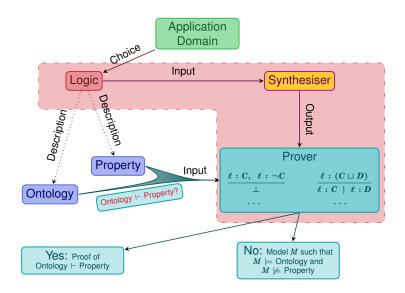


Tableau Termination Problem

• How to ensure termination of a tableau algorithm?

- An appropriate blocking mechanism is needed, e.g.:
 - subset or equality blocking,
 - dynamic or static blocking,
 - successor or anywhere blocking,
 - combinations of the above.
- Problem: How to
 - define a general blocking mechanism which unifies all the standard ones and
 - describe a class of logics for which the general blocking mechanism ensures termination of corresponding tableau algorithms?

Tableau Termination Problem

- How to ensure termination of a tableau algorithm?
- An appropriate blocking mechanism is needed, e.g.:
 - subset or equality blocking,
 - dynamic or static blocking,
 - successor or anywhere blocking,
 - combinations of the above.
- Problem: How to
 - define a general blocking mechanism which unifies all the standard ones and
 - describe a class of logics for which the general blocking mechanism ensures termination of corresponding tableau algorithms?

Tableau Termination Problem

- How to ensure termination of a tableau algorithm?
- An appropriate blocking mechanism is needed, e.g.:
 - subset or equality blocking,
 - dynamic or static blocking,
 - successor or anywhere blocking,
 - combinations of the above.
- Problem: How to
 - define a general blocking mechanism which unifies all the standard ones and
 - describe a class of logics for which the general blocking mechanism ensures termination of corresponding tableau algorithms?

Motivation Summary

- Absence of general decision procedures in automated reasoning for tableaux and instantiation-based methods.
- Absence of a theoretical foundations for generic platforms in which tableau decision procedures can be built in a uniform way for different logics and different applications.
- The work is based on observation that proofs of termination of tableau algorithms and proofs of the effective finite model property by the filtration argument are very similar.

Motivation Summary

- Absence of general decision procedures in automated reasoning for tableaux and instantiation-based methods.
- Absence of a theoretical foundations for generic platforms in which tableau decision procedures can be built in a uniform way for different logics and different applications.
- The work is based on observation that proofs of termination of tableau algorithms and proofs of the effective finite model property by the filtration argument are very similar.

Motivation Summary

- Absence of general decision procedures in automated reasoning for tableaux and instantiation-based methods.
- Absence of a theoretical foundations for generic platforms in which tableau decision procedures can be built in a uniform way for different logics and different applications.
- The work is based on observation that proofs of termination of tableau algorithms and proofs of the effective finite model property by the filtration argument are very similar.

Outline

Introduction

- Increasing demand for reasoning tools
- Reasoning tools
- Prover synthesis approach
- Tableau termination problem
- Motivation summary

2 General framework

- Syntax and semantics
- Closure operator
- Filtration
- Tableau calculus
- Common tableau rules
- Blocking mechanism
- Constructive completeness and sub-compatibility
- General termination

Conclusion

Syntax and Semantics

$$\begin{array}{c} \overset{\text{individual}}{\bigvee}\\ \mathsf{Concepts:}\ C, D \ \stackrel{\text{def}}{=}\ p \ \mid \ \neg C \ \mid \ C \sqcup D \ \mid \ \exists R.C \ \mid \ \{\ell\} \ \mid \ \ell : C\\ \mathsf{Roles:}\ R, R_i \ \stackrel{\text{def}}{=}\ r \ \mid \ \rho_0(R_1, \ldots, R_{\mu_0}) \ \mid \ \rho_1(R_1, \ldots, R_{\mu_1}) \ \mid \ \ldots \end{array}$$

individual

Syntax and Semantics

Concepts:
$$C, D \stackrel{\text{\tiny def}}{=} p \mid \neg C \mid C \sqcup D \mid \exists R.C \mid \{\ell\} \mid \ell : C$$

$$\mathsf{Roles}: R, R_i \stackrel{\text{def}}{=} r \mid \rho_0(R_1, \ldots, R_{\mu_0}) \mid \rho_1(R_1, \ldots, R_{\mu_1}) \mid \ldots$$

Interpretation (model): $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ satisfying

$$\begin{split} p^{\mathcal{I}} &\subseteq \Delta^{\mathcal{I}} \qquad r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \qquad \ell^{\mathcal{I}} \in \Delta^{\mathcal{I}} \\ (\neg C)^{\mathcal{I}} &= \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}} \qquad (C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}} \\ (\exists R.C)^{\mathcal{I}} &= \{x \mid \exists y \in C^{\mathcal{I}} (x, y) \in R^{\mathcal{I}}\} \qquad (\{\ell\})^{\mathcal{I}} = \{\ell^{\mathcal{I}}\} \\ (\ell : C)^{\mathcal{I}} &= \begin{cases} \Delta^{\mathcal{I}}, & \text{if } \ell^{\mathcal{I}} \in C^{\mathcal{I}}, \\ \varnothing, & \text{otherwise, and} \end{cases} \end{split}$$

additional semantic conditions for ρ_0, ρ_1, \ldots

Example: SO — Logic with Transitive Roles

- Language extended by transitive role constants $s \in$ Trans.
- For every $s \in$ Trans and a model \mathcal{I} , the interpretation of $s^{\mathcal{I}}$ is a transitive relation on \mathcal{I} :

 $(x,y),(y,z)\in s^{\mathcal{I}} \text{ implies } (x,z)\in s^{\mathcal{I}} \text{ for all } x,y,z\in \Delta^{\mathcal{I}}.$

Dmitry Tishkovsky

Example: ALBO — Logic with Boolean Role Operators

- Extra operators on roles: role inverse R^{-1} , role complement $\neg R$, and role union $R \sqcup S$.
- Interpretations of the operators:

$$\begin{split} (\neg R)^{\mathcal{I}} &\stackrel{\text{def}}{=} (\Delta \times \Delta) \setminus R^{\mathcal{I}} \\ (R \sqcup S)^{\mathcal{I}} &\stackrel{\text{def}}{=} R^{\mathcal{I}} \cup S^{\mathcal{I}} \\ (R^{-1})^{\mathcal{I}} &\stackrel{\text{def}}{=} (R^{\mathcal{I}})^{-1} = \{(x, y) \mid (y, x) \in R^{\mathcal{I}}\} \end{split}$$

Properties

- ALBO is out of the mainstream DLs.
- ALBO subsumes two variable fragment of first-order logic.
- *ALBO* is decidable by resolution.
- Satisfiability problem for ALBO is NExpTime-complete.
- Very expressive: universal modality and Boolean combinations of role inclusions $R \sqsubseteq S$, concept inclusions $C \sqsubseteq D$, concept assertions $\ell : C$, role assertions $(\ell, \ell') : D$, etc are expressible in ALBO.

Dmitry Tishkovsky

Example: ALBO — Logic with Boolean Role Operators

- Extra operators on roles: role inverse R^{-1} , role complement $\neg R$, and role union $R \sqcup S$.
- Interpretations of the operators:

$$\begin{split} (\neg R)^{\mathcal{I}} &\stackrel{\text{def}}{=} (\Delta \times \Delta) \setminus R^{\mathcal{I}} \\ (R \sqcup S)^{\mathcal{I}} &\stackrel{\text{def}}{=} R^{\mathcal{I}} \cup S^{\mathcal{I}} \\ (R^{-1})^{\mathcal{I}} &\stackrel{\text{def}}{=} (R^{\mathcal{I}})^{-1} = \{(x, y) \mid (y, x) \in R^{\mathcal{I}}\} \end{split}$$

Properties

- ALBO is out of the mainstream DLs.
- ALBO subsumes two variable fragment of first-order logic.
- ALBO is decidable by resolution.
- Satisfiability problem for \mathcal{ALBO} is NExpTime-complete.
- Very expressive: universal modality and Boolean combinations of role inclusions $R \sqsubseteq S$, concept inclusions $C \sqsubseteq D$, concept assertions $\ell : C$, role assertions $(\ell, \ell') : D$, etc are expressible in ALBO.

• sub is a monotone operator on sets of expressions.

- $\Sigma \subseteq \mathsf{sub}(\Sigma)$ for every Σ .
- sub is *finite* iff sub(Σ) is finite whenever Σ is finite.
- A finite sub can be replaced by an equivalent notion of a well-founded ordering on expressions.
- Σ is sub-closed, or a signature iff $\Sigma = sub(\Sigma)$.
- Usually, there is a lot of flexibility in choice of sub.

- sub for SO and ALBO can be chosen as the subexpression operator,
 i.e. sub(Σ) is a set of all subexpressions of expressions in Σ.
- sub for PDL includes more expressions.

• sub is a monotone operator on sets of expressions.

• $\Sigma \subseteq \mathsf{sub}(\Sigma)$ for every Σ .

- sub is *finite* iff sub(Σ) is finite whenever Σ is finite.
- A finite sub can be replaced by an equivalent notion of a well-founded ordering on expressions.
- Σ is sub-closed, or a signature iff $\Sigma = sub(\Sigma)$.
- Usually, there is a lot of flexibility in choice of sub.

- sub for SO and ALBO can be chosen as the subexpression operator,
 i.e. sub(Σ) is a set of all subexpressions of expressions in Σ.
- sub for PDL includes more expressions.

- sub is a monotone operator on sets of expressions.
- $\Sigma \subseteq \mathsf{sub}(\Sigma)$ for every Σ .
- sub is *finite* iff sub(Σ) is finite whenever Σ is finite.
- A finite sub can be replaced by an equivalent notion of a well-founded ordering on expressions.
- Σ is sub-closed, or a signature iff $\Sigma = sub(\Sigma)$.
- Usually, there is a lot of flexibility in choice of sub.

- sub for SO and ALBO can be chosen as the subexpression operator,
 i.e. sub(Σ) is a set of all subexpressions of expressions in Σ.
- sub for PDL includes more expressions.

- sub is a monotone operator on sets of expressions.
- $\Sigma \subseteq \mathsf{sub}(\Sigma)$ for every Σ .
- sub is *finite* iff sub(Σ) is finite whenever Σ is finite.
- A finite sub can be replaced by an equivalent notion of a well-founded ordering on expressions.
- Σ is sub-closed, or a signature iff $\Sigma = sub(\Sigma)$.
- Usually, there is a lot of flexibility in choice of sub.

- sub for SO and ALBO can be chosen as the subexpression operator,
 i.e. sub(Σ) is a set of all subexpressions of expressions in Σ.
- sub for PDL includes more expressions.

- sub is a monotone operator on sets of expressions.
- $\Sigma \subseteq \mathsf{sub}(\Sigma)$ for every Σ .
- sub is *finite* iff sub(Σ) is finite whenever Σ is finite.
- A finite sub can be replaced by an equivalent notion of a well-founded ordering on expressions.
- Σ is sub-closed, or a signature iff $\Sigma = sub(\Sigma)$.
- Usually, there is a lot of flexibility in choice of sub.

