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Since their inception in 1979 the Linz Seminars on Fuzzy Sets have emphasized the development
of mathematical aspects of fuzzy sets by bringing together researchers in fuzzy sets and established
mathematicians whose work outside the fuzzy setting can provide direction for further research. The
seminar is deliberately kept small and intimate so that informal critical discussion remains central.
There are no parallel sessions and during the week there are several round tables to discuss open
problems and promising directions for further work.

LINZ 2006 will be already the 27th seminar carrying on this tradition, will be devoted to the
mathematical aspects of “Preferences, Games and Decisions”. As usual, the aim of the Seminar is an
intermediate and interactive exchange of surveys and recent results.

János Fodor
Erich Peter Klement

Marc Roubens
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Fuzzy Truth, Partial Truth, and Games 
 

Joseph M. Barone 
321 East 43rd Street, #209 

New York, NY 10017  USA 
secretary@nafips.org 

 
 We begin with the category Sets2 as defined in [1] (see esp. p. 25 and pp. 35-36). This is the 
category  whose objects are functions from one set to another, denoted by σ: X → X’. The arrows 
then are commutative squares between the objects (the σ‘s). For Sets2, the subobject classifier Ω (the 
set of truth values) becomes the arrow σ: {0, 1, 2} → {0, 1} which sends 0 to 0 (true, σ0), 1 to 0 
(true, σ1) and 2 to 1 (false, σ2).To understand this, note that a subobject of an object σ: X → X’ 
would be an arrow σ: S → S’ where S ⊆ X, S’ ⊆ X’ and σ(S) ⊆ S’. The characteristic function then 
maps X(x) → X’(x) to σ0 if x ∈ S, to σ1 if x ∉ S but σ(x) ∈ X’, and to σ2 if x ∉ S and σ(x) ∉ X’. 
Thus, as is noted in [1], the characteristic function tells us whether “x is in S” is true always, just at 1, 
or never. The question is exactly how do we come to this particular subobject classifier? Why, for 
instance, could we not simply use (say) ρ:  {0, 1} id→ {0, 1} by analogy to the Ω for sets ({0, 1})? 
 
 The obvious answer is that using ρ as the characteristic function would conflate the status of 
the elements in X that come to be in S when σ is applied to X  (the elements true “just at 1”) with the 
status of the elements that do not come to be so (the elements that are true from the beginning). But 
why should this matter? Because then there can be no suitable characteristic function from X → X’ to 
{0, 1} id→ {0, 1}for a subobject whose underlying morphism takes some x not in S to S’. We need 
the characteristic function to take all members of S to 0 (true) and all members of S’ to 0 (also true) 
so that the “truth function” square will commute. But this will not be the case: one side of the square 
will take σ: S → S’ to 1 to 0 → 0 (true) only for x ∈ S, while the other side will take the subset  σ: S 
→ S’ to  σ: X → X’ which will need to be mapped to {0, 1} id→ {0, 1}. All we can do here is map S 
to 0 and S’ to 0, but this will “leave out” x → x’ (x ∉S, x’ ∈ S’) since it would require a morphism in 
Ω which takes 1 to 0, and we have not provided one. Thus the structure of S2 itself dictates the Ω 
chosen in [1]. Remember also in this regard that the characteristic morphism (function) φS must be a 
component of a pullback, that is, that the monomorphism is the pullback of  true (1 → Ω) along φS. 
In Sets, for instance, it is easy to see that this is correct. Choose a monomorphism (subset) S of a set 
X and call the characteristic function of X for subset S  XS. Then clearly all other commutative 
squares to Ω through XS will factor through S since their origins will be subobjects (subsets) of S. It 
is not possible in Sets for S’ → 1 (true)→ Ω to commute with S’ → X (XS)→ Ω if S’ is not a subset 
of S.  
 
