From Single Agent to Many Agents． Agent Logics of Dynamic Belief and Knowledge

Dmitry Tishkovsky
joint work with
Renate A．Schmidt
School of Computer Science
The University of Manchester
dmitry．tishkovsky＠manchester．ac．uk

Prague，Czech Republic

09 June 2008

Part 1: Single-agent framework for actions and beliefs.
We study combinations of PDL and the well-known logics of belief and knowledge extended with extra axioms of interaction of the action and informational modalities and select an appropriate decidable and complete logic which represents beliefs and actions of a single agent the most adequately.
Part 2: From single agent to many agents.
We show how to increase the language expressive power and combine a single agent logics form Part 1 into a real multi-agent framework preserving decidability and completeness.

Outline

（1）Single－agent framework
－Standard axioms to represent beliefs and knowledge
－Interaction axioms
－Logics considered
－Admissibility of the full substitution rule
－Extensions of KB
－Collapse of belief operator
－Completeness and the effective finite model property
－Test operators
－Properties of the informational test
－PDL Embedding
－Summary
From single agent to many agents
－Aim and main ideas
－Why abstract actions？
－Language of BDL
－Examples
－Semantics of BDL
－Properties of test operators
－Expressiveness of the language
－Substitution rule
－Two forms of substitution
－Axiomatisation of BDL
－Properties of BDL
－Summary

Standard Axioms to Represent Beliefs and Knowledge

（D）
（T）
（B）
（4）
（5）

$$
\begin{aligned}
\square p & \rightarrow \neg \square \neg p \\
\square p & \rightarrow p \\
p & \rightarrow \square \neg \square \neg p \\
\square p & \rightarrow \square \square p \\
\neg \square p & \rightarrow \square \neg \square p
\end{aligned}
$$

Interaction Axioms

（NL）
（PR）
（CR）

$$
\begin{gathered}
{[a] \square p \rightarrow \square[a] p} \\
\square[a] p \rightarrow[a] \square p \\
\neg \square \neg[a] p \rightarrow[a] \neg \square \neg p
\end{gathered}
$$

PDL Language

- $\operatorname{AtAc}=\{a, b, \ldots\}$ is a set of atomic actions.
- $\operatorname{Var}=\{p, q, \ldots\}$ is a set of propositional variables.
- Formula connectives: $\perp, \rightarrow, \square$.
- Action connectives: ;, $\cup, *$.
- Mixed operators: ?, [.].
- For and Ac are the smallest sets such that:
- AtAc \subseteq Ac and $\operatorname{Var} \cup\{\perp\} \subseteq$ For
- if $\phi, \psi \in$ For, $\alpha, \beta \in \mathrm{Ac}$ then $\alpha^{*}, \alpha \cup \beta, \alpha ; \beta, \phi ? \in \mathrm{Ac}$, and $\square \phi, \phi \rightarrow \psi,[\alpha] \phi \in$ For

PDL Semantics

Model M is a tuple $\langle S, Q, \models\rangle$ ，where all Q are defined on all the actions and \vDash is a truth relation on M such that ${ }^{1}$ ：
－ $\boldsymbol{Q}(\alpha \cup \beta) \stackrel{\text { def }}{=} \boldsymbol{Q}(\alpha) \cup \boldsymbol{Q}(\beta)$ ，
－ $\boldsymbol{Q}(\alpha ; \beta) \stackrel{\text { def }}{=} \boldsymbol{Q}(\alpha) \circ \boldsymbol{Q}(\beta)$ ，
－ $\boldsymbol{Q}\left(\alpha^{*}\right) \stackrel{\text { def }}{=} \boldsymbol{Q}(\alpha)^{*}=$

$$
=\left\{(x, y) \in S^{2} \mid \exists n \geq 0 \exists x_{0}=x, x_{1}, \ldots, x_{n-1}, x_{n}=y\left(x_{i}, x_{i+1}\right) \in Q(\alpha)\right\}
$$

－$Q(\phi ?) \stackrel{\text { def }}{=}\left\{(x, x) \in S^{2}|x|=\phi\right\}$ ，
－$M, x \not \vDash \perp$ ，
－$M, x \models \phi \rightarrow \psi \stackrel{\text { def }}{\Longleftrightarrow}(M, x \models \phi$ implies $M, x \models \psi)$ ，
－$M, x \models[\alpha] \phi \stackrel{\text { def }}{\Longleftrightarrow}(x, y) \in \boldsymbol{Q}(\alpha)$ implies $M, y \models \phi$ for all $y \in S$ ．

[^0]
Fusions of Modal Logics

$L_{1} \otimes L_{2}$ is a logic where all modal operators of L_{1} and L_{2} are treated separately and its Boolean part is the only common part with both L_{1} and L_{2} ．

Logics Considered

For any $A x \subseteq\{N L, P R, C R\}$

$$
\begin{aligned}
& \text { (test-free) } P D L \otimes K 45 \oplus A x \\
& \text { (test-free) } P D L \otimes K D 45 \oplus A x \\
& \text { (test-free) } P D L \otimes S 5 \oplus A x
\end{aligned}
$$

with either
weak substitution rule (substitutions of formulae for propositional variables are allowed only) or
full substitution rule (substitutions of formulae for propositional variables and of arbitrary actions for atomic actions are both allowed).

Admissibility of the Full Substitution Rule

Theorem

$$
\begin{aligned}
P D L \otimes L & =(P D L \otimes L)_{w} \\
\text { test-free } P D L \otimes L & =(\text { test-free } P D L \otimes L)_{w}
\end{aligned}
$$

Theorem

Iet $\varnothing \neq \boldsymbol{A} \subseteq \subseteq\{N L, P R, C R\}$ and L be contained in the logic of the two-element cluster (for example, K45, KD45 or S5). Then

$$
P D L \otimes L \oplus A x \neq(P D L \otimes L \oplus A x)_{w}
$$

Admissibility of the Full Substitution Rule

Theorem

$$
\begin{aligned}
P D L \otimes L & =(P D L \otimes L)_{w} \\
\text { test-free } P D L \otimes L & =(\text { test-free } P D L \otimes L)_{w}
\end{aligned}
$$

Theorem

Let $\varnothing \neq A x \subseteq\{N L, P R, C R\}$ and L be contained in the logic of the two-element cluster (for example, K45, KD45 or S5). Then

$$
P D L \otimes L \oplus A x \neq(P D L \otimes L \oplus A x)_{w}
$$

Theorem
Let $A x \subseteq\{P R, C R\}$ and L be K45, KD45 or S5. Then

Admissibility of the Full Substitution Rule

Theorem

$$
\begin{aligned}
P D L \otimes L & =(P D L \otimes L)_{w} \\
\text { test-free } P D L \otimes L & =(\text { test-free } P D L \otimes L)_{w}
\end{aligned}
$$