- sub for SO and ALBO can be chosen as the subexpression operator,
 i.e. sub(Σ) is a set of all subexpressions of expressions in Σ.
- sub for PDL includes more expressions.

Closure operator

- sub is a monotone operator on sets of expressions.
- $\Sigma \subseteq \mathsf{sub}(\Sigma)$ for every Σ .
- sub is *finite* iff sub(Σ) is finite whenever Σ is finite.
- A finite sub can be replaced by an equivalent notion of a well-founded ordering on expressions.
- Σ is sub-closed, or a signature iff $\Sigma = sub(\Sigma)$.
- Usually, there is a lot of flexibility in choice of sub.

Example

- sub for SO and ALBO can be chosen as the subexpression operator, i.e. sub(Σ) is a set of all subexpressions of expressions in Σ .
- sub for PDL includes more expressions.

Closure operator

- sub is a monotone operator on sets of expressions.
- $\Sigma \subseteq \mathsf{sub}(\Sigma)$ for every Σ .
- sub is *finite* iff sub(Σ) is finite whenever Σ is finite.
- A finite sub can be replaced by an equivalent notion of a well-founded ordering on expressions.
- Σ is sub-closed, or a signature iff $\Sigma = sub(\Sigma)$.
- Usually, there is a lot of flexibility in choice of sub.

Example

- sub for \mathcal{SO} and \mathcal{ALBO} can be chosen as the subexpression operator, i.e. sub(Σ) is a set of all subexpressions of expressions in Σ .
- sub for PDL includes more expressions.

$\bullet \ \mathcal{I} \text{ is a model}$

- \sim is an equivalence relation on $\Delta^{\mathcal{I}}$
- $[x] \stackrel{\text{def}}{=} \{ y \in \Delta^{\mathcal{I}} \mid x \sim y \}$
- *Filtration* of \mathcal{I} is a structure $\overline{\mathcal{I}} = (\Delta^{\mathcal{I}}, .^{\mathcal{I}})$ such that
 - $\Delta^{\overline{I}} = \{ [x] \mid x \in \Delta^{\mathcal{I}} \},$ • $C^{\overline{I}} = \{ [x] \mid x \in C^{\mathcal{I}} \},$ • $\ell^{\overline{I}} = [\ell^{\overline{I}}], \text{ and }$
- L admits finite filtration iff for every finite L-signature Σ and every L-model I of the signature Σ there exists an equivalence relation ~ on I such that there is a ~-filtration I of I which is a finite L-model of the signature Σ.

Theorem

Let L be a logic and sub be a finite expression closure operator. If L admits finite filtration then L has the effective finite model property.

- $\bullet \ \mathcal{I} \text{ is a model}$
- \sim is an equivalence relation on $\Delta^{\mathcal{I}}$
- $[x] \stackrel{\text{def}}{=} \{ y \in \Delta^{\mathcal{I}} \mid x \sim y \}$
- *Filtration* of \mathcal{I} is a structure $\overline{\mathcal{I}} = (\Delta^{\overline{\mathcal{I}}}, .^{\overline{\mathcal{I}}})$ such that
 - $\Delta^{\overline{\mathcal{I}}}_{\overline{\mathcal{I}}} = \{ [x] \mid x \in \Delta^{\mathcal{I}} \},\$
 - $U_{-}^{-} = \{ [x] \mid x \in U_{-} \}$
- L admits finite filtration iff for every finite L-signature Σ and every L-model I of the signature Σ there exists an equivalence relation ~ on I such that there is a ~-filtration I of I which is a finite L-model of the signature Σ.

Theorem

Let L be a logic and sub be a finite expression closure operator. If L admits finite filtration then L has the effective finite model property.

- *I* is a model
- \sim is an equivalence relation on $\Delta^{\mathcal{I}}$
- $[x] \stackrel{\text{def}}{=} \{ y \in \Delta^{\mathcal{I}} \mid x \sim y \}$
- *Filtration* of \mathcal{I} is a structure $\overline{\mathcal{I}} = (\Delta^{\overline{\mathcal{I}}}, \overline{\mathcal{I}})$ such that
 - $\Delta^{\overline{\mathcal{I}}} = \{ [x] \mid x \in \Delta^{\mathcal{I}} \},\$ $C^{\overline{\mathcal{I}}} = \{ [x] \mid x \in C^{\mathcal{I}} \},\$ $\ell^{\overline{\mathcal{I}}} = [\ell^{\mathcal{I}}], \text{ and }$

- *I* is a model
- \sim is an equivalence relation on $\Delta^{\mathcal{I}}$
- $[x] \stackrel{\text{def}}{=} \{ y \in \Delta^{\mathcal{I}} \mid x \sim y \}$
- *Filtration* of \mathcal{I} is a structure $\overline{\mathcal{I}} = (\Delta^{\overline{\mathcal{I}}}, \overline{\mathcal{I}})$ such that
 - $\Delta^{\overline{\mathcal{I}}} = \{ [x] \mid x \in \Delta^{\mathcal{I}} \},\$ $C^{\overline{\mathcal{I}}} = \{ [x] \mid x \in C^{\mathcal{I}} \},\$ $\ell^{\overline{\mathcal{I}}} = [\ell^{\mathcal{I}}],$ and

 - $([x], [y]) \in R^{\overline{I}}$ whenever $\exists x' \sim x \exists y' \sim y (x', y') \in R^{\overline{I}}$

- \mathcal{I} is a model
- \sim is an equivalence relation on $\Delta^{\mathcal{I}}$
- $[x] \stackrel{\text{def}}{=} \{ y \in \Delta^{\mathcal{I}} \mid x \sim y \}$
- *Filtration* of \mathcal{I} is a structure $\overline{\mathcal{I}} = (\Delta^{\overline{\mathcal{I}}}, \overline{\mathcal{I}})$ such that
 - $\begin{array}{l} \bullet \ \Delta^{\overline{\mathcal{I}}} = \{[x] \mid x \in \Delta^{\mathcal{I}}\}, \\ \bullet \ C^{\overline{\mathcal{I}}} = \{[x] \mid x \in C^{\mathcal{I}}\}, \\ \bullet \ \ell^{\overline{\mathcal{I}}} = [\ell^{\mathcal{I}}], \ \mathrm{and} \end{array}$

 - $([x], [y]) \in R^{\overline{\mathcal{I}}}$ whenever $\exists x' \sim x \exists y' \sim y (x', y') \in R^{\mathcal{I}}$
- L admits finite filtration iff for every finite L-signature Σ and every

- *I* is a model
- \sim is an equivalence relation on $\Delta^{\mathcal{I}}$
- $[x] \stackrel{\text{def}}{=} \{ y \in \Delta^{\mathcal{I}} \mid x \sim y \}$
- *Filtration* of \mathcal{I} is a structure $\overline{\mathcal{I}} = (\Delta^{\overline{\mathcal{I}}}, \overline{\mathcal{I}})$ such that
 - $\begin{array}{l} \bullet \ \Delta^{\overline{\mathcal{I}}} = \{[x] \mid x \in \Delta^{\mathcal{I}}\}, \\ \bullet \ C^{\overline{\mathcal{I}}} = \{[x] \mid x \in C^{\mathcal{I}}\}, \\ \bullet \ \ell^{\overline{\mathcal{I}}} = [\ell^{\mathcal{I}}], \ \mathrm{and} \end{array}$

 - $([x], [y]) \in R^{\overline{\mathcal{I}}}$ whenever $\exists x' \sim x \exists y' \sim y (x', y') \in R^{\mathcal{I}}$
- L admits finite filtration iff for every finite L-signature Σ and every *L*-model \mathcal{I} of the signature Σ there exists an equivalence relation \sim on \mathcal{I} such that there is a \sim -filtration $\overline{\mathcal{I}}$ of \mathcal{I} which is a finite L-model of the signature Σ .

- *I* is a model
- \sim is an equivalence relation on $\Delta^{\mathcal{I}}$
- $[x] \stackrel{\text{def}}{=} \{ y \in \Delta^{\mathcal{I}} \mid x \sim y \}$
- *Filtration* of \mathcal{I} is a structure $\overline{\mathcal{I}} = (\Delta^{\overline{\mathcal{I}}}, \overline{\mathcal{I}})$ such that
 - $\Delta^{\overline{\mathcal{I}}} = \{ [x] \mid x \in \Delta^{\mathcal{I}} \},\$ $C^{\overline{\mathcal{I}}} = \{ [x] \mid x \in C^{\mathcal{I}} \},\$ $\ell^{\overline{\mathcal{I}}} = [\ell^{\mathcal{I}}], \text{ and}$

 - $([x], [y]) \in R^{\overline{\mathcal{I}}}$ whenever $\exists x' \sim x \exists y' \sim y (x', y') \in R^{\mathcal{I}}$
- L admits finite filtration iff for every finite L-signature Σ and every *L*-model \mathcal{I} of the signature Σ there exists an equivalence relation \sim on \mathcal{I} such that there is a \sim -filtration $\overline{\mathcal{I}}$ of \mathcal{I} which is a finite L-model of the signature Σ .

Theorem

AANCHESTER

Let L be a logic and sub be a finite expression closure operator. If L admits finite filtration then L has the effective finite model property.

$\bullet~$ Given an $\mathcal{SO}\text{-model}~\mathcal{I}$ and a signature $\Sigma,$ let

$$\tau^{\Sigma}(\mathbf{x}) \stackrel{\text{\tiny def}}{=} \{ \mathbf{C} \in \Sigma \mid \mathbf{x} \in \mathbf{C}^{\mathcal{I}} \}.$$

 $\bullet\,$ The equivalence \sim defined by

$$x \sim y \iff \tau^{\Sigma}(x) = \tau^{\Sigma}(y)$$

for every $x, y \in \Delta^{\mathcal{I}}$.

• An interpretation of every role r in the \sim -filtration $\overline{\mathcal{I}}$ of \mathcal{I} is defined by

 $r^{\overline{\mathcal{I}}} \stackrel{\text{\tiny def}}{=} \{([x], [y]) \mid y \in C^{\mathcal{I}} \text{ implies } x \in (\exists r.C)^{\mathcal{I}} \text{ for every } \exists r.C \in \Sigma \}.$

• Given an $\mathcal{SO}\text{-model}\ \mathcal{I}$ and a signature $\Sigma,$ let

$$\tau^{\Sigma}(\mathbf{x}) \stackrel{\text{\tiny def}}{=} \{ \mathbf{C} \in \Sigma \mid \mathbf{x} \in \mathbf{C}^{\mathcal{I}} \}.$$

 $\bullet~$ The equivalence \sim defined by

$$x \sim y \iff \tau^{\Sigma}(x) = \tau^{\Sigma}(y)$$

for every $x, y \in \Delta^{\mathcal{I}}$.

