
On Reinsertions in M-tree

Jakub Lokoč
Charles University in Prague, FMP

Department of Software Engineering,
Malostran. nám. 25, Prague, Czech Rep.

jakub.lokoc@mff.cuni.cz

Tomáš Skopal
Charles University in Prague, FMP

Department of Software Engineering,
Malostran. nám. 25, Prague, Czech Rep.

tomas.skopal@mff.cuni.cz

Abstract

In this paper we introduce a new M-tree building
method, utilizing the classic idea of forced reinsertions.
In case a leaf is about to split, some distant objects
are removed from the leaf (reducing the covering ra-
dius), and then again inserted into the M-tree in a
usual way. A regular leaf split is performed only after a
series of unsuccessful reinsertion attempts. We expect
the forced reinsertions will result in more compact M-
tree hierarchies (i.e., more efficient query processing),
while the index construction costs should be kept as low
as possible. Considering both low construction costs
and low querying costs, we examine several combina-
tions of construction policies with reinsertions. The
experiments show that forced reinsertions could signif-
icantly decrease the number of distance computations,
thus speeding up indexing as well as querying.

1 Introduction

During the last decade, the metric access methods
(MAMs) [15] have becoming a respected tool for effi-
cient similarity search in multimedia databases, time
series, biometric databases and many other collections
of unstructured data entities. A task common to all
MAMs is to quickly retrieve database objects relevant
to a similarity query (either a range query or a kNN
query), where the (dis)similarity between two objects
Oi, Oj is modeled by a metric distance δ(Oi, Oj). Since
the evaluation of a single distance value δ(·, ·) is con-
sidered as expensive, the MAMs are designed to mini-
mize the number of distance computations spent dur-
ing query processing (at the cost of more or less ex-
pensive indexing). Due to the metric properties of
δ(·, ·), MAMs organize the database objects within re-
gions (stored in an index structure) which are subse-
quently used to cheaply filter out non-relevant (sets of)

database objects when querying. So far, many MAMs
have been developed, e.g., (m)vp-tree, slim-tree, M-
tree, PM-Tree, D-index and many others [15, 8].

In this paper we focus on dynamic construction of
M-tree utilizing the technique of forced reinsertions.
The experiments have shown the forced reinsertions
could not only lead to faster querying, but also to bet-
ter querying/construction trade-off when compared to
other M-tree construction methods.

2 M-tree

The M-tree [5] is a dynamic, balanced and persis-
tent data structure suitable for indexing of large metric
databases. The structure of M-tree represents a hier-
archy of nested ball regions, where data is stored in
leaves (see Figure 1). Every node has a capacity of m
entries and a minimal occupation mmin (only the root
node is allowed to be underflowed below mmin). The
inner nodes consist of routing entries rout(Or):

rout(Or) = [Or, ptr(T (Or)), rOr
, δ(Or, P (Or))]

Where Or is a routing object, ptr(T (Or)) is a pointer
to a subtree T (Or), rOr

is a covering radius (∀Oi ∈
T (Or), rOr

≥ δ(Or, Oi)) and the last one is a distance
to the parent object P (Or) denoted as δ(Or, P (Or)).
The parent distance is not defined for entries in the
root. A leaf (ground) entry has a format:

grnd(Oi) = [Oi, oid(Oi), δ(Oi, P (Oi))],

where Oi and δ(Oi, P (Oi)) are the same as in the rout-
ing entry, oid(Oi) is an identifier of the original object
(Oi is just a feature object).

Routing entry represents a ball region in the metric
space with its center in pivot Or and radius equal to
rOr

. The regions represented by routing entries on the
same level may overlap; this has a negative impact on
the number of distance computations when a similarity
query is processed.

First International Workshop on Similarity Search and Applications

0-7695-3101-6/08 $25.00 © 2008 IEEE
DOI 10.1109/SISAP.2008.10

121

First International Workshop on Similarity Search and Applications

0-7695-3101-6/08 $25.00 © 2008 IEEE
DOI 10.1109/SISAP.2008.10

121

During last decade, many methods have been de-
veloped to challenge the problem of overlaps and of
compact M-tree hierarchies; we overview some recent
approaches of M-tree enhancements in Section 3 and
present our contributing method in Section 4.

Figure 1. An M-tree hierarchy.