 It is useful to examine another category, a sort of recursive version of S2, which requires an 
infinite number of truth values, i.e., an infinite Ω which is nonetheless unique. Consider the category 
ε 
of endomaps of sets, from [2], whose objects are single sets equipped with an endomap and denoted 
(X; α). By reasoning very similar to that described above for S2, it is apparent that for any subobject  
(S, α⏐S) of (X; α) (i.e., a subset of X closed under α), an element in X may be taken to S by one 
application of α (x is in S), by two (i.e., α ° α), by three (α ° α ° α), by any number of applications 
(α ° α ° ... ° α) or never. And each of these iterations creates another subobject of  (X; α) with the 
same subset S, so all of these must be classified Thus, an element of  X must be classified, relative to 
a particular subobject, by the number of iterations of the endomorphisn required to get it into the 
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subset of the subobject, and the unique Ω therefore is (N; γ), where N is the set of natural numbers 
and γ takes the natural number n to n-1. Thus x ∈ X is mapped to 0 in Ω if it is an “original” member 
of S in X, to 1 if it becomes a member (i.e., a generalized element - see, e.g., [2], pp. 8-9) of S after 
one iteration of α, and so on. An x in X mapped to ∞ never becomes a member of S (no matter how 
many times α is iterated), so ∞ represents completely false. There are, in other words, an infinite 
number of truth values for the category ε, yet Ω is nevertheless unique and motivated entirely by the 
structure of the category. Following [2], we refer to the degrees of truth assigned to elements of S2 or 
ε as “partial truths.” 
 
 Before turning specifically to fuzzy sets and their subobject classifiers, we provide some 
background to make sure all preliminaries are clear. First of all, by a presheaf on a category C we 
mean a contravariant functor from C to Sets (i.e., SetsCop, as in [1]) and not a covariant functor from 
C to Sets as in [2]. Thus, generally speaking, any reference to [2] will require an implied mutatis 
mutandis. Since we will want to think of fuzzy sets as functors (presheaves, members of SetsCop), it is 
important to keep in mind that in SetsCop, all subfunctors are subobjects and conversely (see [1], p. 
36). By straightforward application of the Yoneda lemma (as in [1], p. 37), the set of “truth values” 
for an object C of C in a presheaf must be (isomorphic to) the set of subfunctors of HomC(-, C). Of 
course, this is Ω(C) and will be sufficient to classify only HomC(-, C); to classify subobjects of 
objects in SetsCop in the general case we need Ω(.) for each object in C. 
 
 A helpful way to view the elements of  Ω(C) is as sieves (ibid.). A sieve S on C in C is a set 
of arrows  in C with codomain C s.t. if f is in S and f • h is defined then f • h is also in S. For a poset, 
a sieve is simply a set of elements B ≤ C s.t. if A ≤ B ∈ S then A ∈ S. In any locally small category, 
the sieves on C are the same as the subfunctors of HomC(-, C) ([1], p. 38). Now take any presheaf 
SetsCop , any member functor P and subfunctor Q (not necessarily hom-functors), and any morphism 
f: A → C in C. Then f determines a function P(f): P(C) → P(A) in Sets. For any given x in P(C), P(f) 
may take x into Q(A) or it may not, and the set {f ⎢ x • f ∈ Q(dom(f))} is a sieve on C where f ranges 
over all morphisms with codomain C. This sieve is the “set of all those paths f to C which translate 
the element x of P(C) into the subfunctor Q.” ([1], p. 39) It is also, therefore, the “truth value” of x. If 
x ∈ Q(C), then this operation will yield the maximal sieve on C; if x ∉ Q(C), then this operation will 
yield some other sieve on C which is not maximal and which may be the empty sieve.  
 
 We now turn specifically to subobject classifiers for fuzzy sets. Let us begin with the 
subobject classifier for the categories Set Hand Mod H  as described by Wyler in [3] (p. 255). Recall 
that an H-set is a pair (|A|, δA), where H is a complete Heyting algebra, |A| is a set and  δA is a 
symmetric and transitive mapping from |A| x |A| to H. Degree of membership in an H-set is given by 
εA = δA(x, x). Thus H-fuzzy sets are (can be) totally fuzzy sets (both membership and equality are 
fuzzy). An H-valued fuzzy relation f: A → B is an extensional mapping f: |A| x |B| → H. The 
category Set H is defined, then,  to be the category with H-sets as objects and H-valued relations as 
morphisms, and Mod H to be the category with H-sets as objects and H-valued relations as 
morphisms, but only those induced mappings of the underlying sets. We shall focus on Set H here. 