• An interpretation of every role *r* in the \sim -filtration $\overline{\mathcal{I}}$ of \mathcal{I} is defined by

 $r^{\overline{\mathcal{I}}} \stackrel{\text{\tiny def}}{=} \{([x], [y]) \mid y \in C^{\mathcal{I}} \text{ implies } x \in (\exists r.C)^{\mathcal{I}} \text{ for every } \exists r.C \in \Sigma \}.$

• Given an $\mathcal{SO}\text{-model}\ \mathcal{I}$ and a signature $\Sigma,$ let

$$\tau^{\Sigma}(\mathbf{x}) \stackrel{\text{\tiny def}}{=} \{ \mathbf{C} \in \Sigma \mid \mathbf{x} \in \mathbf{C}^{\mathcal{I}} \}.$$

 $\bullet\,$ The equivalence \sim defined by

$$x \sim y \iff \tau^{\Sigma}(x) = \tau^{\Sigma}(y)$$

for every $x, y \in \Delta^{\mathcal{I}}$.

• An interpretation of every role r in the \sim -filtration $\overline{\mathcal{I}}$ of \mathcal{I} is defined by

$$r^{\overline{\mathcal{I}}} \stackrel{\text{def}}{=} \{ ([x], [y]) \mid y \in C^{\mathcal{I}} \text{ implies } x \in (\exists r.C)^{\mathcal{I}} \text{ for every } \exists r.C \in \Sigma \}.$$

ALBO Filtration

• Given an \mathcal{ALBO} -model \mathcal{I} and a signature Σ , let

$$\tau^{\Sigma}(\mathbf{x},\mathbf{y}) \ \stackrel{\mathrm{def}}{=} \ \{\mathbf{R} \in \Sigma \mid (\mathbf{x},\mathbf{y}) \in \mathbf{R}^{\mathcal{T}}\}.$$

• Standard filtration:

• The equivalence \sim defined by

$$x \simeq y \iff \tau^{\Sigma}(x) = \tau^{\Sigma}(y)$$

for every $x, y \in \Delta^{\mathcal{I}}$.

- $R^{\mathcal{I}} \stackrel{\text{def}}{=} \{ ([x], [y]) \mid \exists x' \simeq x \exists y' \simeq y (x', y') \in R^{\mathcal{I}} \}.$
- It is finite but, in general, does not produce an \mathcal{ALBC} -model: the property $(\neg R)^{\perp} \subseteq (\Delta^{\perp} \times \Delta^{\perp}) \setminus R^{\perp}$ is affected.

Nice filtration:

• The equivalence ~ satisfies

$$\begin{split} x \sim y \implies \tau^{\Sigma}(x) = \tau^{\Sigma}(y), \\ x \sim x' \wedge y \sim y' \implies \tau^{\Sigma}(x,x') = \tau^{\Sigma}(y,y') \\ \text{for every } x, y, x', y' \in \Delta^{T}. \end{split}$$

• Given an \mathcal{ALBO} -model \mathcal{I} and a signature Σ , let

$$au^{\Sigma}(x,y) \stackrel{\text{def}}{=} \{ R \in \Sigma \mid (x,y) \in R^{\mathcal{I}} \}.$$

• Standard filtration:

 $\bullet~$ The equivalence \sim defined by

$$x\simeq y \iff \tau^\Sigma(x)=\tau^\Sigma(y)$$

for every $x, y \in \Delta^{\mathcal{I}}$.

- $R^{\overline{\mathcal{I}}} \stackrel{\text{def}}{=} \{(\lfloor x \rfloor, \lfloor y \rfloor) \mid \exists x' \simeq x \exists y' \simeq y \ (x', y') \in R^{\mathcal{I}}\}.$
- It is finite but, in general, does not produce an \mathcal{ALBO} -model the property $(\neg R)^{\mathcal{I}} \subseteq (\Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}) \setminus R^{\mathcal{I}}$ is affected.

Nice filtration:

The equivalence ~ satisfies

$$\begin{aligned} x &\sim y \Longrightarrow \tau^{\Sigma}(x) = \tau^{\Sigma}(y), \\ x &\sim x' \land y \sim y' \Longrightarrow \tau^{\Sigma}(x, x') = \tau^{\Sigma}(y, y') \end{aligned}$$

for every $x, y, x', y' \in \Delta^{\mathcal{I}}$.

• Given an \mathcal{ALBO} -model \mathcal{I} and a signature Σ , let

$$au^{\Sigma}(x,y) \stackrel{\text{def}}{=} \{ R \in \Sigma \mid (x,y) \in R^{\mathcal{I}} \}.$$

• Standard filtration:

• The equivalence \sim defined by

$$x\simeq y \ \Longleftrightarrow \ \tau^{\Sigma}(x)=\tau^{\Sigma}(y)$$

for every $x, y \in \Delta^{\mathcal{I}}$.

- $\bullet \ R^{\overline{\mathcal{I}}} \stackrel{\text{def}}{=} \{(\lfloor x \rfloor, \lfloor y \rfloor) \mid \exists x' \simeq x \exists y' \simeq y \ (x', y') \in R^{\mathcal{I}} \}.$
- It is finite but, in general, does not produce an \mathcal{ALBO} -model: the property $(\neg R)^{\mathcal{I}} \subseteq (\Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}) \setminus R^{\mathcal{I}}$ is affected.

Nice filtration:

• The equivalence \sim satisfies

$$\begin{split} & x \sim y \Longrightarrow \tau^{\Sigma}(x) = \tau^{\Sigma}(y), \\ & x \sim x' \land y \sim y' \Longrightarrow \tau^{\Sigma}(x,x') = \tau^{\Sigma}(y,y') \end{split}$$

for every $x, y, x', y' \in \Delta^{\mathcal{I}}$.

It always produces an ACSO-model but the problem is to make it finite

• Given an $\mathcal{ALBO}\text{-model }\mathcal{I}$ and a signature $\Sigma,$ let

$$\tau^{\Sigma}(\mathbf{x}, \mathbf{y}) \stackrel{\text{def}}{=} \{ \mathbf{R} \in \Sigma \mid (\mathbf{x}, \mathbf{y}) \in \mathbf{R}^{\mathcal{I}} \}.$$

Standard filtration:

 $\bullet\,$ The equivalence \sim defined by

$$x\simeq y \iff \tau^{\Sigma}(x)=\tau^{\Sigma}(y)$$

for every $x, y \in \Delta^{\mathcal{I}}$.

- $R^{\overline{\mathcal{I}}} \stackrel{\text{def}}{=} \{ (\lfloor x \rfloor, \lfloor y \rfloor) \mid \exists x' \simeq x \exists y' \simeq y \ (x', y') \in R^{\mathcal{I}} \}.$
- It is finite but, in general, does not produce an \mathcal{ALBO} -model: the property $(\neg R)^{\mathcal{I}} \subseteq (\Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}) \setminus R^{\mathcal{I}}$ is affected.

• Nice filtration:

• The equivalence \sim satisfies

$$\begin{aligned} x \sim y \Longrightarrow \tau^{\Sigma}(x) = \tau^{\Sigma}(y), \\ x \sim x' \wedge y \sim y' \Longrightarrow \tau^{\Sigma}(x, x') = \tau^{\Sigma}(y, y') \end{aligned}$$

for every $x, y, x', y' \in \Delta^{\mathcal{I}}$.

• It always produces an ALBO-model but the problem is to make it finite

• Given an \mathcal{ALBO} -model \mathcal{I} and a signature Σ , let

$$au^{\Sigma}(x,y) \stackrel{\text{def}}{=} \{ R \in \Sigma \mid (x,y) \in R^{\mathcal{I}} \}.$$

• Standard filtration:

• The equivalence \sim defined by

$$x\simeq y \iff \tau^\Sigma(x)=\tau^\Sigma(y)$$

for every $x, y \in \Delta^{\mathcal{I}}$.

•
$$R^{\overline{\mathcal{I}}} \stackrel{\text{def}}{=} \{(\lfloor x \rfloor, \lfloor y \rfloor) \mid \exists x' \simeq x \exists y' \simeq y \, (x', y') \in R^{\mathcal{I}}\}.$$

• It is finite but, in general, does not produce an \mathcal{ALBO} -model: the property $(\neg R)^{\mathcal{I}} \subseteq (\Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}) \setminus R^{\mathcal{I}}$ is affected.

Nice filtration:

• The equivalence \sim satisfies

$$x \sim y \Longrightarrow \tau^{\Sigma}(x) = \tau^{\Sigma}(y),$$

 $x \sim x' \wedge y \sim y' \Longrightarrow \tau^{\Sigma}(x,x') = \tau^{\Sigma}(y,y')$

for every $x, y, x', y' \in \Delta^{\mathcal{I}}$.

• It always produces an ALBO-model but the problem is to make it finite.

• Given an \mathcal{ALBO} -model \mathcal{I} and a signature Σ , let

$$au^{\Sigma}(x,y) \stackrel{\text{def}}{=} \{ R \in \Sigma \mid (x,y) \in R^{\mathcal{I}} \}.$$

• Standard filtration:

• The equivalence \sim defined by

$$x\simeq y \iff \tau^\Sigma(x)=\tau^\Sigma(y)$$

for every $x, y \in \Delta^{\mathcal{I}}$.

•
$$R^{\overline{\mathcal{I}}} \stackrel{\text{def}}{=} \{(\lfloor x \rfloor, \lfloor y \rfloor) \mid \exists x' \simeq x \exists y' \simeq y \, (x', y') \in R^{\mathcal{I}}\}.$$

• It is finite but, in general, does not produce an \mathcal{ALBO} -model: the property $(\neg R)^{\mathcal{I}} \subseteq (\Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}) \setminus R^{\mathcal{I}}$ is affected.

Nice filtration:

• The equivalence \sim satisfies

$$x \sim y \Longrightarrow \tau^{\Sigma}(x) = \tau^{\Sigma}(y),$$

 $x \sim x' \wedge y \sim y' \Longrightarrow \tau^{\Sigma}(x, x') = \tau^{\Sigma}(y, y')$

for every $x, y, x', y' \in \Delta^{\mathcal{I}}$.

• It always produces an ALBO-model but the problem is to make it finite.

Example of a Nice ALBO Filtration

$$x \cong y \iff \tau^{\Sigma}(x) = \tau^{\Sigma}(y) \text{ and}$$

 $\tau^{\Sigma}(x,z) = \tau^{\Sigma}(y,z) \text{ and } \tau^{\Sigma}(z,x) = \tau^{\Sigma}(z,y) \text{ for all } z \in \Delta^{\mathcal{I}}.$

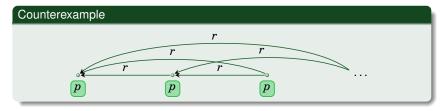
It is not finite!

Example of a Nice ALBO Filtration

$$x \cong y \iff \tau^{\Sigma}(x) = \tau^{\Sigma}(y) \text{ and}$$

 $\tau^{\Sigma}(x,z) = \tau^{\Sigma}(y,z) \text{ and } \tau^{\Sigma}(z,x) = \tau^{\Sigma}(z,y) \text{ for all } z \in \Delta^{\mathbb{Z}}.$

It is not finite!