2.1 Building the M-tree

An M-tree is built in the bottom-up fashion (like B-
tree, R-tree), that is, data objects are inserted into the
leaf nodes. When a leaf is overfull, a split is performed
– a new leaf is created and some objects are moved from
the original leaf into the new one. Two new routing
entries are created (one for the original updated leaf
and one for the new leaf) and inserted into the parent
node (entry for the original leaf is just replaced). All
distances between ground entries and the new routing
objects are updated. Because of inserting new routing
entries the parent (inner) node could be overfull as well
– in such case a split is performed in a similar way,
recursively. If the root node is split, the M-tree grows
by one level.

When building an M-tree, two main problems have
to be solved – the leaf selection and node splitting:

2.1.1 Leaf selection

In the original M-tree, a process similar to a point
query is performed, in order to find an appropriate leaf
for object placement. However, in contrast to a point
query, only one vertical path (branch) of the tree is
passed. This approach is also referred to as the single-
way (deterministic) insertion. When navigating the
tree, the next node in the path is chosen such that
the inserted object fits the appropriate region best (for
details we refer to [5, 12]).

2.1.2 Node splitting

The node splitting policy is a significant factor of the
M-tree building process. When a node is split, two new
routing entries (representing new ball regions) have to
be created. To guarantee a compact M-tree hierarchy,
the splitting process must ensure the new regions are
separated as much as possible, they overlap as least as
possible, and they are of minimum volumes (radii).

To best fit these requirements, all the objects in the
node are candidates to the routing objects. For each
pair of candidate routing objects, the resulting nodes
are temporarily created and radius of the greater region
is determined. Such pair of candidate routing objects
is finally chosen, which has the smallest radius of the
greater region (so-called mM Rad choice). This CLAS-
SIC approach bears complexity of O(m2) (where m is
capacity of the node). To avoid the quadratic complex-
ity, there were alternative heuristics developed:

• The RANDOM approach directly selects two new
routing objects at random, which cuts the com-
plexity down to O(m).

• Instead of considering all objects in the node as
candidate routing objects, the SAMPLING ap-
proach selects randomly just s candidates (s < m).
Then complexity of node splitting is O(ms).

In Figure 2 see the result of leaf splitting using the
CLASSIC and SAMPLING approach.

Figure 2. Leaf split using (a) CLASSIC and (b)
SAMPLING approach.

3 Related work

There have been many variants of M-tree developed.
PM-tree [10, 13] which combines the M-tree with pivot-
based techniques, M+-tree [16] which exploits further
partitioning of the node by a hyper-plane (i.e., an ap-
proach limited to Euclidean vector spaces), M2-tree [4],

122122

M3-tree [2] which exploit an aggregation of multiple
metrics, very recently introduced M∗-tree [11], where
each node is additionally equipped by a NN-graph, and
many others. In the rest of the paper (and related
work) we consider the original structural properties of
M-tree [5] (i.e., modified algorithms, not the structure).

The effectiveness of query processing in M-tree heav-
ily depends on the construction algorithm (indexing)
used. To increase the search performance, the con-
struction would be expensive, and vice versa. For
example, if we use the RANDOM node split heuris-
tic, we obtain low construction costs, but the query
costs will rapidly increase. In general, to achieve cheap
querying, the M-tree’s hierarchy of nested ball regions
should be as compact as possible → a compact hier-
archy means smaller overlaps and smaller volumes →
which means less frequent overlaps of non-relevant re-
gions by a query.

Since the structural properties of M-tree are very
loose, there are many M-tree hierarchies possible for
a single database. Even if we use single construction
method, the resulting M-tree hierarchy will still heavily
depend on the order in which data objects are inserted
(in case of dynamic insertions). An optimal M-tree hi-
erarchy(ies) surely exist(s), however, such construction
would require static indexing, and, above all, an expo-
nential construction time. Hence, we would rather pre-
fer an efficient sub-optimal (dynamic) construction, yet
producing sufficiently compact hierarchies. In the fol-
lowing we present three such sub-optimal approaches.