 The easiest way to describe subobject classification in Set H is in terms of H-subset 
structures. For a given H-set A in Set H, an H-subset structure of A is a mapping α : A → H where 
α(x) ≤ εA(x) and  α(x) ∧ δA(x, x’) ≤  α(x’) ∀x, x’ in |A| ([3], p. 249). An H-subset Aα of A, then, with 
the given H-subset structure α, is the H-set (|A|, δα), where δα(x, x’) = α(x) ∧ δA(x, x’). An injective 
morphism can easily be constructed which takes Aα to A. Now take the set of truth values Ω to be the 
elements of the complete Heyting algebra H. Then the characteristic morphism ch jα for Aα is the 
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morphism induced by α, that is, ch jα (x, a) =  εAα(x) ∧ δΩ(α(x), a). This means that for each x in |A|, 
its truth value is a fuzzy set on H whose membership value at each a in H is either εAα(x) or a (cf. [3], 
p. 255; this simplification follows in particular from the fact that all relations in Set H must be total, 
i.e., ∨y∈|B|f(x, y) = εA(x) ([3], p. 244)). The min operator and the definition of an H-subset structure 
guarantee that the fuzzy truth value of  any H-subset Aα of A will be ≤ the fuzzy truth value of the H-
set A taken as a subset of itself. These truth values are, of course, equivalent to sieves in the functor 
category SetsHop. Note that this is “sheaf-theoretic” truth; truth here is not “partial” in the sense of 
truth in S2 or ε as described above. We shall refer to this kind of truth here as “fuzzy truth” to 
distinguish it from the notion of partial truth just mentioned. A crucial difference here is that fuzzy 
truth does not seem to reflect the idea of “stages of truth” or temporal truth ([2], esp. Section 3.3).  

 With this background, we now ask what might be the relevance of partial truth and fuzzy 
truth to the areas of decision theory and game theory. This issue has been raised in a general way by 
Voinov in [4]. He observes that in many decision making contexts, strict “numerifications” of 
similarity data (e.g., projections onto metric spaces) are not appropriate or illuminating. “Nearness” 
relations (basically, suitable subsets of the cartesian product) , on the other hand, may capture much 
more closely the actual similarities of the system under study, but they are likely to have more 
rudimentary mathematical structure (say the structure of a pre-uniformity). Another aspect of 
decision making , Voinov points out, is the notion of cognitive spaces or “regions of evidence” 
relative to which similarities and other kinds of evidence may be interpreted. These spaces are 
usually explained “modally,” i.e., as manifestations of possible worlds in modal logics, including 
fuzzy modal logics. The difficulty here, in Voinov’s opinion, is that once again the construction of  
possible worlds and making choices among them requires arbitrary application of numerical 
techniques. 

 Voinov suggests that the correct level of mathematical generality for both “connectivity” 
(possible world choices) and “similarity grade” relationships is that of a topos. More than that, he 
notes that this incorporates both notions into a single mathematical framework, since the object 
structure of the topos (the topology) provides a framework for possible worlds and their 
interrelationships, while the subobjects and subobject classification provide a basis for similarity 
grades. In other words, in a topos, there is no need to provide separate formalisms for the set of 
possible worlds and the set of truth values. 

 Now let us consider briefly fuzzy games, in particular the variety known as fuzzy moves [5]. 
The (crisp) theory of moves (TOM) was originally developed by S. J. Brams [6]; a nice description 
of the basic framework may be found in [7]. In “basic” TOM, each game is 2x2, each player is 
assigned two actions (strategies), and at her turn, a player may move (go to the next strategy) or not 
move (retain the current strategy). An equilibrium, known as a non-myopic equilibrium (NME) is 
achieved when a player decides not to move. Players are given a starting state, and are expected to 
look ahead as far as necessary to determine their next move. This means, as Ghosh and Sen [7] point 
out, that it is not actually necessary to play the game to determine the NME. It is important to note 
that only relative payoffs need be used, and also to note that while access to complete information is 
assumed in the original formulation, it is possible (see [7]) to allow the players to learn their 
opponent’s preferences dynamically. In [6], Brams exhaustively enumerates all 78 possible 2x2 
games, and so 2x2 TOM games are usually referred to by their position in Brams’ list, e.g. “game 
23”. It is apparent that a 2x2 TOM can be thought of as a member of the category ε of endomaps of 
sets described above. 
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 In [5], Kandel and Zhang suggest that TOM games can be made more complete by adding a 
fuzzy component. This component consists of an assignment of a value in [0, 1] for each player to 
each payoff in the 2x2 game; the assigned value represents the overall desirability of the state for that 
player. This permits a more comprehensive and (according to [5]) more realistic situation in which 
players attempt to maximize both the order (local) payoff and the fuzzy (global) payoff for a game. 
The payoff for a given state (a-