Theorem

Let $\varnothing \neq A x \subseteq\{N L, P R, C R\}$ and L be contained in the logic of the two－element cluster（for example，K45，KD45 or S5）．Then

$$
P D L \otimes L \oplus A x \neq(P D L \otimes L \oplus A x)_{w}
$$

Theorem

Let $A x \subseteq\{P R, C R\}$ and L be K45，KD45 or S5．Then

$$
\text { test-free } P D L \otimes L \oplus A x=(\text { test-free } P D L \otimes L \oplus A x)_{w}
$$

Extensions of $K B$

For any $L \supseteq K B$

$$
\begin{aligned}
(P D L \otimes L \oplus\{N L\})_{w} & =(P D L \otimes L \oplus\{C R\})_{w} \\
(\text { test-free } P D L \otimes L \oplus\{N L\})_{w} & =(\text { test-free } P D L \otimes L \oplus\{C R\})_{w}
\end{aligned}
$$

and, consequently,

$$
\begin{aligned}
P D L \otimes L \oplus\{N L\} & =P D L \otimes L \oplus\{C R\} \\
\text { test-free } P D L \otimes L \oplus\{N L\} & =\text { test-free } P D L \otimes L \oplus\{C R\}
\end{aligned}
$$

For any $L \subseteq S 5$
test-free $P D L \otimes L \oplus\{P R\} \not \subset \not \subset$ test-free $P D L \otimes L \oplus\{C R\}$

Extensions of $K B$

For any $L \supseteq K B$

$$
\begin{aligned}
(P D L \otimes L \oplus\{N L\})_{w} & =(P D L \otimes L \oplus\{C R\})_{w} \\
(\text { test-free } P D L \otimes L \oplus\{N L\})_{w} & =(\text { test-free } P D L \otimes L \oplus\{C R\})_{w}
\end{aligned}
$$

and, consequently,

$$
\begin{aligned}
P D L \otimes L \oplus\{N L\} & =P D L \otimes L \oplus\{C R\} \\
\text { test-free } P D L \otimes L \oplus\{N L\} & =\text { test-free } P D L \otimes L \oplus\{C R\}
\end{aligned}
$$

For any $L \subseteq S 5$

$$
\begin{gathered}
(P D L \otimes L \oplus\{P R\})_{w} \nsupseteq \nsubseteq(P D L \otimes L \oplus\{C R\})_{w} \\
\text { test-free } P D L \otimes L \oplus\{P R\} \nsupseteq \nsubseteq \text { test-free } P D L \otimes L \oplus\{C R\}
\end{gathered}
$$

but for any $L \supseteq T$

$P D L \otimes L \oplus\{P R\}=P D L \otimes L \oplus\{C R\}$

Extensions of $K B$

For any $L \supseteq K B$

$$
\begin{aligned}
(P D L \otimes L \oplus\{N L\})_{w} & =(P D L \otimes L \oplus\{C R\})_{w} \\
(\text { test-free } P D L \otimes L \oplus\{N L\})_{w} & =(\text { test-free } P D L \otimes L \oplus\{C R\})_{w}
\end{aligned}
$$

and, consequently,

$$
\begin{aligned}
P D L \otimes L \oplus\{N L\} & =P D L \otimes L \oplus\{C R\} \\
\text { test-free } P D L \otimes L \oplus\{N L\} & =\text { test-free } P D L \otimes L \oplus\{C R\}
\end{aligned}
$$

For any $L \subseteq S 5$

$$
\begin{gathered}
(P D L \otimes L \oplus\{P R\})_{w} \nsupseteq \nsubseteq(P D L \otimes L \oplus\{C R\})_{w} \\
\text { test-free } P D L \otimes L \oplus\{P R\} \nsupseteq \nsubseteq \text { test-free } P D L \otimes L \oplus\{C R\}
\end{gathered}
$$

but for any $L \supseteq T$

$$
P D L \otimes L \oplus\{P R\}=P D L \otimes L \oplus\{C R\} .
$$

Collapse of Belief Operator

Theorem

Let $\varnothing \neq A x \subseteq\{N L, P R, C R\}$. For every unimodal logic L, $P D L \otimes L \oplus A x \vdash p \rightarrow \square p$.

Theorem

let $I \supseteq T$ and $\varnothing \neq A x \subseteq\{N L, P R, C R\}$.
If the logic $P D L \otimes L \oplus A x$ is consistent then it is equal to
$P D L \otimes K \oplus\{p \leftrightarrow \square p\}$ and, consequently, is deductively equivalent to $P D L$.

Collapse of Belief Operator

Theorem

Let $\varnothing \neq A x \subseteq\{N L, P R, C R\}$. For every unimodal logic L, $P D L \otimes L \oplus A x \vdash p \rightarrow \square p$.

Theorem

Let $L \supseteq T$ and $\varnothing \neq A x \subseteq\{N L, P R, C R\}$.
If the logic $P D L \otimes L \oplus A x$ is consistent then it is equal to
$P D L \otimes K \oplus\{p \leftrightarrow \square p\}$ and, consequently, is deductively equivalent to $P D L$.

Completeness and the Effective Finite Model Property

Let L be $K 45, K D 45$ or $S 5$ ，and $\varnothing \neq A x \subseteq\{N L, P R, C R\}$ ．
Then the following logics are complete and have the effective finite model property with the upper bound $\mu(n)$ for the sizes of models．
$\mu(n)=2^{n} \cdot 2^{2^{n}}$
$(P D L \otimes L \oplus\{P R\})_{w}$
$(P D L \otimes L \oplus\{C R\})_{w}$
$(P D L \otimes L \oplus\{P R, C R\})_{w}$
test－free $P D L \otimes L \oplus\{P R\}$
test－free $P D L \otimes L \oplus\{C R\}$
test－free $P D L \otimes L \oplus\{P R, C R\}$
$\mu(n)=2^{n}$
$P D L \otimes S 5 \oplus A x$

Test operators

- Classical test:

Axiomatisation $\quad[\phi ?] \psi \leftrightarrow(\phi \rightarrow \psi)$

Semantics

 $Q(\phi ?)=\left\{(s, s) \in S^{2} \mid s=\phi\right\}$(pass_exam?; celebrate) $\cup(\neg$ pass_exam?; go_to_pub)]drunk

Test operators

－Classical test：
Axiomatisation $\quad[\phi ?] \psi \leftrightarrow(\phi \rightarrow \psi)$
Semantics $\quad Q(\phi ?)=\left\{(s, s) \in S^{2} \mid s=\phi\right\}$
－Informational test•