- Introduced by Gargov, Passy, and Tinchev for BML.
- Works for *BML* and *ALB* but, in general, fails if individuals are in the language.
- Quasi-model: \mathcal{I} where (possibly) $(\neg R)^{\mathcal{I}} \not\subseteq (\Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}) \setminus R^{\mathcal{I}}$.
- If \mathcal{ALB} -quasi-model $\mathcal I$ is finite and Σ is a finite signature then there are
 - $\bullet~$ a finite $\mathcal{ALB}\text{-model}~\mathcal{I}'$ and
 - a p-morphism f (w.r.t. Σ) from \mathcal{I}' onto \mathcal{I} .

Theorem

If a ACB-concept C is satisfiable in a quasi-model then it is satisfiable in a finite model.

Corollary

ALB is complete with respect to the class of all ALB-quasi-models.

• ALB admits finite filtration over the class of all ALB-quasi-models.

- Introduced by Gargov, Passy, and Tinchev for BML.
- Works for BML and \mathcal{ALB} but, in general, fails if individuals are in the language.
- *Quasi-model*: \mathcal{I} where (possibly) $(\neg R)^{\mathcal{I}} \not\subseteq (\Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}) \setminus R^{\mathcal{I}}$.
- If $\mathcal{ALB}\mbox{-}quasi-model \ensuremath{\mathcal{I}}$ is finite and Σ is a finite signature then there are
 - $\bullet~$ a finite $\mathcal{ALB}\text{-model}~\mathcal{I}'$ and
 - a p-morphism f (w.r.t. Σ) from \mathcal{I}' onto \mathcal{I} .

Theorem

If a ALB-concept C is satisfiable in a quasi-model then it is satisfiable in a finite model.

Corollary

ALB is complete with respect to the class of all ALB-quasi-models.

• ALB admits finite filtration over the class of all ALB-quasi-models.

- Introduced by Gargov, Passy, and Tinchev for BML.
- Works for *BML* and *ALB* but, in general, fails if individuals are in the language.
- *Quasi-model*: \mathcal{I} where (possibly) $(\neg R)^{\mathcal{I}} \not\subseteq (\Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}) \setminus R^{\mathcal{I}}$.
- If $\mathcal{ALB}\text{-quasi-model }\mathcal{I}$ is finite and Σ is a finite signature then there are
 - $\bullet~$ a finite $\mathcal{ALB}\text{-model}~\mathcal{I}'$ and
 - a p-morphism f (w.r.t. Σ) from \mathcal{I}' onto \mathcal{I} .

Theorem

If a \mathcal{ALB} -concept C is satisfiable in a quasi-model then it is satisfiable in a finite model.

Corollary

- *ALB* is complete with respect to the class of all *ALB*-quasi-models.
- *ALB* admits finite filtration over the class of all *ALB*-quasi-models.

MANCHESTER

- Introduced by Gargov, Passy, and Tinchev for BML.
- Works for *BML* and *ALB* but, in general, fails if individuals are in the language.
- *Quasi-model*: \mathcal{I} where (possibly) $(\neg R)^{\mathcal{I}} \not\subseteq (\Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}) \setminus R^{\mathcal{I}}$.
- If $\mathcal{ALB}\text{-quasi-model}\ \mathcal I$ is finite and Σ is a finite signature then there are
 - a finite \mathcal{ALB} -model \mathcal{I}' and
 - a p-morphism f (w.r.t. Σ) from \mathcal{I}' onto \mathcal{I} .

Theorem

If a \mathcal{ALB} -concept C is satisfiable in a quasi-model then it is satisfiable in a finite model.

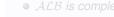
Corollary

- *ALB* is complete with respect to the class of all *ALB*-quasi-models.
- ALB admits finite filtration over the class of all ALB-quasi-models.

- Introduced by Gargov, Passy, and Tinchev for BML.
- Works for BML and ALB but, in general, fails if individuals are in the language.
- Quasi-model: \mathcal{I} where (possibly) $(\neg R)^{\mathcal{I}} \not\subseteq (\Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}) \setminus R^{\mathcal{I}}$.
- If \mathcal{ALB} -quasi-model \mathcal{I} is finite and Σ is a finite signature then there are
 - a finite $A \cap B$ -model T' and
 - a p-morphism f (w.r.t. Σ) from \mathcal{I}' onto \mathcal{I} .

Theorem

If a ALB-concept C is satisfiable in a quasi-model then it is satisfiable in a finite model.



- ALB is complete with respect to the class of all ALB-quasi-models.
- ALB admits finite filtration over the class of all ALB-guasi-models.

- Introduced by Gargov, Passy, and Tinchev for BML.
- Works for *BML* and *ALB* but, in general, fails if individuals are in the language.
- *Quasi-model*: \mathcal{I} where (possibly) $(\neg R)^{\mathcal{I}} \not\subseteq (\Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}) \setminus R^{\mathcal{I}}$.
- If \mathcal{ALB} -quasi-model \mathcal{I} is finite and Σ is a finite signature then there are
 - a finite $\mathcal{ALB}\text{-model }\mathcal{I}'$ and
 - a p-morphism f (w.r.t. Σ) from \mathcal{I}' onto \mathcal{I} .

Theorem

If a \mathcal{ALB} -concept C is satisfiable in a quasi-model then it is satisfiable in a finite model.

Corollary

- \mathcal{ALB} is complete with respect to the class of all \mathcal{ALB} -quasi-models.
- *ALB* admits finite filtration over the class of all *ALB*-quasi-models.

- Take an ALBO-concept C and an ALBO-model I satisfying C.
- Replace all singleton subconcepts $\{\ell\}$ in *C* by fresh propositional symbols p_{ℓ} . Let *C'* be the result of the replacement and $\Sigma \stackrel{\text{def}}{=} \text{sub}(C')$.
- Make an \mathcal{ALB} -model \mathcal{I}' from \mathcal{I} by making interpretation $p_{\ell}^{\mathcal{I}'} \stackrel{\text{def}}{=} \{\ell\}^{\mathcal{I}}$. Clearly, \mathcal{I}' satisfies C'.
- Obtain a finite \mathcal{ALB} -quasi-model $\underline{\mathcal{I}}$ satisfying C using the standard filtration on \mathcal{I}' .
- Obtain (by the process of conflict elimination) an ACB-model <u>I</u>' and a p-morphism f from <u>I</u>' onto <u>I</u>.
- Having $\underline{\mathcal{I}}'$ in hand, define a nice filtration on \mathcal{I}' :

$$x \sim y \iff x \simeq y$$
 and for all $u, z \in \Delta^{\underline{T}'}$ such that $f(u) = \lfloor x \rfloor = \lfloor y \rfloor$,
 $\tau^{\Sigma}(u, z) = \tau^{\Sigma}(u, z)$ and $\tau^{\Sigma}(z, u) = \tau^{\Sigma}(z, u)$.

Replace p_ℓ back for {ℓ} in C', Σ, and T' and apply the defined nice filtration to the original I.

- ALBO is complete with respect to the class of all ALBO-quasi-models.
- ALBO admits finite (standard) filtration over the class of all ALBO-quasi-models.
- ALBO admits finite (nice) filtration (over the class of all ALBO-models)

- Take an \mathcal{ALBO} -concept C and an \mathcal{ALBO} -model \mathcal{I} satisfying C.
- Replace all singleton subconcepts {ℓ} in C by fresh propositional symbols p_ℓ.
 Let C' be the result of the replacement and Σ ^{def} = sub(C').
- Make an \mathcal{ALB} -model \mathcal{I}' from \mathcal{I} by making interpretation $p_{\ell}^{\mathcal{I}'} \stackrel{\text{def}}{=} \{\ell\}^{\mathcal{I}}$. Clearly, \mathcal{I}' satisfies C'.
- Obtain a finite \mathcal{ALB} -quasi-model $\underline{\mathcal{I}}$ satisfying C using the standard filtration on \mathcal{I}' .
- Obtain (by the process of conflict elimination) an ALB-model <u>I</u>' and a p-morphism f from <u>I</u>' onto <u>I</u>.
- Having $\underline{\mathcal{I}}'$ in hand, define a nice filtration on \mathcal{I}' :

$$x \sim y \iff x \simeq y$$
 and for all $u, z \in \Delta^{\underline{T}'}$ such that $f(u) = \lfloor x \rfloor = \lfloor y \rfloor$,
 $\tau^{\underline{\Sigma}}(u, z) = \tau^{\underline{\Sigma}}(u, z)$ and $\tau^{\underline{\Sigma}}(z, u) = \tau^{\underline{\Sigma}}(z, u)$.

Replace p_ℓ back for {ℓ} in C', Σ, and T' and apply the defined nice filtration to the original I.

- ALBO is complete with respect to the class of all ALBO-quasi-models.
- ALBO admits finite (standard) filtration over the class of all ALBO-quasi-models
- ALBO admits finite (nice) filtration (over the class of all ALBO-models)

- Take an ALBO-concept C and an ALBO-model I satisfying C.
- Replace all singleton subconcepts {ℓ} in C by fresh propositional symbols p_ℓ.
 Let C' be the result of the replacement and Σ ^{def} = sub(C').
- Make an \mathcal{ALB} -model \mathcal{I}' from \mathcal{I} by making interpretation $p_{\ell}^{\mathcal{I}'} \stackrel{\text{def}}{=} \{\ell\}^{\mathcal{I}}$. Clearly, \mathcal{I}' satisfies C'.
- Obtain a finite \mathcal{ALB} -quasi-model $\underline{\mathcal{I}}$ satisfying C using the standard filtration on \mathcal{I}' .
- Obtain (by the process of conflict elimination) an ALB-model <u>I</u> and a p-morphism f from <u>I</u> onto <u>I</u>.
- Having $\underline{\mathcal{I}}'$ in hand, define a nice filtration on \mathcal{I}' :

$$\begin{array}{l} x \sim y & \stackrel{\mathrm{def}}{\longleftrightarrow} x \simeq y \text{ and for all } u, z \in \Delta^{\underline{\mathcal{I}}'} \text{ such that } f(u) = \lfloor x \rfloor = \lfloor y \rfloor, \\ & \tau^{\Sigma}(u,z) = \tau^{\Sigma}(u,z) \text{ and } \tau^{\Sigma}(z,u) = \tau^{\Sigma}(z,u). \end{array}$$

Replace p_ℓ back for {ℓ} in C', Σ, and T' and apply the defined nice filtration to the original I.

- ALBO is complete with respect to the class of all ALBO-quasi-models.
- ALBO admits finite (standard) filtration over the class of all ALBO-quasi-models.
- ALBO admits finite (nice) filtration (over the class of all ALBO-models)

- Take an ALBO-concept C and an ALBO-model I satisfying C.
- Replace all singleton subconcepts {ℓ} in C by fresh propositional symbols p_ℓ.
 Let C' be the result of the replacement and Σ ^{def} = sub(C').
- Make an \mathcal{ALB} -model \mathcal{I}' from \mathcal{I} by making interpretation $p_{\ell}^{\mathcal{I}'} \stackrel{\text{def}}{=} \{\ell\}^{\mathcal{I}}$. Clearly, \mathcal{I}' satisfies C'.
- Obtain a finite ALB-quasi-model $\underline{\mathcal{I}}$ satisfying C using the standard filtration on \mathcal{I}' .
- Obtain (by the process of conflict elimination) an ALB-model <u>I</u> and a p-morphism f from <u>I</u> onto <u>I</u>.
- Having $\underline{\mathcal{I}}'$ in hand, define a nice filtration on \mathcal{I}' :

$$\begin{array}{l} x \sim y & \stackrel{\text{def}}{\longleftrightarrow} x \simeq y \text{ and for all } u, z \in \Delta^{\underline{\mathcal{I}}'} \text{ such that } f(u) = \lfloor x \rfloor = \lfloor y \rfloor, \\ & \tau^{\Sigma}(u,z) = \tau^{\Sigma}(u,z) \text{ and } \tau^{\Sigma}(z,u) = \tau^{\Sigma}(z,u). \end{array}$$

Replace p_ℓ back for {ℓ} in C', Σ, and T' and apply the defined nice filtration to the original I.