ij), then, is a “transformation function” [5] of  the ordinal (now 
fuzzified) payoffs of the players and the global (fuzzy) goal α for player A or β for player B, i.e., for 
player A, a-

ij = F(aij, bij, α) where i, j ε {1, 2}. The strategies at each row and column intersection in 
the crisp 2x2 game (the pair of ordinals (aij, bij) for row i and column j are transformed in the fuzzy 
game, then, to (a-

ij, b-
ij), and the decision to move or not to move is made on the basis of these new 

(fuzzy) values. 

 It is apparent that totally fuzzy sets, and hence the category Set H, are appropriate models for  
and generalizations of the theory of fuzzy moves (TFM) of [5] just described. For player A, the 
membership value of a state represents its global goal, i.e., μ(aij) = ε(aij) = δ(aij, aij) = α and μ(bij) = 
δ(bij, bij) = β, while δ(aij, akl) represents the local payoff or preference of aij relative to akl expressed in 
terms of equality, i.e., if δ(aij, akl) is small, then state aij and state akl are far apart from each other in 
(ordinal) value, and vice versa. The original (crisp) ordinal ranks may then be recovered from the 
membership values and the equalities taken together. Given two H-sets A and B, the global payoffs a-

ij are now given by morphisms in Set H, from A to B for the A component of the payoff, and from B 
to A for the B component. The required properties of a morphism in Set H ensures that these global 
payoffs will be functionally related to the global goals and the local payoffs. Thus, for instance, the 
requirement that morphisms be total guarantees that the value in H of any f: A → B will be ≤ ε(a) for 
every a in |A| (see [3], pp. 244-245). 

 It should be emphasized that totally fuzzy sets in Set H constitute both a model and a 
generalization of TFM, or at least of the normal TFM game with normal global goal (see [5], p. 165). 
Thus, for instance, TFM allows just a single global goal, whereas (obviously) each state (member of 
|A|) in A can have a different global goal. On the other hand, using sets and morphisms in Set H for 
TFM imposes certain constraints on various aspects of TFM which are not necessarily inherent in the 
formulation of [5]. One such constraint, viz., that morphisms be total, was mentioned in the previous 
paragraph. Similarly, the requirement of extensionality ([3], p. 243) guarantees that the value in H of 
any f: A → B will always be ≤ ε(b). These constraints seem reasonable and natural, but may yield a 
somewhat different set of global preferences than the original TFM. Finally, it should be noted that 
given Proposition 74.6 and Corollary 74.6.1 of [3] (p. 251), there is an important connection between 
H-subsets in Set H and morphisms in Set H. This suggests an important truth-functional connection 
between “allowed” global payoffs and the underlying local payoffs and global goals. This in turn 
may lead to a statement of conditions for stronger kinds of equilibria than NME in TFM games, as 
well as a clear statement of the way fuzzy truth (in the sense the term was used above) may subsume 
the partial truth of [2]. 
 