Test operators

- Classical test:

```
Axiomatisation \(\quad[\phi ?] \psi \leftrightarrow(\phi \rightarrow \psi)\)
    Semantics \(\quad Q(\phi ?)=\left\{(s, s) \in S^{2} \mid s \models \phi\right\}\)
Example
\([(\) pass_exam? \(;\) celebrate \() \cup(\neg\) pass_exam?; go_to_pub)]drunk
```


Test operators

－Classical test：

```
Axiomatisation \(\quad[\phi ?] \psi \leftrightarrow(\phi \rightarrow \psi)\)
    Semantics \(\quad Q(\phi ?)=\left\{(s, s) \in S^{2} \mid s \models \phi\right\}\)
            Example
                \([(\) pass_exam? \(;\) celebrate \() \cup(\neg\) pass_exam?; go_to_pub)]drunk
```

－Informational test：
Axiomatisation $\quad[\phi ?] \psi \leftrightarrow \square(\square \phi \rightarrow \psi)$

Test operators

－Classical test：

```
Axiomatisation \(\quad[\phi ?] \psi \leftrightarrow(\phi \rightarrow \psi)\)
    Semantics \(\quad Q(\phi ?)=\left\{(s, s) \in S^{2} \mid s=\phi\right\}\)
            Example
                \([(\) pass_exam?; celebrate \() \cup(\neg\) pass_exam?; go_to_pub)]drunk
```

－Informational test：
Axiomatisation $\quad[\phi ?] \psi \leftrightarrow \square(\square \phi \rightarrow \psi)$
Semantics $\quad Q(\phi$ ？$)=\{(s, t) \in R \mid t=\square \phi\}$

Test operators

－Classical test：
Axiomatisation $\quad[\phi ?] \psi \leftrightarrow(\phi \rightarrow \psi)$
Semantics $\quad Q(\phi ?)=\left\{(s, s) \in S^{2} \mid s=\phi\right\}$
Example
$[($ pass＿exam？；celebrate $) \cup(\neg$ pass＿exam？；go＿to＿pub）］drunk
－Informational test：
Axiomatisation $\quad[\phi ?] \psi \leftrightarrow \square(\square \phi \rightarrow \psi)$
Semantics $\quad Q(\phi$ ？$)=\{(s, t) \in R \mid t=\square \phi\}$
Example［know＿subject？］self－confident

Properties of the Informational Test

－$\square p \leftrightarrow[\top ?] p \in(P D L \otimes K)^{?}$ ．
$\bullet[p ?] \square q \rightarrow \square[p ?] q, \square[p ?] q \rightarrow[p ?] \square q$ and $\Delta[p ?] q \rightarrow[p ?] \Delta q$ belong to
$\quad(P D L \otimes K 45)^{?}$. －Let L be $K 45, K D 45$ ，or $S 5$ ．Then any extension of $(P D L \otimes L)^{\text {？}}$ by the

Properties of the Informational Test

－$\square p \leftrightarrow[\top ?] p \in(P D L \otimes K)^{?}$ ．
－$[p ?] \square q \rightarrow \square[p$ ？$] q, \square[p ?] q \rightarrow[p$ ？$] \square q$ and $\diamond[p ?] q \rightarrow[p ?] \diamond q$ belong to $(P D L \otimes K 45)^{?}$ ．
－Let L be K45，KD45，or S5．Then any extension of $(P D L \otimes L)^{2}$ by the axioms $P R$ and／or $C R$ with the weak substitution rule

Properties of the Informational Test

－$\square p \leftrightarrow[$ T？$] p \in(P D L \otimes K)^{?}$ ．
－$[p$ ？$] \square q \rightarrow \square[p$ ？$] q, \square[p$ ？$] q \rightarrow[p$ ？］$] q$ and $\diamond[p ?] q \rightarrow[p ?] \diamond q$ belong to $(P D L \otimes K 45)^{?}$ ．
－Let L be $K 45, K D 45$ ，or $S 5$ ．Then any extension of $(P D L \otimes L)^{\text {？}}$ by the axioms $P R$ and／or $C R$ with the weak substitution rule

Properties of the Informational Test

－$\square p \leftrightarrow[$ T？$] p \in(P D L \otimes K)^{?}$ ．
－$[p$ ？$] \square q \rightarrow \square[p$ ？$] q, \square[p$ ？$] q \rightarrow[p$ ？］$\square q$ and $\diamond[p$ ？$] q \rightarrow[p$ ？$] \diamond q$ belong to $(P D L \otimes K 45)^{?}$ ．
－Let L be $K 45, K D 45$ ，or $S 5$ ．Then any extension of $(P D L \otimes L)^{\text {？}}$ by the axioms $P R$ and／or $C R$ with the weak substitution rule
－admits the rule of full substitution，
－has the effective finite model property with the upper bound $2^{n} \cdot 2^{2^{n}}$ for the model size，

Properties of the Informational Test

- $\square p \leftrightarrow[$ T? $] p \in(P D L \otimes K)^{?}$.
- $[p$? $] \square q \rightarrow \square[p$? $] q, \square[p$? $] q \rightarrow[p$?] $] q$ and $\diamond[p ?] q \rightarrow[p ?] \diamond q$ belong to $(P D L \otimes K 45)^{?}$.
- Let L be $K 45, K D 45$, or $S 5$. Then any extension of $(P D L \otimes L)^{\text {? }}$ by the axioms $P R$ and/or $C R$ with the weak substitution rule
- admits the rule of full substitution,
- has the effective finite model property with the upper bound $2^{n} \cdot 2^{2^{n}}$ for the model size,
- is complete with respect to the corresponding class of models.

Properties of the Informational Test

- $\square p \leftrightarrow[$ Т? $] p \in(P D L \otimes K)^{?}$.
- $[p$? $] \square q \rightarrow \square[p$? $] q, \square[p$? $] q \rightarrow[p$?] $] q$ and $\diamond[p ?] q \rightarrow[p ?] \diamond q$ belong to $(P D L \otimes K 45)^{?}$.
- Let L be $K 45, K D 45$, or $S 5$. Then any extension of $(P D L \otimes L)^{\text {? }}$ by the axioms $P R$ and/or $C R$ with the weak substitution rule
- admits the rule of full substitution,
- has the effective finite model property with the upper bound $2^{n} \cdot 2^{2^{n}}$ for the model size,
- is complete with respect to the corresponding class of models.