- ALBO is complete with respect to the class of all ALBO-quasi-models.
- ALBO admits finite (standard) filtration over the class of all ALBO-quasi-models
- ALBO admits finite (nice) filtration (over the class of all ALBO-models)

- Take an ALBO-concept C and an ALBO-model I satisfying C.
- Replace all singleton subconcepts {ℓ} in C by fresh propositional symbols p_ℓ.
 Let C' be the result of the replacement and Σ = sub(C').
- Make an \mathcal{ALB} -model \mathcal{I}' from \mathcal{I} by making interpretation $p_{\ell}^{\mathcal{I}'} \stackrel{\text{def}}{=} \{\ell\}^{\mathcal{I}}$. Clearly, \mathcal{I}' satisfies C'.
- Obtain a finite ALB-quasi-model $\underline{\mathcal{I}}$ satisfying C using the standard filtration on \mathcal{I}' .
- Obtain (by the process of conflict elimination) an ALB-model <u>I</u> and a p-morphism f from <u>I</u> onto <u>I</u>.
- Having $\underline{\mathcal{I}}'$ in hand, define a nice filtration on \mathcal{I}' :

$$\begin{array}{l} x \sim y & \stackrel{\mathrm{def}}{\longleftrightarrow} x \simeq y \text{ and for all } u, z \in \Delta^{\underline{\mathcal{I}}'} \text{ such that } f(u) = \lfloor x \rfloor = \lfloor y \rfloor, \\ & \tau^{\Sigma}(u,z) = \tau^{\Sigma}(u,z) \text{ and } \tau^{\Sigma}(z,u) = \tau^{\Sigma}(z,u). \end{array}$$

• Replace p_{ℓ} back for $\{\ell\}$ in C', Σ , and \mathcal{I}' and apply the defined nice filtration to the original \mathcal{I} .

- MANCHESTER 1824 The University of Manchester
- ACBO is complete with respect to the class of all ACBO-quasi-models.
- ALBO admits finite (standard) filtration over the class of all ALBO-quasi-models
- ALBO admits finite (nice) filtration (over the class of all ALBO-models)

- Take an ALBO-concept C and an ALBO-model I satisfying C.
- Replace all singleton subconcepts {ℓ} in C by fresh propositional symbols p_ℓ.
 Let C' be the result of the replacement and Σ = sub(C').
- Make an \mathcal{ALB} -model \mathcal{I}' from \mathcal{I} by making interpretation $p_{\ell}^{\mathcal{I}'} \stackrel{\text{def}}{=} \{\ell\}^{\mathcal{I}}$. Clearly, \mathcal{I}' satisfies C'.
- Obtain a finite ALB-quasi-model $\underline{\mathcal{I}}$ satisfying C using the standard filtration on \mathcal{I}' .
- Obtain (by the process of conflict elimination) an ALB-model <u>I</u> and a p-morphism f from <u>I</u> onto <u>I</u>.
- Having $\underline{\mathcal{I}}'$ in hand, define a nice filtration on \mathcal{I}' :

$$\begin{array}{c} x \sim y & \stackrel{ ext{def}}{\longleftrightarrow} x \simeq y ext{ and for all } u, z \in \Delta^{\underline{\mathcal{I}}'} ext{ such that } f(u) = \lfloor x
floor = \lfloor y
floor, \\ & \tau^{\Sigma}(u,z) = \tau^{\Sigma}(u,z) ext{ and } \tau^{\Sigma}(z,u) = \tau^{\Sigma}(z,u). \end{array}$$

• Replace p_{ℓ} back for $\{\ell\}$ in C', Σ , and \mathcal{I}' and apply the defined nice filtration to the original \mathcal{I} .

- *ALBO* is complete with respect to the class of all *ALBO*-quasi-models.
- ALBO admits finite (standard) filtration over the class of all ALBO-quasi-models.
- ALBO admits finite (nice) filtration (over the class of all ALBO-models).

- Take an ALBO-concept C and an ALBO-model I satisfying C.
- Replace all singleton subconcepts {ℓ} in C by fresh propositional symbols p_ℓ.
 Let C' be the result of the replacement and Σ = sub(C').
- Make an \mathcal{ALB} -model \mathcal{I}' from \mathcal{I} by making interpretation $p_{\ell}^{\mathcal{I}'} \stackrel{\text{def}}{=} \{\ell\}^{\mathcal{I}}$. Clearly, \mathcal{I}' satisfies C'.
- Obtain a finite ALB-quasi-model $\underline{\mathcal{I}}$ satisfying C using the standard filtration on \mathcal{I}' .
- Obtain (by the process of conflict elimination) an ALB-model <u>I</u> and a p-morphism f from <u>I</u> onto <u>I</u>.
- Having $\underline{\mathcal{I}}'$ in hand, define a nice filtration on \mathcal{I}' :

$$\begin{array}{l} x \sim y & \stackrel{\text{def}}{\longleftrightarrow} x \simeq y \text{ and for all } u, z \in \Delta^{\underline{\mathcal{I}}'} \text{ such that } f(u) = \lfloor x \rfloor = \lfloor y \rfloor, \\ & \tau^{\Sigma}(u,z) = \tau^{\Sigma}(u,z) \text{ and } \tau^{\Sigma}(z,u) = \tau^{\Sigma}(z,u). \end{array}$$

This filtration is finite because $\underline{\mathcal{I}}'$ is finite!

• Replace p_{ℓ} back for $\{\ell\}$ in C', Σ , and \mathcal{I}' and apply the defined nice filtration to the original \mathcal{I} .

- *ALBO* is complete with respect to the class of all *ALBO*-quasi-models.
- ALBO admits finite (standard) filtration over the class of all ALBO-quasi-models.
- ALBO admits finite (nice) filtration (over the class of all ALBO-models).

- Take an ALBO-concept C and an ALBO-model I satisfying C.
- Replace all singleton subconcepts {ℓ} in C by fresh propositional symbols p_ℓ.
 Let C' be the result of the replacement and Σ = sub(C').
- Make an \mathcal{ALB} -model \mathcal{I}' from \mathcal{I} by making interpretation $p_{\ell}^{\mathcal{I}'} \stackrel{\text{def}}{=} \{\ell\}^{\mathcal{I}}$. Clearly, \mathcal{I}' satisfies C'.
- Obtain a finite ALB-quasi-model $\underline{\mathcal{I}}$ satisfying C using the standard filtration on \mathcal{I}' .
- Obtain (by the process of conflict elimination) an ALB-model <u>I</u> and a p-morphism f from <u>I</u> onto <u>I</u>.
- Having $\underline{\mathcal{I}}'$ in hand, define a nice filtration on \mathcal{I}' :

$$\begin{array}{l} x \sim y & \stackrel{\text{def}}{\longleftrightarrow} x \simeq y \text{ and for all } u, z \in \Delta^{\underline{T}'} \text{ such that } f(u) = \lfloor x \rfloor = \lfloor y \rfloor, \\ & \tau^{\Sigma}(u,z) = \tau^{\Sigma}(u,z) \text{ and } \tau^{\Sigma}(z,u) = \tau^{\Sigma}(z,u). \end{array}$$

This filtration is finite because $\underline{\mathcal{I}}'$ is finite!

• Replace p_{ℓ} back for $\{\ell\}$ in C', Σ , and \mathcal{I}' and apply the defined nice filtration to the original \mathcal{I} .

- MANCHESTER 1824
- ALBO is complete with respect to the class of all ALBO-quasi-models.
- ALBO admits finite (standard) filtration over the class of all ALBO-quasi-models.
- ALBO admits finite (nice) filtration (over the class of all ALBO-models).

- Take an ALBO-concept C and an ALBO-model I satisfying C.
- Replace all singleton subconcepts {ℓ} in C by fresh propositional symbols p_ℓ.
 Let C' be the result of the replacement and Σ = sub(C').
- Make an \mathcal{ALB} -model \mathcal{I}' from \mathcal{I} by making interpretation $p_{\ell}^{\mathcal{I}'} \stackrel{\text{def}}{=} \{\ell\}^{\mathcal{I}}$. Clearly, \mathcal{I}' satisfies C'.
- Obtain a finite ALB-quasi-model $\underline{\mathcal{I}}$ satisfying C using the standard filtration on \mathcal{I}' .
- Obtain (by the process of conflict elimination) an ALB-model <u>I</u> and a p-morphism f from <u>I</u> onto <u>I</u>.
- Having $\underline{\mathcal{I}}'$ in hand, define a nice filtration on \mathcal{I}' :

$$\begin{array}{l} x \sim y & \stackrel{\text{def}}{\longleftrightarrow} x \simeq y \text{ and for all } u, z \in \Delta^{\underline{T}'} \text{ such that } f(u) = \lfloor x \rfloor = \lfloor y \rfloor, \\ & \tau^{\Sigma}(u,z) = \tau^{\Sigma}(u,z) \text{ and } \tau^{\Sigma}(z,u) = \tau^{\Sigma}(z,u). \end{array}$$

This filtration is finite because $\underline{\mathcal{I}}'$ is finite!

• Replace p_{ℓ} back for $\{\ell\}$ in C', Σ , and \mathcal{I}' and apply the defined nice filtration to the original \mathcal{I} .

- ALBO is complete with respect to the class of all ALBO-quasi-models.
- ALBO admits finite (standard) filtration over the class of all ALBO-quasi-models.
- ALBO admits finite (nice) filtration (over the class of all ALBO-models).

Tableau Calculus

- Tableau rule: $\frac{\ell_1:C_1, \ \ldots, \ \ell_n:C_n}{\ell_1^1:D_1^1, \ \ldots, \ \ell_{k_1}^1:D_{k_1}^1 \ | \ \cdots \ | \ \ell_1^m:D_1^m, \ \ldots, \ \ell_{k_m}^m:D_{k_m}^m}.$
- A *clash* rule is a tableau rule where m = 0.
- Tableau calculus T is a set of tableau rules.
- Given a concept C, tableau T(C) is a (completely) expanded tree of sets of concepts such that

- A branch of T(C) is closed if a clash rule is applied in it. A branch is open if it is not closed.
- T(C) is closed if all its branches are closed, and it is open if there is an open branch in it.
- T is sound for a logic L if T(C) is open for every L-satisfiable concept C.
- T is complete for L if C has an L-model whenever T(C) is open.
- T is terminating for L if every open T-tableau contains a finite open branch.