3.1 Slim-down algorithm

The main feature of Slim-tree [14] is the slim-down
algorithm. For each object in each leaf node the al-
gorithm issues a point query to locate more suitable
leaves. If there are such leaves the object is moved
from the original leaf to the most suitable leaf found
(the one having the nearest routing object). The ra-
dius in the original node’s parent routing entry is de-
creased. Although the construction costs are high
(O(nlogn)–O(n2) where n is database size), the algo-
rithm produces very compact M-tree hierarchies – the
query performance could be improved by an order of
magnitude. However, slim-down algorithm is a post-
processing method (yet not static), it is not very suit-
able for a dynamically growing database.

In [12], the slim-down algorithm has been general-
ized for the whole tree. After the leaf level process-
ing, the upper M-tree levels are subsequently processed
until the root is reached. The construction costs are
comparable to the slim-down algorithm, but the gen-
eralized version provides a better query performance.

3.2 Multi-way leaf selection

In the original M-tree the single-way leaf selection
is performed. From the global point of view, only one
branch is selected on the basis of local conditions. In
[12] the authors present multi-way leaf selection, which
performs a point query to discover all candidate leaf
nodes which spatially cover the new object. From this
candidates the most suitable leaf (close and non-full) is
selected. When compared to the slim-down algorithm
the construction is cheaper but the retrieval perfor-
mance is worse. On the other hand, querying used on
multi-way-built index outperforms the single-way ver-
sion (at the cost of more expensive construction).

3.3 Bulk loading

The basic idea of bulk loading is to create the in-
dex from scratch but knowing beforehand the database,
thus some optimizations may be performed to obtain
a “good” index for that database. Usually, the pro-
posed bulk loading techniques are designed for spe-
cific index structures, but there have been proposals
for more general algorithms. For example, in [6] the
authors propose two generic algorithms for bulk load-
ing, which were tested with different index structures
like the R-tree and the Slim-tree. Note that the ef-
ficiency of the index may degrade if new objects are
inserted after its construction. Specific bulk loading
techniques for M-tree were introduced in [3, 9].

4 Forced Reinserting in M-tree

The forced reinserting is a well-known technique
from R*-tree [1]. The idea is based on easy princi-
ple, where some objects are removed from a leaf to
avoid a split operation and then inserted in a com-
mon way under a hope that the reinserted objects will
arrive into more “suitable” leaf(s). There are two ba-
sic motivations to consider forced reinsertion as bene-
ficial (considering any B-tree-based spatial/metric in-
dex structure). The straightforward (but also weaker)
motivation is better node occupancy, that is, forced
reinsertions lead to fuller nodes. Second, due to un-
avoidable node splitting over the time, the compactness
of spatial/metric region hierarchy deteriorates (the re-
gion volumes and overlaps grow because of spatial ag-
gregations mixing old and new objects/regions). Here
the forced reinsertions could serve as an opportunity
to move some “bad” (volume- or overlap-inflating) ob-
jects from the leaf.

In M-tree, we have to face some specific issues, when
implementing forced reinsertions. Basically, when a

123123

new object is inserted into a leaf that is now about
to split, some suitable objects from the leaf must be
selected and reinserted. The crucial goal is to propose
a method aiming to decrease the covering radius of the
reinserted leaf as much as possible while aiming to grow
the radii of leaves accepting the reinserted objects as
little as possible. Here we have to take also the induced
leaf splits/reinsertions into account, that is, a forced
reinsertion attempt could raise a chain of reinsertions
(terminated by regular splits “after a while”).

Figure 3. (a) Situation before split. (b) De-
creased overlap after reinserting.

As a fundamental assumption, we expect objects lo-
cated close to the region’s “border” have higher prob-
ability to be suitably reinserted than the more “cen-
tered” ones. Since in an M-tree node the entries are
ordered according to their distances to the parent rout-
ing entry (region’s center), we can select the furthest
ones (close to the border) easily.1 In Figure 3 see a mo-
tivation – situation just before a leaf split, and how the
split is avoided after a series of (induced) reinsertions.
We can see that not only the split was prevented, but
the M-tree compactness was improved, too.

In the following we present some details of our ap-
proach to forced reinsertions in M-tree.

As mentioned before, we assume the most suitable
entries for reinserting are the furthest ones from the
parent routing entry. To avoid a leaf split, k furthest
entries are removed from the leaf and stored in a tem-
porary main memory stack S. At the same moment
the covering radius is updated to the distance to the
new furthest entry in the leaf (and so the covering radii
of all ancestors). Then, the current entry on the top
of S is reinserted (possibly causing further reinsertion
attempts, i.e., filling the stack). The reinsertions are
repeated until the stack becomes empty.