Embedding of PDL into $(P D L \otimes S 5)^{?}$

$$
\begin{aligned}
\sigma p & =\square p \\
\sigma a & =a \\
\sigma(\alpha \cup \beta) & =\sigma \alpha \cup \sigma \beta \\
\sigma\left(\alpha^{*}\right) & =(\sigma \alpha ; \top ?)^{*} \\
\sigma(\phi \rightarrow \psi) & =\square(\sigma \phi \rightarrow \sigma \psi)
\end{aligned}
$$

$$
\begin{aligned}
\sigma \perp & =\perp \\
\sigma(\psi ?) & =(\sigma \psi) ? \\
\sigma(\alpha ; \beta) & =\sigma \alpha ; \top ? ; \sigma \beta \\
\sigma([\alpha] \psi) & =\square[\sigma \alpha] \sigma \psi
\end{aligned}
$$

Theorem

Embedding of PDL into $(P D L \otimes S 5)^{?}$

$$
\begin{array}{rlrl}
\sigma p & =\square p & \sigma \perp & =\perp \\
\sigma a & =a & \sigma(\psi ?) & =(\sigma \psi) ? \\
\sigma(\alpha \cup \beta) & =\sigma \alpha \cup \sigma \beta & \sigma(\alpha ; \beta) & =\sigma \alpha ; \top ? ; \sigma \beta \\
\sigma\left(\alpha^{*}\right) & =(\sigma \alpha ; \top ?)^{*} & \\
\sigma(\phi \rightarrow \psi) & =\square(\sigma \phi \rightarrow \sigma \psi) & \sigma([\alpha] \psi) & =\square[\sigma \alpha] \sigma \psi
\end{array}
$$

Theorem

$$
\phi \in P D L \Longleftrightarrow \sigma \phi \in(P D L \otimes S 5)^{?}
$$

Summary

－A class of logics relevant to agent theory is considered．
－A behaviour of the logics with respect to weak and full substitution rule is studied．

Summary

－A class of logics relevant to agent theory is considered．
－A behaviour of the logics with respect to weak and full substitution rule is studied．
－A semantics and axiomatisation for a new informational test operator is proposed．
oroved for a number of the logics with either classical or informational test operator．

Summary

- A class of logics relevant to agent theory is considered.
- A behaviour of the logics with respect to weak and full substitution rule is studied.
- A semantics and axiomatisation for a new informational test operator is proposed.
- The effective finite model property, completeness and decidability is proved for a number of the logics with either classical or informational test operator.
- A class of logics relevant to agent theory is considered.
- A behaviour of the logics with respect to weak and full substitution rule is studied.
- A semantics and axiomatisation for a new informational test operator is proposed.
- The effective finite model property, completeness and decidability is proved for a number of the logics with either classical or informational test operator.

Outline

```
Single-agent framework
- Standard axioms to represent beliefs and knowledge
- Interaction axioms
- Logics considered
- Admissibility of the full substitution rule
- Extensions of KB
- Collapse of belief operator
- Completeness and the effective finite model property
- Test operators
- Properties of the informational test
- PDL Embedding
- Summary
```

(2) From single agent to many agents

- Aim and main ideas
- Why abstract actions?
- Language of BDL
- Examples
- Semantics of BDL
- Properties of test operators
- Expressiveness of the language
- Substitution rule
- Two forms of substitution
- Axiomatisation of BDL
- Properties of BDL
- Summary

Aim and Main Ideas

－Aim：
Decidable and expressive language which allows reasoning about

Aim and Main Ideas

－Aim：
Decidable and expressive language which allows reasoning about －actions and beliefs of agents．
－groups of agents and cooperative actions of agents．

Aim and Main Ideas

- Aim:

Decidable and expressive language which allows reasoning about

- actions and beliefs of agents.
- groups of agents and cooperative actions of agents.

Aim and Main Ideas

- Aim:

Decidable and expressive language which allows reasoning about

- actions and beliefs of agents.
- groups of agents and cooperative actions of agents.
- Main ideas:

Abstract is not concrete: We should use many-sorted language to distinguish abstract and concrete actions. Test action nust confirm beliefs, not absolute truth: It is necessary to change axiomatisation and semantics for the PDL test operator.

Aim and Main Ideas

－Aim：
Decidable and expressive language which allows reasoning about
－actions and beliefs of agents．
－groups of agents and cooperative actions of agents．
－Main ideas：
Abstract is not concrete：We should use many－sorted language to distinguish abstract and concrete actions．

Test action must confirm beliefs，not absolute truth：It is necessary to change axiomatisation and semantics for the PDL test operator．

Aim and Main Ideas

－Aim：
Decidable and expressive language which allows reasoning about
－actions and beliefs of agents．
－groups of agents and cooperative actions of agents．
－Main ideas：
Abstract is not concrete：We should use many－sorted language to distinguish abstract and concrete actions．
Test action must confirm beliefs，not absolute truth：It is necessary to change axiomatisation and semantics for the PDL test operator．

Why Abstract Actions?

- It is natural to distinguish abstract and concrete actions in many real applications. For instance, 'process' and 'process with user permissions'.

Example

Abstract action: eat
Concrete actions: eatmichael and eatJerry
I.e. 'Michael eats' and 'Jerry eats' are particular instances of 'to eat'

- It is easy to extend the language of the logic.

Why Abstract Actions?

- It is natural to distinguish abstract and concrete actions in many real applications. For instance, 'process' and 'process with user permissions'.

Example

Abstract action: eat
Concrete actions: eat Michael and eat Jerry
I.e. 'Michael eats' and 'Jerry eats' are particular instances of 'to eat'.

- It is easy to extend the language of the logic.

Why Abstract Actions?

- It is natural to distinguish abstract and concrete actions in many real applications. For instance, 'process' and 'process with user permissions'.

Example

Abstract action: eat
Concrete actions: eat Michael and eat $_{\text {Jerry }}$
I.e. 'Michael eats' and 'Jerry eats' are particular instances of 'to eat'.

- It is easy to extend the language of the logic.

For example, operators of 'pipeline' | and 'grouping' + can be introduced on the set of agents.
Let α be an abstract action.
othemuise

Why Abstract Actions？

－It is natural to distinguish abstract and concrete actions in many real applications．For instance，＇process＇and＇process with user permissions＇．

Example

Abstract action：eat

Concrete actions：eat Michael and eat Jerry
I．e．＇Michael eats＇and＇Jerry eats＇are particular instances of＇to eat＇．
－It is easy to extend the language of the logic．
For example，operators of＇pipeline＇｜and＇grouping＇＋can be introduced on the set of agents．
Let α be an abstract action．

$$
\alpha_{i+j}=\alpha_{i} \cup \alpha_{j}
$$

$$
\alpha_{i \mid j}= \begin{cases}\beta_{i} ; \gamma_{j}, & \alpha=\beta ; \gamma \\ \alpha_{i}, & \text { otherwise }\end{cases}
$$

Language of BDL

Agents i, j Abstract actions $\alpha, \beta \stackrel{\text { def }}{=} a \mid \phi$ ？$\left|\alpha^{*}\right| \alpha \cup \beta \mid \alpha ; \beta$ Concrete actions