- Tableau rule: $\frac{\ell_1:C_1,\ \ldots,\ \ell_n:C_n}{\ell_1^1:D_1^1,\ \ldots,\ \ell_{k_1}^1:D_{k_1}^1\mid \cdots\mid\ \ell_1^m:D_1^m,\ \ldots,\ \ell_{k_m}^m:D_{k_m}^m}.$
- A *clash* rule is a tableau rule where m = 0.
- Tableau calculus T is a set of tableau rules.
- Given a concept C, tableau T(C) is a (completely) expanded tree of sets of concepts such that
 - the root node is { & : C } for some fresh individual &;
 - every child node is obtained by application of some 2-rule to concepte from the parent node.
- A branch of T(C) is closed if a clash rule is applied in it. A branch is open if it is not closed.
- T(C) is closed if all its branches are closed, and it is open if there is an open branch in it.
- T is sound for a logic L if T(C) is open for every L-satisfiable concept C.
- T is complete for L if C has an L-model whenever T(C) is open.
- T is terminating for L if every open T-tableau contains a finite open branch.

- Tableau rule: $\frac{\ell_1:C_1,\ \ldots,\ \ell_n:C_n}{\ell_1^1:D_1^1,\ \ldots,\ \ell_{k_1}^1:D_{k_1}^1\mid \cdots\mid\ \ell_1^m:D_1^m,\ \ldots,\ \ell_{k_m}^m:D_{k_m}^m}.$
- A *clash* rule is a tableau rule where m = 0.
- Tableau calculus T is a set of tableau rules.
- Given a concept C, tableau T(C) is a (completely) expanded tree of sets of concepts such that
 - the root node is $\{\ell : C\}$ for some fresh individual ℓ ;
 - eveny child node is obtained by application of some T-rule to concepts from the parent node.
- A branch of T(C) is closed if a clash rule is applied in it. A branch is open if it is not closed.
- T(C) is closed if all its branches are closed, and it is open if there is an open branch in it.
- T is sound for a logic L if T(C) is open for every L-satisfiable concept C.
- T is complete for L if C has an L-model whenever T(C) is open.
- T is terminating for L if every open T-tableau contains a finite open branch.

- Tableau rule: $\frac{\ell_1:C_1,\ \ldots,\ \ell_n:C_n}{\ell_1^1:D_1^1,\ \ldots,\ \ell_{k_1}^1:D_{k_1}^1\mid \cdots \mid \ell_1^m:D_1^m,\ \ldots,\ \ell_{k_m}^m:D_{k_m}^m}.$
- A *clash* rule is a tableau rule where m = 0.
- Tableau calculus *T* is a set of tableau rules.
- Given a concept C, tableau T(C) is a (completely) expanded tree of sets of concepts such that
 - the root node is {ℓ : C} for some fresh individual ℓ;
 - every child node is obtained by application of some *T*-rule to concepts from the parent node.
- A branch of *T*(*C*) is *closed* if a clash rule is applied in it. A branch is *open* if it is not closed.
- T(C) is closed if all its branches are closed, and it is open if there is an open branch in it.
- T is sound for a logic L if T(C) is open for every L-satisfiable concept C.
- T is complete for L if C has an L-model whenever T(C) is open.
- T is terminating for L if every open T-tableau contains a finite open branch.

- Tableau rule: $\frac{\ell_1:C_1,\ \ldots,\ \ell_n:C_n}{\ell_1^1:D_1^1,\ \ldots,\ \ell_{k_1}^1:D_{k_1}^1\mid \cdots \mid \ell_1^m:D_1^m,\ \ldots,\ \ell_{k_m}^m:D_{k_m}^m}.$
- A *clash* rule is a tableau rule where m = 0.
- Tableau calculus *T* is a set of tableau rules.
- Given a concept C, tableau T(C) is a (completely) expanded tree of sets of concepts such that
 - the root node is {ℓ : C} for some fresh individual ℓ;
 - every child node is obtained by application of some *T*-rule to concepts from the parent node.
- A branch of *T*(*C*) is *closed* if a clash rule is applied in it. A branch is *open* if it is not closed.
- T(C) is closed if all its branches are closed, and it is open if there is an open branch in it.
- T is sound for a logic L if T(C) is open for every L-satisfiable concept C.
- T is complete for L if C has an L-model whenever T(C) is open.
- T is terminating for L if every open T-tableau contains a finite open branch.

- Tableau rule: $\frac{\ell_1:C_1,\ \ldots,\ \ell_n:C_n}{\ell_1^1:D_1^1,\ \ldots,\ \ell_{k_1}^1:D_{k_1}^1\mid \cdots \mid \ell_1^m:D_1^m,\ \ldots,\ \ell_{k_m}^m:D_{k_m}^m}.$
- A *clash* rule is a tableau rule where m = 0.
- Tableau calculus T is a set of tableau rules.
- Given a concept C, tableau T(C) is a (completely) expanded tree of sets of concepts such that
 - the root node is {ℓ : C} for some fresh individual ℓ;
 - every child node is obtained by application of some *T*-rule to concepts from the parent node.
- A branch of *T*(*C*) is *closed* if a clash rule is applied in it. A branch is *open* if it is not closed.
- T(C) is closed if all its branches are closed, and it is open if there is an open branch in it.
- T is sound for a logic L if T(C) is open for every L-satisfiable concept C.
- T is complete for L if C has an L-model whenever T(C) is open.

- Tableau rule: $\frac{\ell_1:C_1,\ \ldots,\ \ell_n:C_n}{\ell_1^1:D_1^1,\ \ldots,\ \ell_{k_1}^1:D_{k_1}^1\mid \cdots \mid \ell_1^m:D_1^m,\ \ldots,\ \ell_{k_m}^m:D_{k_m}^m}.$
- A *clash* rule is a tableau rule where m = 0.
- Tableau calculus T is a set of tableau rules.
- Given a concept C, tableau T(C) is a (completely) expanded tree of sets of concepts such that
 - the root node is {ℓ : C} for some fresh individual ℓ;
 - every child node is obtained by application of some *T*-rule to concepts from the parent node.
- A branch of *T*(*C*) is *closed* if a clash rule is applied in it. A branch is *open* if it is not closed.
- T(C) is closed if all its branches are closed, and it is open if there is an open branch in it.
- T is sound for a logic L if T(C) is open for every L-satisfiable concept C.
- T is complete for L if C has an L-model whenever T(C) is open.
- T is terminating for L if every open T-tableau contains a finite open branch.

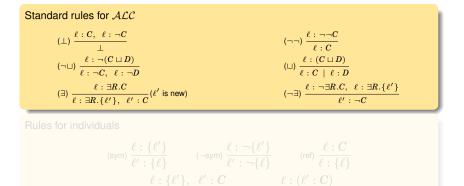
- Tableau rule: $\frac{\ell_1:C_1, \ \ldots, \ \ell_n:C_n}{\ell_1^1:D_1^1, \ \ldots, \ \ell_{k_1}^1:D_{k_1}^1 \ | \ \cdots \ | \ \ell_1^m:D_1^m, \ \ldots, \ \ell_{k_m}^m:D_{k_m}^m}.$
- A *clash* rule is a tableau rule where m = 0.
- Tableau calculus T is a set of tableau rules.
- Given a concept C, tableau T(C) is a (completely) expanded tree of sets of concepts such that
 - the root node is $\{\ell : C\}$ for some fresh individual ℓ ;
 - every child node is obtained by application of some *T*-rule to concepts from the parent node.
- A branch of *T*(*C*) is *closed* if a clash rule is applied in it. A branch is *open* if it is not closed.
- T(C) is closed if all its branches are closed, and it is open if there is an open branch in it.
- T is sound for a logic L if T(C) is open for every L-satisfiable concept C.
- T is *complete* for L if C has an L-model whenever T(C) is open.
- *T* is *terminating* for *L* if every open *T*-tableau contains a *finite* open branch.

- Tableau rule: $\frac{\ell_1:C_1, \ \ldots, \ \ell_n:C_n}{\ell_1^1:D_1^1, \ \ldots, \ \ell_{k_1}^1:D_{k_1}^1 \ | \ \cdots \ | \ \ell_1^m:D_1^m, \ \ldots, \ \ell_{k_m}^m:D_{k_m}^m}.$
- A *clash* rule is a tableau rule where m = 0.
- Tableau calculus T is a set of tableau rules.
- Given a concept C, tableau T(C) is a (completely) expanded tree of sets of concepts such that
 - the root node is $\{\ell : C\}$ for some fresh individual ℓ ;
 - every child node is obtained by application of some *T*-rule to concepts from the parent node.
- A branch of *T*(*C*) is *closed* if a clash rule is applied in it. A branch is *open* if it is not closed.
- T(C) is closed if all its branches are closed, and it is open if there is an open branch in it.
- T is sound for a logic L if T(C) is open for every L-satisfiable concept C.
- T is *complete* for L if C has an L-model whenever T(C) is open.
- *T* is *terminating* for *L* if every open *T*-tableau contains a *finite* open branch.

- Tableau rule: $\frac{\ell_1:C_1, \ \ldots, \ \ell_n:C_n}{\ell_1^1:D_1^1, \ \ldots, \ \ell_{k_1}^1:D_{k_1}^1 \ | \ \cdots \ | \ \ell_1^m:D_1^m, \ \ldots, \ \ell_{k_m}^m:D_{k_m}^m}.$
- A *clash* rule is a tableau rule where m = 0.
- Tableau calculus T is a set of tableau rules.
- Given a concept C, tableau T(C) is a (completely) expanded tree of sets of concepts such that
 - the root node is $\{\ell : C\}$ for some fresh individual ℓ ;
 - every child node is obtained by application of some *T*-rule to concepts from the parent node.
- A branch of *T*(*C*) is *closed* if a clash rule is applied in it. A branch is *open* if it is not closed.
- T(C) is closed if all its branches are closed, and it is open if there is an open branch in it.
- T is sound for a logic L if T(C) is open for every L-satisfiable concept C.
- T is *complete* for L if C has an L-model whenever T(C) is open.
- *T* is *terminating* for *L* if every open *T*-tableau contains a *finite* open branch.

- Tableau rule: $\frac{\ell_1:C_1, \ \ldots, \ \ell_n:C_n}{\ell_1^1:D_1^1, \ \ldots, \ \ell_{k_1}^1:D_{k_1}^1 \ | \ \cdots \ | \ \ell_1^m:D_1^m, \ \ldots, \ \ell_{k_m}^m:D_{k_m}^m}.$
- A *clash* rule is a tableau rule where m = 0.
- Tableau calculus T is a set of tableau rules.
- Given a concept C, tableau T(C) is a (completely) expanded tree of sets of concepts such that
 - the root node is $\{\ell : C\}$ for some fresh individual ℓ ;
 - every child node is obtained by application of some *T*-rule to concepts from the parent node.
- A branch of *T*(*C*) is *closed* if a clash rule is applied in it. A branch is *open* if it is not closed.
- *T*(*C*) is closed if all its branches are closed, and it is open if there is an open branch in it.
- T is sound for a logic L if T(C) is open for every L-satisfiable concept C.
- T is *complete* for L if C has an L-model whenever T(C) is open.
- *T* is *terminating* for *L* if every open *T*-tableau contains a *finite* open branch.