1Remember the precomputed distances to the routing entry
(pivot) are stored in all entries (except entries in the root node).

4.1 Recursion depth

Since a single reinsertion attempt could generally
raise a long chain of subsequent reinsertions (the stack
is inflating instead of emptying), we would like to limit
the number of forced reinsertion attempts to keep the
construction costs reasonable. The limit is denoted as
a user-defined recursion depth parameter, so when the
limit of reinsertion attempts is reached, the remaining
entries in the stack are reinserted such that only regular
splits are allowed from now on (i.e., the stack does not
grow anymore).

Figure 4. Entries removing strate-
gies: (a) Pessimistic, (b) Optimistic (c)
Rev Pessimistic, (d) Rev Optimistic.

4.2 Entries removing

We define four strategies (depicted in Figure 4) for
entries removing. Let grnd(Onew,...) be the new in-
serted entry that invoked the split, and let E denote
the leaf’s portion consisting of the k furthest entries.
The two former strategies consider situation when E
contains Onew. Here, the objects are processed in the
descending order (i.e., starting from the furthest en-
try).

• The pessimistic strategy supposes Onew will be
reinserted again into the same leaf. To prevent
this, the removing process is stopped after Onew

is reached, thus, Onew and closer objects are not
removed from E. If Onew is the furthest object in
the node, the regular split has to be performed.

• The optimistic strategy removes all objects from
E, thus the radius of the leaf region is minimized,
while anticipating all objects from E (possibly in-
cluding Onew) will be reinserted into other leaves.

• Rev pessimistic and Rev optimistic strategies are
similar to the former two. The only difference is in
the reverse order of processing, that is, the remov-
ing starts with the closest entry, so the furthest
one is on the top of the stack S.

124124

To provide clear summary, in Listing 1 see the pseu-
docode of dynamic insertion algorithm enhanced by
forced reinsertions.

Listing 1 (insertion with forced reinsertions)

let maxRemoved be maximal number of removed entries (user-defined)
let removingStrategy be the type of entries removing (user-defined)
let recursionDepth be the maximal depth of recursion (user-defined)

method Insert(Onew) {
find leaf L for Onew

insert Onew into L

if L is not overfull then
return

let E be the portion of L with maxRemoved furthest entries (sorted ASC)

if removingStrategy is Pessimistic or RevPessimistic then
exclude grnd(Onew ,...) and all closer entries from E

if |E| > 0 and recursionDepth > 0 then
for (j = 0; j < |E|; j++) // remove furthest entries from leaf

if removingStrategy is RevOptimistic or RevPessimistic then
S.Push(E.GetEntry(1))
E.DeleteEntry(1)

else
S.Push(E.GetEntry(|E|))
E.DeleteEntry(|E|)

decrease radius of L (and possibly of its ancestors)

while (S is not empty) // reinsert removed entries
recursionDepth = recursionDepth − 1
Insert(S.Pop())

else
perform regular split of L (and possibly of its ancestors)

}

4.3 Construction vs. query efficiency

The benefits of forced reinsertions are two-fold.
First, reinsertions could clearly improve the compact-
ness of M-tree (thus the retrieval performance) at the
cost of more expensive construction. Furthermore, the
second benefit considers the trade-off between index-
ing and querying performance. We would like to de-
crease construction costs but simultaneously keep the
retrieval costs as low as if used more expensive con-
struction. With forced reinsertions this goal could be
carried out. For example, the CLASSIC splitting of
M-tree node is expensive but brings a faster retrieval,
while the SAMPLING splitting is cheaper but also
leads to slower retrieval. Since the CLASSIC split-
ting could produce M-tree which is compact enough,
at some scenarios the employment of forced reinser-
tions could not bring any further improvement (so only
the construction costs grow, but the retrieval perfor-
mance is not improved). In such case we could rather
employ the forced reinsertions together with the SAM-
PLING splitting, in order to achieve retrieval costs sim-
ilar to that achieved by CLASSIC splitting, however,

for cheaper construction (somewhere between SAM-
PLING and CLASSIC without forced reinsertions). In
other words, forced reinsertions could cheaply fix the
bad data partitioning caused by SAMPLING splitting.