Language of BDL

Agents i, j
Abstract actions $\quad \alpha, \beta \stackrel{\text { def }}{=} a|\phi ?| \alpha^{*}|\alpha \cup \beta| \alpha ; \beta$

Language of BDL

Agents i, j
Abstract actions $\quad \alpha, \beta \stackrel{\text { def }}{=} a|\phi ?| \alpha^{*}|\alpha \cup \beta| \alpha ; \beta$
Concrete actions $\gamma, \delta \stackrel{\text { def }}{=} \alpha_{i}\left|\gamma^{*}\right| \gamma \cup \delta \mid \gamma ; \delta$

Belief operator \mathbf{B}_{i}

Language of BDL

Agents i, j
Abstract actions $\quad \alpha, \beta \stackrel{\text { def }}{=} a|\phi ?| \alpha^{*}|\alpha \cup \beta| \alpha ; \beta$
Concrete actions $\gamma, \delta \stackrel{\text { def }}{=} \alpha_{i}\left|\gamma^{*}\right| \gamma \cup \delta \mid \gamma ; \delta$
Formulae $\phi, \psi \stackrel{\text { def }}{=} \perp|p| \phi \rightarrow \psi \mid[\gamma] \phi$ Belief operator $\mathbf{B}_{i} \stackrel{\text { det }}{=}\left[(T \text { ? })_{i}\right]$.

Language of BDL

Agents i, j
Abstract actions $\quad \alpha, \beta \stackrel{\text { def }}{=} a|\phi ?| \alpha^{*}|\alpha \cup \beta| \alpha ; \beta$
Concrete actions $\gamma, \delta \stackrel{\text { def }}{=} \alpha_{i}\left|\gamma^{*}\right| \gamma \cup \delta \mid \gamma ; \delta$
Formulae $\quad \phi, \psi \stackrel{\text { def }}{=} \perp|p| \phi \rightarrow \psi \mid[\gamma] \phi$
Belief operator $\mathbf{B}_{i} \stackrel{\text { def }}{=}\left[(\top ?)_{i}\right]$.

Examples

Let be two agents p - programmer and d - program designer:
$\mathbf{B}_{p}\left[\right.$ develop_model $\left.{ }_{d}\right]$ model_is_consistent \wedge $\left[\right.$ develop_model ${ }_{d} ;$ implement_model $\left.{ }_{p}\right] \neg \mathbf{B}_{p}$ model_is_consistent

Let John do the following sequence α of actions to make Mary happy: $\alpha=(\neg$ Mary_is_happy)?; ;(kiss_Mary John \rangle Mary_is_happy)?;kiss_Mary It is nossible for John to make Mary hanny

Examples

Let be two agents p－programmer and d－program designer：
\mathbf{B}_{p}［develop＿model $\left.{ }_{d}\right]$ model＿is＿consistent \wedge ［develop＿model ${ }_{d} ;$ implement＿model $\left.{ }_{p}\right] \neg \mathbf{B}_{p}$ model＿is＿consistent

Let John do the following sequence α of actions to make Mary happy：
$\alpha=\left(\neg\right.$ Mary＿is＿happy）？；$\left(\left\langle k i s s _M a r y\right.\right.$ John \rangle Mary＿is＿happy）？；kiss＿Mary
It is possible for John to make Mary happy
$\left\langle\alpha_{\text {John }}^{*}\right\rangle$ Mary＿is＿happy

Examples

Let be two agents p - programmer and d - program designer:

$$
\begin{aligned}
& \mathbf{B}_{p}[\text { develop_model }] \text {]model_is_consistent } \wedge \\
& \quad\left[\text { develop_model }{ }_{d} ; \text {;mplement_model }{ }_{p}\right] \neg \mathbf{B}_{p} \text { model_is_consistent }
\end{aligned}
$$

Let John do the following sequence α of actions to make Mary happy:

$$
\alpha=(\neg \text { Mary_is_happy)?; ;(kiss_Mary John }) \text { Mary_is_happy)?;kiss_Mary }
$$

It is possible for John to make Mary happy:

$$
\left\langle\alpha_{\text {John }}^{*}\right\rangle \text { Mary_is_happy }
$$

Semantics of BDL

Standard Kripke style semantics:

Model $M=\left\langle S, Q,\left\{R_{i}\right\}_{i \in \mathrm{Ag}}, \mid=\right\rangle$

- S is set of states,
- $Q(\alpha)$ and R_{i} are binary relations on S for any concrete action α and agent i,

Semantics of BDL

Standard Kripke style semantics:
Model $M=\left\langle S, Q,\left\{R_{i}\right\}_{i \in \mathrm{Ag}}, \mid=\right\rangle$

- S is set of states,
- $Q(\alpha)$ and R_{i} are binary relations on S for any concrete action α and agent i,

Semantics of BDL

Standard Kripke style semantics：
Model $M=\left\langle S, Q,\left\{R_{i}\right\}_{i \in \mathrm{Ag}}, \mid=\right\rangle$
－S is set of states，
－$Q(\alpha)$ and R_{i} are binary relations on S for any concrete action α and agent i ，
－R_{i} is a transitive and Euclidean．

Semantics of BDL

Standard Kripke style semantics：
Model $M=\left\langle\boldsymbol{S}, \boldsymbol{Q},\left\{R_{i}\right\}_{i \in \mathrm{Ag}}, \mid=\right\rangle$
－S is set of states，
－$Q(\alpha)$ and R_{i} are binary relations on S for any concrete action α and agent i ，
－R_{i} is a transitive and Euclidean．
－\vDash is a truth relation，
－semantics for ？：
$\left.Q\left((\phi ?)_{i}\right)=\left\{(s, t) \in R_{i}|M, t|=\mathbf{B}_{i} \phi\right)\right\}$

Semantics of BDL

Standard Kripke style semantics：
Model $M=\left\langle\boldsymbol{S}, \boldsymbol{Q},\left\{R_{i}\right\}_{i \in \mathrm{Ag}}, \mid=\right\rangle$
－S is set of states，
－ $\boldsymbol{Q}(\alpha)$ and R_{i} are binary relations on S for any concrete action α and agent i ，
－R_{i} is a transitive and Euclidean．
－\models is a truth relation，
－semantics for？

$$
\left.\boldsymbol{Q}\left((\phi ?)_{i}\right)=\left\{(s, t) \in R_{i}|M, t|=\mathbf{B}_{i} \phi\right)\right\}
$$