Common Tableau Rules



Common Tableau Rules

$$\begin{split} \text{Standard rules for } \mathcal{ALC} \\ (\bot) & \frac{\ell: C, \ \ell: \neg C}{\bot} & (\neg \neg) \frac{\ell: \neg \neg C}{\ell: C} \\ (\neg \sqcup) & \frac{\ell: \neg (C \sqcup D)}{\ell: \neg C, \ \ell: \neg D} & (\sqcup) \frac{\ell: (C \sqcup D)}{\ell: C \mid \ \ell: D} \\ (\exists) & \frac{\ell: \exists R. C}{\ell: \exists R. \{\ell'\}, \ \ell': C} (\ell' \text{ is new}) & (\neg \exists) \frac{\ell: \neg \exists R. C, \ \ell: \exists R. \{\ell'\}}{\ell': \neg C} \end{split}$$
 $\begin{aligned} \text{Rules for individuals} \\ & (\text{sym}) \frac{\ell: \{\ell'\}}{\ell': \{\ell\}} & (\neg \text{sym}) \frac{\ell: \neg \{\ell'\}}{\ell': \neg \{\ell\}} & (\text{ref}) \frac{\ell: C}{\ell: \{\ell\}} \end{aligned}$

$$\frac{\ell: \{\ell\}}{(\mathsf{mon})} \frac{\ell: \{\ell'\}, \quad \ell': C}{\ell: C} \qquad (\mathsf{canc}) \frac{\ell: (\ell': C)}{\ell': C}$$

$$\ell:\{\ell'\}\equiv\ell=\ell'$$

(ub)
$$\frac{\ell: \{\ell\}, \ \ell': \{\ell'\}}{\ell: \{\ell'\} \ | \ \ell: \neg\{\ell'\}}$$

Strategy conditions:

- any rule is applied at most once to the same set of premises.
- Ithe (∃) rule is not applied to role assertion expressions.
- If ℓ : {ℓ'} in current branch and ℓ < ℓ' then no applications of the (∃) rule to expressions ℓ' : ∃R.C are performed¹
- In every open branch there is some node from which point onwards, all possible applications of the (ub) rule have been performed before any application of the (3) rule.

(ub)
$$\frac{\ell : \{\ell\}, \ \ell' : \{\ell'\}}{\ell : \{\ell'\} \ | \ \ell : \neg\{\ell'\}}$$

Strategy conditions:

- any rule is applied at most once to the same set of premises.
- (a) the (\exists) rule is not applied to role assertion expressions.
- If *l* : {*l*'} in current branch and *l* < *l*' then no applications of the (∃) rule to expressions *l*' : ∃*R*.*C* are performed¹
- In every open branch there is some node from which point onwards, all possible applications of the (ub) rule have been performed before any application of the (∃) rule

< reflects the order in which the individuals are introduced

(ub)
$$\frac{\ell : \{\ell\}, \ \ell' : \{\ell'\}}{\ell : \{\ell'\} \ | \ \ell : \neg\{\ell'\}}$$

Strategy conditions:

- any rule is applied at most once to the same set of premises.
- (2) the (\exists) rule is not applied to role assertion expressions.
- If *l* : {*l*'} in current branch and *l* < *l*' then no applications of the (∃) rule to expressions *l*' : ∃*R*.*C* are performed¹
- in every open branch there is some node from which point onwards, all possible applications of the (ub) rule have been performed before any application of the (∃) rule

 1 < reflects the order in which the individuals are introduced

(ub)
$$\frac{\ell: \{\ell\}, \ \ell': \{\ell'\}}{\ell: \{\ell'\} \ | \ \ell: \neg\{\ell'\}}$$

Strategy conditions:

- any rule is applied at most once to the same set of premises.
- **2** the (\exists) rule is not applied to role assertion expressions.
- If *l* : {*l*'} in current branch and *l* < *l*' then no applications of the (∃) rule to expressions *l*' : ∃*R*.*C* are performed¹

in every open branch there is some node from which point onwards, all possible applications of the (ub) rule have been performed before any application of the (∃) rule

¹ < reflects the order in which the individuals are introduced

(ub)
$$\frac{\ell: \{\ell\}, \ \ell': \{\ell'\}}{\ell: \{\ell'\} \ | \ \ell: \neg\{\ell'\}}$$

Strategy conditions:

- any rule is applied at most once to the same set of premises.
- **2** the (\exists) rule is not applied to role assertion expressions.
- If *l* : {*l*'} in current branch and *l* < *l*' then no applications of the (∃) rule to expressions *l*' : ∃*R*.*C* are performed¹
- In every open branch there is some node from which point onwards, all possible applications of the (ub) rule have been performed before any application of the (∃) rule

¹ < reflects the order in which the individuals are introduced

Constructive Completeness and sub-Compatibility

Let \mathcal{B} be an open branch in a tableau.

•
$$\ell \sim_{\mathcal{B}} \ell' \stackrel{\text{def}}{\Longleftrightarrow} \ell : \{\ell'\} \in \mathcal{B},$$

• $\Delta^{\mathcal{I}(\mathcal{B})} \stackrel{\text{def}}{=} \{ \|\ell\| \mid \ell : \{\ell\} \in \mathcal{B} \}.$

A tableau calculus T_L is *constructively complete* for L iff for any satisfiable concept C and any open branch \mathcal{B} in $T_L(C)$ there is an L-model $\mathcal{I}(\mathcal{B}) = (\Delta^{\mathcal{I}(\mathcal{B})}, \mathcal{I}^{(\mathcal{B})})$ such that

- $\ell: D \in \mathcal{B}$ implies $\|\ell\| \in D^{\mathcal{I}(\mathcal{B})}$, and
- ℓ : $\exists R. \{\ell'\} \in \mathcal{B}$ implies $(\|\ell\|, \|\ell'\|) \in R^{\mathcal{I}(\mathcal{B})}$.

 T_L is *compatible with* sub iff for any concept C and $\ell : D$ in $T_L(C)$ either

• $D \in \operatorname{sub}(C)$, or

•
$$D = \{\ell'\}$$
, or $D = \neg\{\ell'\}$, or

• $D = \exists R.\{\ell'\}$, or $D = \neg \exists R.\{\ell'\}$, for some role $R \in \mathsf{sub}(C)$.

Constructive Completeness and sub-Compatibility

Let \mathcal{B} be an open branch in a tableau.

•
$$\ell \sim_{\mathcal{B}} \ell' \stackrel{\text{def}}{\Longleftrightarrow} \ell : \{\ell'\} \in \mathcal{B},$$

•
$$\Delta^{\mathcal{I}(\mathcal{B})} \stackrel{\text{def}}{=} \{ \|\ell\| \mid \ell : \{\ell\} \in \mathcal{B} \}.$$

A tableau calculus T_L is *constructively complete* for L iff for any satisfiable concept C and any open branch \mathcal{B} in $T_L(C)$ there is an L-model $\mathcal{I}(\mathcal{B}) = (\Delta^{\mathcal{I}(\mathcal{B})}, \mathcal{I}^{\mathcal{I}(\mathcal{B})})$ such that

- $\ell: D \in \mathcal{B}$ implies $\|\ell\| \in D^{\mathcal{I}(\mathcal{B})}$, and
- $\ell : \exists R.\{\ell'\} \in \mathcal{B} \text{ implies } (\|\ell\|, \|\ell'\|) \in R^{\mathcal{I}(\mathcal{B})}.$

 T_L is *compatible with* sub iff for any concept C and $\ell: D$ in $T_L(C)$ either

• $D \in \operatorname{sub}(C)$, or

•
$$D = \{\ell'\}$$
, or $D = \neg\{\ell'\}$, or

ullet $D = \exists R.\{\ell'\}, \text{ or } D = \neg \exists R.\{\ell'\}, \text{ for some role } R \in \mathrm{sub}(C).$

Constructive Completeness and sub-Compatibility

Let \mathcal{B} be an open branch in a tableau.

•
$$\ell \sim_{\mathcal{B}} \ell' \stackrel{\text{def}}{\Longrightarrow} \ell : \{\ell'\} \in \mathcal{B},$$

•
$$\Delta^{\mathcal{I}(\mathcal{B})} \stackrel{\text{def}}{=} \{ \|\ell\| \mid \ell : \{\ell\} \in \mathcal{B} \}.$$

A tableau calculus T_L is *constructively complete* for L iff for any satisfiable concept C and any open branch \mathcal{B} in $T_L(C)$ there is an L-model $\mathcal{I}(\mathcal{B}) = (\Delta^{\mathcal{I}(\mathcal{B})}, \mathcal{I}^{\mathcal{I}(\mathcal{B})})$ such that

- $\ell: D \in \mathcal{B}$ implies $\|\ell\| \in D^{\mathcal{I}(\mathcal{B})}$, and
- $\ell : \exists R.\{\ell'\} \in \mathcal{B} \text{ implies } (\|\ell\|, \|\ell'\|) \in R^{\mathcal{I}(\mathcal{B})}.$

 T_L is *compatible with* sub iff for any concept *C* and $\ell : D$ in $T_L(C)$ either

• $D \in \mathsf{sub}(C)$, or

•
$$D = \{\ell'\}$$
, or $D = \neg\{\ell'\}$, or

•
$$D = \exists R.\{\ell'\}$$
, or $D = \neg \exists R.\{\ell'\}$, for some role $R \in \mathsf{sub}(C)$.

The Main Theorem

Theorem

Let *L* be a (description) logic. T_L + (ub) is sound, complete, and terminating tableau calculus for *L*, if the following conditions all hold:

- sub is a finite closure operator for L-expressions.
- 2 L is a logic which admits finite filtration.
- T_L is a sound and constructively complete tableau calculus for L and is compatible with sub.

Sound and Constructively Complete Tableau Calculus for SO

$T_{\mathcal{SO}}$ contains the common tableau rules and the following rules for every $s \in \mathsf{Trans}$:

$$\mathsf{Trans}_{s}) \frac{\ell : \exists s. \{\ell'\}, \ \ell' : \exists s. \{\ell''\}}{\ell : \exists s. \{\ell''\}}$$

- Soundness is trivial.
- Constructive completeness is easy.
- Clearly, T_{SO} is compatible with the subexpression operator sub.

Theorem

 $T_{\mathcal{SO}}$ + (ub) is sound, complete, and terminating.

Sound and Constructively Complete Tableau Calculus for SO

 $T_{\mathcal{SO}}$ contains the common tableau rules and the following rules for every $s \in \mathsf{Trans}$:

Trans_s)
$$\frac{\ell: \exists s. \{\ell'\}, \ \ell': \exists s. \{\ell''\}}{\ell: \exists s. \{\ell''\}}$$

- Soundness is trivial.
- Constructive completeness is easy.
- Clearly, T_{SO} is compatible with the subexpression operator sub.