5 Experimental results

We have performed experimentation focusing on the
distance computations spent during a query process-
ing and index construction, when (not) using forced
reinsertions. We have performed the tests on two dif-
ferent databases, a subset of Corel [7] image features
(68,040 32-dimensional vectors representing color his-
tograms). As a distance function the Euclidean (L2)
distance has been employed. The second database was
a synthetic randomly generated set of 250,000 2D poly-
gons (each polygon consisting of 10–15 vertices). The
Hausdorff distance was used to measure similarity of
two polygons. The query costs were always averaged
for 200 uniformly distributed query objects. We did
not perform an inter-MAM comparison; we have fo-
cused just on various configurations of M-tree (with or
without forced reinsertions). As parameters, we have
observed various data dimensionalities, database sizes,
node’s capacities as well as various forced reinsertion
settings.

20 30 40 50 60 70 80

1

2
5

 1
0

2
0

5
0

 1

0
0

COREL construction, dim 16

node capacity

c
o

n
s
tr

u
c
ti
o

n
 c

o
s
ts

 (
lo

g
,

x
 1

0
0

0
0

0
0

)

GSD
MW(+reins.)
MW

CLASSIC(+reins.)
SAMP(+reins.)
CLASSIC
SAMP

Figure 5. Construction costs for growing
node capacities.

5.1 M-tree Construction

We have tested four M-tree building methods: the
original (single-way) M-tree insertion with CLASSIC
and SAMPLING node splitting serving as a baseline
(denoted as CLASSIC and SAMP, respectively), then
the generalized slim-down algorithm denoted as GSD,

125125

multi-way leaf selection denoted as MW (GSD and MW
used the CLASSIC node splitting). For all of them
(except GSD) we examined variants with forced rein-
sertions (label attached by +reins.), so finally 7 ways of
M-tree construction were tested. The recursion depth
for reinsertions was set to 10 (observed as the best
value), the sample size was set to 10% of the node
capacity (when using the SAMPLING splitting), the
maximum number of removed entries per leaf was set
to k = 5 (observed as the best value, see below). The
reverse pessimistic entries removing strategy was used,
unless otherwise stated.

20 40 60 80 120 160 200 240

0
3

0
6

0
9

0
1

2
0

POLYGONS construction

dim 10-15, node capacity 40

DB size (x 1000)

c
o

n
s
tr

u
c
ti
o

n
 c

o
s
ts

 (
x
 1

0
0

0
0

0
0

)

GSD
MW(+reins.)
MW
CLASSIC(+reins.)
SAMP(+reins.)
CLASSIC
SAMP

Figure 6. Construction costs for growing
database size.

2 4 6 8 10 14 18 22 26 30

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0
5

0
0

0
6

0
0

0
7

0
0

0

5NN queries, COREL, node capacity 50

dim

q
u

e
ry

 c
o

s
ts

SAMP
CLASSIC
SAMP(+reins.)
CLASSIC(+reins.)
MW
MW(+reins.)
GSD

Figure 7. 5NN query costs for varying dimen-
sionality.

In Figure 5 the construction costs for growing node
capacities are shown. As we can see, the costs of SAMP
grow slowly, which is caused by the subquadratic node
splitting complexity. Moreover, for higher node capac-

ities SAMP+reins. becomes cheaper than CLASSIC. As
expected, construction costs of GSD are an order of
magnitude higher (followed by MW(+reins.)).

The Figure 6 shows that construction costs are lin-
ear with respect to the database size (Polygons) for
CLASSIC+reins. and SAMP+reins. as well as for their
counterparts without reinserting.

100 200 300 400 500 600 700 800 900 1000

6
0

0
0

1
0

0
0

0
1

4
0

0
0

1
8

0
0

0

Range queries, COREL

node capacity 40, dim 32

query selectivity

q
u

e
ry

 c
o

s
ts

CLASSIC
SAMP
SAMP(+reins.)
CLASSIC(+reins.)
MW
MW(+reins.)
GSD

Figure 8. Query costs for growing range
query selectivity.

100 200 300 400 500 600 700 800 900 1000

1
4

0
0

2
0

0
0

2
6

0
0

3
2

0
0

3
8

0
0

4
4

0
0

5
0

0
0

kNN queries, POLYGONS

dim 15, node capacity 50

kNN

q
u

e
ry

 c
o

s
ts

SAMP
SAMP(+reins.)
CLASSIC
CLASSIC(+reins.)