－An abstract action α is informative with respect to a formula ϕ in a logic L ，if the formula $\left[\alpha_{i}\right]\left(\mathbf{B}_{i} \phi \vee \mathbf{B}_{i} \neg \phi\right)$ belongs to L ．
－An abstract action α is truthful with respect to a formula ϕ in a logic L ，if the formula $\left(\phi \rightarrow\left[\alpha_{i}\right] \phi\right) \wedge\left(\neg \phi \rightarrow\left[\alpha_{i}\right] \neg \phi\right)$ belongs to L ．
－An abstract action α preserves beliefs in logic L ，if the formula $\mathbf{B}_{i} \phi \rightarrow\left[\alpha_{i}\right] \mathbf{B}_{i} \phi$ belongs to L for any formula
－An abstract action α is informative with respect to a formula ϕ in a logic L ，if the formula $\left[\alpha_{i}\right]\left(\mathbf{B}_{i} \phi \vee \mathbf{B}_{i} \neg \phi\right)$ belongs to L ．
－An abstract action α is truthful with respect to a formula ϕ in a logic L ，if the formula $\left(\phi \rightarrow\left[\alpha_{i}\right] \phi\right) \wedge\left(\neg \phi \rightarrow\left[\alpha_{i}\right] \neg \phi\right)$ belongs to L ．
－An abstract action α preserves beliefs in logic L ，if the formula $\mathbf{B}_{i} \phi \rightarrow\left[\alpha_{i}\right] \mathbf{B}_{i} \phi$ belongs to L for any formula ϕ ．

- An abstract action α is informative with respect to a formula ϕ in a logic L, if the formula $\left[\alpha_{i}\right]\left(\mathbf{B}_{i} \phi \vee \mathbf{B}_{i} \neg \phi\right)$ belongs to L.
- An abstract action α is truthful with respect to a formula ϕ in a logic L, if the formula $\left(\phi \rightarrow\left[\alpha_{i}\right] \phi\right) \wedge\left(\neg \phi \rightarrow\left[\alpha_{i}\right] \neg \phi\right)$ belongs to L.
- An abstract action α preserves beliefs in logic L, if the formula $\mathbf{B}_{i} \phi \rightarrow\left[\alpha_{i}\right] \mathbf{B}_{i} \phi$ belongs to L for any formula ϕ.

[^1]
Properties of Test Operators
 (B. van Linder, W. van der Hoek, J.-J.Ch. Meyer)

- An abstract action α is informative with respect to a formula ϕ in a logic L, if the formula $\left[\alpha_{i}\right]\left(\mathbf{B}_{i} \phi \vee \mathbf{B}_{i} \neg \phi\right)$ belongs to L.
- An abstract action α is truthful with respect to a formula ϕ in a logic L, if the formula $\left(\phi \rightarrow\left[\alpha_{i}\right] \phi\right) \wedge\left(\neg \phi \rightarrow\left[\alpha_{i}\right] \neg \phi\right)$ belongs to L.
- An abstract action α preserves beliefs in logic L, if the formula $\mathbf{B}_{i} \phi \rightarrow\left[\alpha_{i}\right] \mathbf{B}_{i} \phi$ belongs to L for any formula ϕ.

Theorem

The action ϕ ? $\cup \neg \phi$? is informative and truthful with respect to ϕ and preserves beliefs.

Expressiveness of the Language

Let $I=\left\{i_{0}, \ldots, i_{m}\right\}$ be a finite set of agents．
＇Everyone in I believes that．．．＇operator \mathbf{E}_{I} ：

$$
\mathbf{E}_{I} p \leftrightarrow\left[(T ?)_{i_{0}} \cup \cdots \cup(T ?)_{i_{m}}\right] p
$$

Common belief operator C_{I}（relative to I ）：

$$
\mathbf{C}_{I} p \leftrightarrow\left[\left((T ?)_{i_{0}} \cup \cdots \cup(T ?)_{i_{m}}\right)^{*}\right] \mathbf{E}_{I} p
$$

Expressiveness of the Language

Let $I=\left\{i_{0}, \ldots, i_{m}\right\}$ be a finite set of agents．
＇Everyone in I believes that．．．operator \mathbf{E}_{I} ：

$$
\mathbf{E}_{I} p \leftrightarrow\left[(\top ?)_{i_{0}} \cup \cdots \cup(\top ?)_{i_{m}}\right] p
$$

Common belief operator \mathbf{C}_{I}（relative to I ）：

$$
\mathbf{C}_{I} p \leftrightarrow\left[\left((\top ?)_{i_{0}} \cup \cdots \cup(\top ?)_{i_{m}}\right)^{*}\right] \mathbf{E}_{I} p
$$

Expressiveness of the Language

Let $I=\left\{i_{0}, \ldots, i_{m}\right\}$ be a finite set of agents．
＇Everyone in I believes that．．．＇operator \mathbf{E}_{I} ：

$$
\mathbf{E}_{I} p \leftrightarrow\left[(T ?)_{i_{0}} \cup \cdots \cup(T ?)_{i_{m}}\right] p
$$

Common belief operator \mathbf{C}_{I}（relative to I ）：

$$
\mathbf{C}_{I} p \leftrightarrow\left[\left((T ?)_{i_{0}} \cup \cdots \cup(T ?)_{i_{m}}\right)^{*}\right] \mathbf{E}_{I} p
$$

$B D L$ is more expressive than the fusion of infinite copies（for each agent）of the fusion of $P D L$ and $S 5$

$$
\bigotimes_{i \in \mathrm{Ag}}(P D L \otimes S 5)_{i}
$$

Substitution rule

- Informal restrictions on the substitutions are:

If a formula says about an agent then, after substitution of action, it must still say about the same agent. (Similarly for actions.)

Substitutions in extra interaction axiom

must be limited. E.g. the instance
must be excluded

Substitution rule

－Informal restrictions on the substitutions are：
If a formula says about an agent then，after substitution of action，it must still say about the same agent．（Similarly for actions．）
－Problem：Substitutions in extra interaction axiom
$\left[a_{i}\right] \mathbf{B}_{i} p \leftrightarrow \mathbf{B}_{i}\left[a_{i}\right] p$
must be limited．E．g．the instance
$\left[b_{j}\right] \mathbf{B}_{i} p \leftrightarrow \mathbf{B}_{i}\left[b_{j}\right] p$
must be excluded．
－Informal restrictions on the substitutions are：
If a formula says about an agent then，after substitution of action，it must still say about the same agent．（Similarly for actions．）
－Problem：Substitutions in extra interaction axiom

$$
\left[a_{i}\right] \mathbf{B}_{i} p \leftrightarrow \mathbf{B}_{i}\left[a_{i}\right] p
$$

must be limited．E．g．the instance

$$
\left[b_{j}\right] \mathbf{B}_{i} p \leftrightarrow \mathbf{B}_{i}\left[b_{j}\right] p
$$

must be excluded．

Two Forms of Substitution

Propositional style substitution for agent variables, propositional variables, abstract action variables:

$$
\left(\left[a_{i}\right] \mathbf{B}_{i} p \rightarrow \mathbf{B}_{i}\left[a_{i}\right] p\right)\{(b ; c) / a\}={ }_{\left[(b ; c)_{i}\right] \mathbf{B}_{i} p \rightarrow \mathbf{B}_{i}\left[(b ; c)_{i}\right] p}
$$