Theorem

 $T_{\mathcal{SO}}$ + (ub) is sound, complete, and terminating.

Sound and Constructively Complete Tableau Calculus for SO

 $T_{\mathcal{SO}}$ contains the common tableau rules and the following rules for every $s \in$ Trans:

Trans_s)
$$\frac{\ell: \exists s. \{\ell'\}, \ \ell': \exists s. \{\ell''\}}{\ell: \exists s. \{\ell''\}}$$

- Soundness is trivial.
- Constructive completeness is easy.
- Clearly, T_{SO} is compatible with the subexpression operator sub.

Theorem

 T_{SO} + (ub) is sound, complete, and terminating.

Dmitry Tishkovsky

Sound and Constructively Complete Tableau Calculi for ALBO

 $T_{\mathcal{ALBO}}$ contains the common tableau rules and the following rules for complex role operators:

Positive Role Occurrences

$$(\exists \sqcup) \frac{\ell : \exists (R \sqcup S) . \{\ell'\}}{\ell : \exists R . \{\ell'\} \mid \ell : \exists S . \{\ell'\}}$$

$$(\exists^{-1}) \frac{\ell : \exists R^{-1} . \{\ell'\}}{\ell' : \exists R . \{\ell\}}$$

$$(\exists \neg) \frac{\ell : \exists \neg R . \{\ell'\}}{\ell : \neg \exists R . \{\ell'\}}$$

$$T^q_{\mathcal{ALBO}} \stackrel{\mathsf{def}}{=} T_{\mathcal{ALBO}} - (\exists \neg)$$

Negative Role Occurrences

$$\begin{array}{c} (\neg \exists \sqcup) & \frac{\ell : \neg \exists (R \sqcup S).C}{\ell : \neg \exists R.C, \ \ell : \neg \exists S.C} \\ (\neg \exists^{-1}) & \frac{\ell : \neg \exists R^{-1}.C, \ \ell' : \exists R.\{\ell\}}{\ell' : \neg C} \\ (\neg \exists \neg) & \frac{\ell : \neg \exists \neg R.C, \ \ell' : \{\ell'\}}{\ell : \exists R.\{\ell'\} \ | \ \ell' : \neg C} \end{array}$$

- Both calculi are sound and compatible with the subexpression operator sub.
- *T_{ALBO}* is constructively complete w.r.t. *ALBO*-models.
- $T^q_{A LBO}$ is constructively complete w.r.t. A LBO-quasi-models.

heorem

- T_{ALBO} + (ub) is sound, complete w.r.t. ALBO-models, and terminating.
- T^q_{ACBO} + (ub) is sound, complete w.r.t. ACBO-quasi-models, and terminating

Dmitry Tishkovsky

Negative Role Occurrences

 $(\neg \exists \sqcup) \frac{\ell : \neg \exists (R \sqcup S).C}{\ell : \neg \exists R.C, \ \ell : \neg \exists S.C}$

 $\stackrel{(\neg \exists^{-1})}{\underset{(\neg \exists \neg)}{\ell} : \neg \exists R^{-1}.C, \ \ell' : \exists R.\{\ell\}}{\ell' : \neg C} \\ \stackrel{(\neg \exists \neg)}{\underset{\ell: \ \neg \exists \neg R.C, \ \ell' : \{\ell'\}}{\ell : \exists R.\{\ell'\} \mid \ell' : \neg C} }$

Sound and Constructively Complete Tableau Calculi for ALBO

 $T_{\mathcal{ALBO}}$ contains the common tableau rules and the following rules for complex role operators:

Positive Role Occurrences

$$(\exists \sqcup) \frac{\ell : \exists (R \sqcup S) . \{\ell'\}}{\ell : \exists R . \{\ell'\} \mid \ell : \exists S . \{\ell'\}}$$

$$(\exists^{-1}) \frac{\ell : \exists R^{-1} . \{\ell'\}}{\ell' : \exists R . \{\ell\}}$$

$$(\exists \neg) \frac{\ell : \exists \neg R . \{\ell'\}}{\ell : \neg \exists R . \{\ell'\}}$$

 $T^q_{\mathcal{ALBO}} \stackrel{\mathrm{def}}{=} T_{\mathcal{ALBO}} - (\exists \neg)$

- Both calculi are sound and compatible with the subexpression operator sub.
- T_{ALBO} is constructively complete w.r.t. ALBO-models.
- T^q_{ALBO} is constructively complete w.r.t. ALBO-quasi-models.

heorem

- T_{ALBO} + (ub) is sound, complete w.r.t. ALBO-models, and terminating.
- T^{q}_{ALBO} + (ub) is sound, complete w.r.t. ALBO-quasi-models, and terminating.

Dmitry Tishkovsky

Negative Role Occurrences

 $(\neg \exists \sqcup) \frac{\ell : \neg \exists (R \sqcup S).C}{\ell : \neg \exists R.C, \ \ell : \neg \exists S.C}$

 $\stackrel{(\neg \exists^{-1})}{\underset{(\neg \exists \neg)}{\ell} : \neg \exists R^{-1}.C, \ \ell' : \exists R.\{\ell\}}{\ell' : \neg C} \\ \stackrel{(\neg \exists \neg)}{\underset{\ell: \ \neg \exists \neg R.C, \ \ell' : \{\ell'\}}{\ell : \exists R.\{\ell'\} \mid \ell' : \neg C} }$

Sound and Constructively Complete Tableau Calculi for ALBO

 $T_{\mathcal{ALBO}}$ contains the common tableau rules and the following rules for complex role operators:

Positive Role Occurrences

$$(\exists \sqcup) \frac{\ell : \exists (R \sqcup S) . \{\ell'\}}{\ell : \exists R . \{\ell'\} \mid \ell : \exists S . \{\ell'\}}$$

$$(\exists^{-1}) \frac{\ell : \exists R^{-1} . \{\ell'\}}{\ell' : \exists R . \{\ell\}}$$

$$(\exists \neg) \frac{\ell : \exists \neg R . \{\ell'\}}{\ell : \neg \exists R . \{\ell'\}}$$

 $T^{q}_{\mathcal{ALBO}} \stackrel{\text{def}}{=} T_{\mathcal{ALBO}} - (\exists \neg)$

- Both calculi are sound and compatible with the subexpression operator sub.
- T_{ALBO} is constructively complete w.r.t. ALBO-models.
- $T^{q}_{A \mathcal{LBO}}$ is constructively complete w.r.t. $A \mathcal{LBO}$ -quasi-models.

Theorem

- T_{ALBO} + (ub) is sound, complete w.r.t. ALBO-models, and terminating.
- T^q_{ALBO} + (ub) is sound, complete w.r.t. ALBO-quasi-models, and terminating.

AANCHESTER

Outline

Introduction

- Increasing demand for reasoning tools
- Reasoning tools
- Prover synthesis approach
- Tableau termination problem
- Motivation summary

2 General framework

- Syntax and semantics
- Closure operator
- Filtration
- Tableau calculus
- Common tableau rules
- Blocking mechanism
- Constructive completeness and sub-compatibility
- General termination

• A general method for turning ground semantic tableau calculi into decision procedures is introduced.

- The method is illustrated on two examples: SO and ALBO.
- The method is not limited by description logic language.
- It works for other ground tableau and similar decision approaches.
- The framework provides a basis for enhancing prover engineering platforms with a flexible blocking mechanism with which more general tableau decision procedures can be constructed.
- The approach also provides the theoretical background for the way blocking is implemented in the METTEL system.
- The framework is a first step towards the ambitious goal of automated generation of provers for decidable logics.

- A general method for turning ground semantic tableau calculi into decision procedures is introduced.
- The method is illustrated on two examples: SO and ALBO.
- The method is not limited by description logic language.
- It works for other ground tableau and similar decision approaches.
- The framework provides a basis for enhancing prover engineering platforms with a flexible blocking mechanism with which more general tableau decision procedures can be constructed.
- The approach also provides the theoretical background for the way blocking is implemented in the METTEL system.
- The framework is a first step towards the ambitious goal of automated generation of provers for decidable logics.

- A general method for turning ground semantic tableau calculi into decision procedures is introduced.
- The method is illustrated on two examples: \mathcal{SO} and \mathcal{ALBO} .
- The method is not limited by description logic language.
- It works for other ground tableau and similar decision approaches.
- The framework provides a basis for enhancing prover engineering platforms with a flexible blocking mechanism with which more general tableau decision procedures can be constructed.
- The approach also provides the theoretical background for the way blocking is implemented in the METTEL system.
- The framework is a first step towards the ambitious goal of automated generation of provers for decidable logics.

- A general method for turning ground semantic tableau calculi into decision procedures is introduced.
- The method is illustrated on two examples: SO and ALBO.
- The method is not limited by description logic language.
- It works for other ground tableau and similar decision approaches.
- The framework provides a basis for enhancing prover engineering platforms with a flexible blocking mechanism with which more general tableau decision procedures can be constructed.
- The approach also provides the theoretical background for the way blocking is implemented in the METTEL system.
- The framework is a first step towards the ambitious goal of automated generation of provers for decidable logics.

- A general method for turning ground semantic tableau calculi into decision procedures is introduced.
- The method is illustrated on two examples: \mathcal{SO} and \mathcal{ALBO} .
- The method is not limited by description logic language.
- It works for other ground tableau and similar decision approaches.
- The framework provides a basis for enhancing prover engineering platforms with a flexible blocking mechanism with which more general tableau decision procedures can be constructed.
- The approach also provides the theoretical background for the way blocking is implemented in the METTEL system.
- The framework is a first step towards the ambitious goal of automated generation of provers for decidable logics.

- A general method for turning ground semantic tableau calculi into decision procedures is introduced.
- The method is illustrated on two examples: \mathcal{SO} and \mathcal{ALBO} .
- The method is not limited by description logic language.
- It works for other ground tableau and similar decision approaches.
- The framework provides a basis for enhancing prover engineering platforms with a flexible blocking mechanism with which more general tableau decision procedures can be constructed.
- The approach also provides the theoretical background for the way blocking is implemented in the METTEL system.
- The framework is a first step towards the ambitious goal of automated generation of provers for decidable logics.

- A general method for turning ground semantic tableau calculi into decision procedures is introduced.
- The method is illustrated on two examples: \mathcal{SO} and \mathcal{ALBO} .
- The method is not limited by description logic language.
- It works for other ground tableau and similar decision approaches.
- The framework provides a basis for enhancing prover engineering platforms with a flexible blocking mechanism with which more general tableau decision procedures can be constructed.
- The approach also provides the theoretical background for the way blocking is implemented in the METTEL system.
- The framework is a first step towards the ambitious goal of automated generation of provers for decidable logics.

Prague, 11 June 2008

<□ ▶ < □ ▶ < □ ▶ < 三 ▶ ∽ < ♡ 28/28

you! Questions?

Prague, 11 June 2008

Prague, 11 June 2008

Prague, 11 June 2008

Prague, 11 June 2008

Prague, 11 June 2008

Prague, 11 June 2008

Prague, 11 June 2008