MW
MW(+reins.)
GSD

Figure 9. Query costs for kNN queries.

5.2 Range and kNN queries

When considering the Corel database, forced rein-
serting improves kNN queries significantly. In Fig-
ure 7 see the decrease of query costs down to 75% for
SAMP+reins. and CLASSIC+reins.. Reinserting com-
bined with the multi-way leaf selection (MW+reins.)
decreases query costs down to 80%. Although the con-
struction costs for MW(+reins.) are high, they are still

126126

cheaper than those of the generalized slim-down algo-
rithm.

The next test is presented in Figures 8 and 9, con-
sidering growing range query selectivity and the num-
ber of the nearest neighbors. It can be observed, that
forced reinserting follows the trend shown by the origi-
nal methods. When looking at Polygons, the CLAS-
SIC+reins. queries are as fast as MW queries, but
in contrast to MW the construction costs for CLAS-
SIC+reins. are just 60% of MW construction costs.

20 25 30 35 40 45 50 55 60 65 70 75 80

2
4

0
0

3
0

0
0

3
6

0
0

4
2

0
0

4
8

0
0

5
4

0
0

6
0

0
0

5NN queries, COREL, dim 16

node capacity

q
u

e
ry

 c
o

s
ts

SAMP
CLASSIC
SAMP(+reins.)
CLASSIC(+reins.)

Figure 10. 5NN query costs for a growing
node capacity.

Query costs for growing node capacity are presented
in the Figure 10. We can see the methods enhanced by
forced reinserting outperform the original ones.

0 1 2 3 4 5 6 7 8 9

1
1
5
0

1
2
0
0

1
2
5
0

1
3
0
0

1
3
5
0

1
4
0
0

1
4
5
0

10NN queries, POLYGONS

dim 15, Samp(+reins.)

max number of removed objects from a leaf to avoid a splitting

q
u
e
ry

 c
o
s
ts

Node-30
Node-40
Node-50
Node-60
Node-70

Figure 11. Maximal number of removed en-
tries per leaf.

5.3 Parameters of Forced Reinsertion

In addition to external parameters, we have exam-
ined also internal parameters – maximal number of re-
moved entries per leaf and strategies for entries remov-
ing (see Section 4.2).

4 6 8 10 14 18 22 26 303
5

0
0

0
0

0
5

5
0

0
0

0
0

7
5

0
0

0
0

0
9

5
0

0
0

0
0

COREL construction

node capacity 50

dim

c
o

n
s
tr

u
c
ti
o

n
 c

o
s
ts

SAMP(+reins.) Optimistic
SAMP(+reins.) Rev_Optimistic
SAMP(+reins.) Pessimistic
SAMP(+reins.) Rev_Pessimistic
CLASSIC
SAMP

Figure 12. Index construction costs for differ-
ent removing strategies.

4 6 8 10 14 18 22 26 30

0
1

0
0

0
3

0
0

0
5

0
0

0
7

0
0

0

10NN queries, COREL

node capacity 50

dim

q
u

e
ry

 c
o

s
ts

SAMP
CLASSIC
SAMP(+reins.) Pessimistic
SAMP(+reins.) Optimistic
SAMP(+reins.) Rev_Pessimistic
SAMP(+reins.) Rev_Optimistic

Figure 13. Query costs of indexes with differ-
ent removing strategies.

The maximal number of removed entries per leaf (see
Figure 11) positively affects the query performance just
until k = 5 is reached. However, for increasing k the
construction costs grow, so we fixed k = 5 in all the
other experiments (as mentioned at the beginning of
this section).

In Figures 12 and 13 see the effects of all four strate-
gies for removing entries. The reverse pessimistic strat-
egy won in both low construction costs and good query

127127

performance, hence we have used this strategy in all
other experiments (as mentioned at the beginning of
this section).

0 4 8 12

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
2

0
0

10NN query costs vs. construction costs

POLYGONS, dim 15

construction costs (x 1000000)

q
u

e
ry

 c
o

s
ts

 (
lo

g
)

Node-20
Node-40
Node-80

SAMP
SAMP(+reins.)
CLASSIC
CLASSIC(+reins.)
MW
MW(+reins.)
GSD

Figure 14. Overall performance of M-tree with
or without forced reinsertions.