Substitution for concrete actions:

Two Forms of Substitution

Propositional style substitution for agent variables，propositional variables， abstract action variables：

$$
\left(\left[a_{i}\right] \mathbf{B}_{i} p \rightarrow \mathbf{B}_{i}\left[a_{i}\right] p\right)\{(b ; c) / a\}={ }_{\left[(b ; c)_{i}\right] \mathbf{B}_{i} p \rightarrow \mathbf{B}_{i}\left[(b ; c)_{i}\right] p}
$$

Substitution for concrete actions：

$$
\begin{aligned}
& \left(\left[\left(a_{i}\right)^{*}\right] p \rightarrow\left[a_{i}\right]\left[\left(a_{i}\right)^{*}\right] p\right)\left\{\left(b_{j} ; c_{k}\right) / a_{j}\right\}= \\
& \quad\left[\left(b_{i} ; c_{k}\right)^{*}\right] p \rightarrow\left[b_{i} ; c_{k}\right]\left[\left(b_{i} ; c_{k}\right)^{*}\right] p
\end{aligned}
$$

Axiomatisation of $B D L$

（1）Axioms of classical propositional logic
（2）PDL－like axioms for test－free actions：

Axiomatisation of $B D L$

（1）Axioms of classical propositional logic
（2）PDL－like axioms for test－free actions：
（1）$\left[a_{i}\right](p \rightarrow q) \rightarrow\left(\left[a_{i}\right] p \rightarrow\left[a_{i}\right] q\right)$
（2）$\left[a_{i} \cup b_{j}\right] p \leftrightarrow\left[a_{i}\right] p \wedge\left[b_{j}\right] p$
（3）$\left[a_{i} ; b_{j}\right] p \leftrightarrow\left[a_{i}\right]\left[b_{j}\right] p$
（4）$\left[\left(a_{i}\right)^{*}\right] p \rightarrow p \wedge\left[a_{i}\right] p$
（5）$\left[\left(a_{i}\right)^{*}\right] p \rightarrow\left[a_{i}\right]\left[\left(a_{i}\right)^{*}\right] p$
（6）$p \wedge\left[\left(a_{i}\right)^{*}\right]\left(p \rightarrow\left[a_{i}\right] p\right) \rightarrow\left[\left(a_{i}\right)^{*}\right] p$
（3）K45 axioms for the belief operators：
（1） $\mathbf{B}_{i} p \rightarrow \mathbf{B}_{i} \mathbf{B}_{i} p$
（2）$\neg \mathbf{B}_{i} p \rightarrow \mathbf{B}_{i} \neg \mathbf{B}_{i} p$
（1）Axioms of correspondence between abstract and concrete actions：

Axiomatisation of $B D L$

（1）Axioms of classical propositional logic
（2）PDL－like axioms for test－free actions：
（1）$\left[a_{i}\right](p \rightarrow q) \rightarrow\left(\left[a_{i}\right] p \rightarrow\left[a_{i}\right] q\right)$
（2）$\left[a_{i} \cup b_{j}\right] p \leftrightarrow\left[a_{i}\right] p \wedge\left[b_{j}\right] p$
（3）$\left[a_{i} ; b_{j}\right] p \leftrightarrow\left[a_{i}\right]\left[b_{j}\right] p$
（4）$\left[\left(a_{i}\right)^{*}\right] p \rightarrow p \wedge\left[a_{i}\right] p$
（5）$\left[\left(a_{i}\right)^{*}\right] p \rightarrow\left[a_{i}\right]\left[\left(a_{i}\right)^{*}\right] p$
（6）$p \wedge\left[\left(a_{i}\right)^{*}\right]\left(p \rightarrow\left[a_{i}\right] p\right) \rightarrow\left[\left(a_{i}\right)^{*}\right] p$
（3）K45 axioms for the belief operators：
（1） $\mathbf{B}_{i} p \rightarrow \mathbf{B}_{i} \mathbf{B}_{i} p$
（2）$\neg \mathbf{B}_{i} p \rightarrow \mathbf{B}_{i} \neg \mathbf{B}_{i} p$
（9）Axioms of correspondence between abstract and concrete actions：

Axiomatisation of $B D L$

（1）Axioms of classical propositional logic
（2）$P D L$－like axioms for test－free actions：
（1）$\left[a_{i}\right](p \rightarrow q) \rightarrow\left(\left[a_{i}\right] p \rightarrow\left[a_{i}\right] q\right)$
（2）$\left[a_{i} \cup b_{j}\right] p \leftrightarrow\left[a_{i}\right] p \wedge\left[b_{j}\right] p$
（3）$\left[a_{i} ; b_{j}\right] p \leftrightarrow\left[a_{i}\right]\left[b_{j}\right] p$
（4）$\left[\left(a_{i}\right)^{*}\right] p \rightarrow p \wedge\left[a_{i}\right] p$
（5）$\left[\left(a_{i}\right)^{*}\right] p \rightarrow\left[a_{i}\right]\left[\left(a_{i}\right)^{*}\right] p$
（6）$p \wedge\left[\left(a_{i}\right)^{*}\right]\left(p \rightarrow\left[a_{i}\right] p\right) \rightarrow\left[\left(a_{i}\right)^{*}\right] p$
（3）K45 axioms for the belief operators：
（1） $\mathbf{B}_{i} p \rightarrow \mathbf{B}_{i} \mathbf{B}_{i} p$
（2）$\neg \mathbf{B}_{i} p \rightarrow \mathbf{B}_{i} \neg \mathbf{B}_{i} p$
（4）Axioms of correspondence between abstract and concrete actions：
（1）$\left[(a \cup b)_{i}\right] p \leftrightarrow\left[a_{i} \cup b_{i}\right] p$
（2）$\left[(a ; b)_{i}\right] p \leftrightarrow\left[a_{i} ; b_{i}\right] p$
（3）$\left[\left(a^{*}\right)_{i}\right] p \leftrightarrow\left[\left(a_{i}\right)^{*}\right] p$