Finally, the Figure 14 provides an aggregated pic-
ture over all the mentioned M-tree construction strate-
gies, considering the construction vs. query perfor-
mance trade-off. When considering a compromise be-
tween construction and query performance, the forced
reinsertion improves the CLASSIC and SAMP methods
significantly.

6 Conclusion

We have proposed a new M-tree building method,
which utilizes the well-known forced reinsertion idea.
This approach provides more compact M-tree hierar-
chies, resulting in better query performance. We have
also shown the forced reinsertion can be combined with
some cheap node splitting strategies to keep construc-
tion costs low, while improving the query costs. Fur-
thermore, forced reinsertion, as a general technique,
can be easily combined with other approaches. This
feature gives us a flexible tool for tuning the M-tree
properties, in order to achieve a desired behavior of
the entire indexing/retrieval process.

Acknowledgments

This research has been partially supported by Czech
grants: ”Information Society program” number
1ET100300419 and Institutional research plan number
MSM0021620838.

References

[1] N. Beckmann, H.-P. Kriegel, R. Schneider, and
B. Seeger. The R*-tree: an efficient and robust ac-
cess method for points and rectangles. SIGMOD Rec.,
19(2):322–331, 1990.

[2] B. Bustos and T. Skopal. Dynamic Similarity Search
in Multi-Metric Spaces. In Proceedings of ACM Mul-
timedia, MIR workshop, pages 137–146. ACM Press,
2006.

[3] P. Ciaccia and M. Patella. Bulk loading the M-tree, In
Proceedings of the 9th Australasian Database Confer-
ence (ADC’98), pages 15–26, Perth, Australia, 1998.

[4] P. Ciaccia and M. Patella. The M2-tree: Processing
Complex Multi-Feature Queries with Just One Index.
In DELOS Workshop: Information Seeking, Searching
and Querying in Digital Libraries, 2000.

[5] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An Ef-
ficient Access Method for Similarity Search in Metric
Spaces. In VLDB’97, pages 426–435, 1997.

[6] J. V. den Bercken and B. Seeger. An evaluation
of generic bulk loading techniques. In Proc. 27th
International Conference on Very Large Data Bases
(VLDB’01), pages 461–470. Morgan Kaufmann, 2001.

[7] S. Hettich and S. Bay. The UCI KDD archive
[http://kdd.ics.uci.edu], 1999.

[8] H. Samet. Foundations of Multidimensional and Met-
ric Data Structures. Morgan Kaufmann, 2006.

[9] A. P. Sexton and R. Swinbank. Bulk Loading the
M-Tree to Enhance Query Performance. In BNCOD,
pages 190–202, 2004.

[10] T. Skopal. Pivoting M-tree: A Metric Access
Method for Efficient Similarity Search. In Pro-
ceedings of the 4th annual workshop DATESO,
Desná, Czech Republic, ISBN 80-248-0457-3, also
available at CEUR, Volume 98, ISSN 1613-0073,
http://www.ceur-ws.org/Vol-98, pages 21–31, 2004.

[11] T. Skopal and D. Hoksza. Improving the performance
of m-tree family by nearest-neighbor graphs. In AD-
BIS, pages 172–188, 2007.

[12] T. Skopal, J. Pokorný, M. Krátký, and V. Snášel. Re-
visiting M-tree Building Principles. In ADBIS, Dres-
den, pages 148–162. LNCS 2798, Springer, 2003.

[13] T. Skopal, J. Pokorný, and V. Snášel. Nearest Neigh-
bours Search using the PM-tree. In DASFAA ’05,
Beijing, China, pages 803–815. LNCS 3453, Springer,
2005.

[14] C. Traina Jr., A. Traina, B. Seeger, and C. Faloutsos.
Slim-Trees: High performance metric trees minimizing
overlap between nodes. 1777:51–65, 2000.

[15] P. Zezula, G. Amato, V. Dohnal, and M. Batko. Sim-
ilarity Search: The Metric Space Approach (Advances
in Database Systems). Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2005.

[16] X. Zhou, G. Wang, J. Y. Xu, and G. Yu. M+-tree:
A New Dynamical Multidimensional Index for Metric
Spaces. In ADC, pages 161–168, 2003.

128128