Axiomatisation of $B D L$

(1) Axioms of classical propositional logic
(2) $P D L$-like axioms for test-free actions:
(1) $\left[a_{i}\right](p \rightarrow q) \rightarrow\left(\left[a_{i}\right] p \rightarrow\left[a_{i}\right] q\right)$
(2) $\left[a_{i} \cup b_{j}\right] p \leftrightarrow\left[a_{i}\right] p \wedge\left[b_{j}\right] p$
(3) $\left[a_{i} ; b_{j}\right] p \leftrightarrow\left[a_{i}\right]\left[b_{j}\right] p$
(4) $\left[\left(a_{i}\right)^{*}\right] p \rightarrow p \wedge\left[a_{i}\right] p$
(5) $\left[\left(a_{i}\right)^{*}\right] p \rightarrow\left[a_{i}\right]\left[\left(a_{i}\right)^{*}\right] p$
(6) $p \wedge\left[\left(a_{i}\right)^{*}\right]\left(p \rightarrow\left[a_{i}\right] p\right) \rightarrow\left[\left(a_{i}\right)^{*}\right] p$
(3) K45 axioms for the belief operators:
(1) $\mathbf{B}_{i} p \rightarrow \mathbf{B}_{i} \mathbf{B}_{i} p$
(2) $\neg \mathbf{B}_{i} p \rightarrow \mathbf{B}_{i} \neg \mathbf{B}_{i} p$
(4) Axioms of correspondence between abstract and concrete actions:
(1) $\left[(a \cup b)_{i}\right] p \leftrightarrow\left[a_{i} \cup b_{i}\right] p$
(2) $\left[(a ; b)_{i}\right] p \leftrightarrow\left[a_{i} ; b_{i}\right] p$

3 $\left[\left(a^{*}\right)_{i}\right] p \leftrightarrow\left[\left(a_{i}\right)^{*}\right] p$
(5) An axiom for the informational test operator:

- $\left[(p ?)_{i}\right] q \leftrightarrow \mathbf{B}_{i}\left(\mathbf{B}_{i} p \rightarrow q\right)$

Properties of BDL and Its Extensions

Theorem（Completeness）
$B D L$ is complete．

```
Theorem (The effective finite model property)
If }\omega\mathrm{ is satisfiahle in some RDI _model then d is satisfiable in a finite model with no more
than 2}\mp@subsup{2}{}{n}\cdot(\mp@subsup{2}{}{\mp@subsup{2}{}{n}}\mp@subsup{)}{}{m}\mathrm{ states, where
    - n}\mathrm{ is a number of symbols in a formula }\phi\mathrm{ ,
    - m}\mathrm{ is a number of agent variables connected with some test operator in क
```


Properties of BDL and Its Extensions

Theorem（Completeness）

$B D L$ is complete．

Theorem（The effective finite model property）

If ϕ is satisfiable in some BDL－model then ϕ is satisfiable in a finite model with no more than $2^{n} \cdot\left(2^{2^{n}}\right)^{m}$ states，where
－n is a number of symbols in a formula ϕ ，
－m is a number of agent variables connected with some test operator in ϕ ．

Theorem

All extensions of BDL by the axioms
 are complete and have the effective finite model property．

Properties of BDL and Its Extensions

Theorem（Completeness）

$B D L$ is complete．

Theorem（The effective finite model property）

If ϕ is satisfiable in some BDL－model then ϕ is satisfiable in a finite model with no more than $2^{n} \cdot\left(2^{2^{n}}\right)^{m}$ states，where
－n is a number of symbols in a formula ϕ ，
－m is a number of agent variables connected with some test operator in ϕ ．

Theorem

All extensions of BDL by the axioms
（T）
$\mathbf{B}_{i} p \rightarrow p$
（PR）
$\mathbf{B}_{i}\left[a_{i}\right] p \rightarrow\left[a_{i}\right] \mathbf{B}_{i} p$
（D）
$\mathbf{B}_{i} p \rightarrow \neg \mathbf{B}_{i} \neg p$
（CR）
$\neg \mathbf{B}_{i} \neg\left[a_{i}\right] p \rightarrow\left[a_{i}\right] \neg \mathbf{B}_{i} \neg p$
are complete and have the effective finite model property．

Theorem（Embedding of PDL）

$P D L$ can be simulated within the logic $B D L \oplus\{T\}$

Properties of BDL and Its Extensions

Theorem (Completeness)

$B D L$ is complete.

Theorem (The effective finite model property)

If ϕ is satisfiable in some BDL-model then ϕ is satisfiable in a finite model with no more than $2^{n} \cdot\left(2^{2^{n}}\right)^{m}$ states, where

- n is a number of symbols in a formula ϕ,
- m is a number of agent variables connected with some test operator in ϕ.

Theorem

All extensions of BDL by the axioms
(T)
$\mathbf{B}_{i} p \rightarrow p$
$\mathbf{B}_{i}\left[a_{i}\right] p \rightarrow\left[a_{i}\right] \mathbf{B}_{i} p$
(D)
$\mathbf{B}_{i} p \rightarrow \neg \mathbf{B}_{i} \neg p$
(CR)
$\neg \mathbf{B}_{i} \neg\left[a_{i}\right] p \rightarrow\left[a_{i}\right] \neg \mathbf{B}_{i} \neg p$
are complete and have the effective finite model property.

Theorem (Embedding of PDL)

$P D L$ can be simulated within the logic $B D L \oplus\{T\}$

Summary

－Notions of abstract and concrete action are introduced．
－A new informational test operator is proposed．
－A logic BDL is constructed which allows reasoning about actions and beliefs of many agents．

Summary

－Notions of abstract and concrete action are introduced．
－A new informational test operator is proposed．
－A logic BDL is constructed which allows reasoning about actions and beliefs of many agents．
－Substitution rules are described to reason about all objects of BDL uniformly．

Summary

- Notions of abstract and concrete action are introduced.
- A new informational test operator is proposed.
- A logic $B D L$ is constructed which allows reasoning about actions and beliefs of many agents.
- Substitution rules are described to reason about all objects of BDL uniformly.
- Axiomatisation for BDL is built, completeness and the effective finite model property for the logic and some of it's extensions by interaction axioms for action and informational modalities are proved.
- Notions of abstract and concrete action are introduced.
- A new informational test operator is proposed.
- A logic $B D L$ is constructed which allows reasoning about actions and beliefs of many agents.
- Substitution rules are described to reason about all objects of BDL uniformly.
- Axiomatisation for BDL is built, completeness and the effective finite model property for the logic and some of it's extensions by interaction axioms for action and informational modalities are proved.
－Notions of abstract and concrete action are introduced．
－A new informational test operator is proposed．
－A logic BDL is constructed which allows reasoning about actions and beliefs of many agents．
－Substitution rules are described to reason about all objects of BDL uniformly．
－Axiomatisation for $B D L$ is built，completeness and the effective finite model property for the logic and some of it＇s extensions by interaction axioms for action and informational modalities are proved．

[^0]: ${ }^{1} Q^{*}$ is the transitive and reflexive closure of Q.

[^1]: Theorem
 The action ϕ ? $\cup \neg \phi$? is informative and truthful with respect to ϕ and
 preserves beliefs.