 12



References 
 
1. S. Mac Lane and I. Moerdijk, Sheaves in Geometry and Logic, New York, Springer-Verlag, 1992. 
2. J. Butterfield, “Topos Theory as a Framework for Partial Truth,” in Gardenfors et. al. (eds.), In the 
Scope of Logic, Methodology, and Philosophy of Science (Vol. 1), Kluwer Academic, 2002. 
3. O. Wyler, Lecture Notes on Topoi and Quasitopoi, Singapore, World Scientific Publishing Co., 
1991. 
4. A. V. Voinov, “The Role of Similarity Judgment in Intuitive Problem Solving and its Modeling in 
a Sheaf-theoretic Framework,” Proc. 1st Intl. Conf. on Fuzzy Systems and Knowledge Discovery, 
Singapore, Nov. 18-22, 2002, 753-757. 
5. A Kandel and Y.-Q. Zhang, “Fuzzy Moves,” Fuzzy Sets and Systems 99:2, 1998, 159-177. 
6. S. J. Brams, Theory of Moves, Cambridge, Cambridge University Press, 1994. 
7. A. Ghosh and S. Sen, “Theory of Move Learners: Towards Non-Myopic Equilibria, “Proc. 4th 
Int’l. Cong. on Autonomous Agents and Multiagent Systems, Utrecht, July 25-29, 2005, 74-80. 

 13



Fuzzy Transitive Relations 
 

Ismat Beg and Samina Mazhar 
Centre for Advanced Studies in Mathematics and 

Department of Mathematics, 
Lahore University of Management Sciences, 

54792-Lahore, Pakistan 
ibeg@lums.edu.pk 

 
 
Max-min transitivity faces a lot of criticism (see [1, 2, 3]). This criticism seems to be fair particularly 

because the existing definition decides whether a relation is transitive or not? In this note we are 

more interested in knowing how much transitive it is? This is what one should call fuzzy transitivity. 

This transitivity can be extended from crisp transitivity by fuzzifying the operators involved. 

If one looks at the definition of crisp transitivity: A binary relation R on a set X is   transitive if and 

only if  ( )( ) ( )( xRzyRzxRyXzyx ⇒∧∈∀ 3,, ) . The two operators used are conjunction and 

implication, both of which have been extended to their fuzzy counterparts by this time (implicators 

were not converted to fuzzy ones at the time when Zadeh [4] defined his max-min transitivity). To 

get fuzzy transitivity one should fuzzify  the operators used. 

 DEFINITION 1: (pointwise) Let R be a fuzzy relation on X. A transitivity function  Tr: X × X → 

[0,1] is defined by 

Tr(x, z) = I(T(R(x, y),R(y, z)), R(x, z)). 
Yy∈

inf

Where I is the implicator corresponding to the t-norm T. 

Transitivity function Tr, so defined is a pointwise defined function, which assigns a degree of 

transitivity to the relation at each point of X × X. According to Definition 1, the given transitive fuzzy 

relation have different degrees of transitivity at different pairs of points. This fact when incorporated 

into similarity or indistinguishbility may be interpreted as “different pairs of points may be less or 

more similar under the same relation”.   Now, the problem is to decide how much transitive a fuzzy 

relation is?  The most natural answer seems to take the inf over all the points . Xzyx ∈,,

DEFINITION 2: Let R be a fuzzy relation on X. Fuzzy transitivity of R is a function defined as  

3),,(
inf)(

Xzyx
RTr

∈
=  I(T(R(x, y),R(y, z)), R(x, z)) = Tr(x,z). 

2),(
inf

Xzx ∈

Where I is the implicator corresponding to the t-norm T. 

REMARK 3:   A fuzzy relation R will be called non-transitive if Tr(R) = 0, and it will be called 

strongly transitive if Tr(R) = 1. The first case is basically dealing with crisp non-transitive relations 
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as a case of the fuzzy one,  and in the later case R is going to have a transitivity value 1 at each of it’s 

triplet of points which means crisp transitivity 

REMARK 4: Where is Zadeh’s definition of transitivity placed in this situation? 

Before going onwards let us name for the sake of convenience in calculation: 

a = R(x, y), b = R(y, z), and c = R(y, z). 

For any x, y, z ∈ X. 

Tr (x, y, z) = I(T(a, b), c), 

(where a, b, c are points dependent). Zadeh [4] assumed the first variable of the implicator to be 

smaller than the second one i.e. T (a,b) ≤ c  which leads to a value 1 for almost all the implicators we 

prefer to use. So while working with these implicators Zadeh’s definition is the second case stated in 

remark 3 i.e. the crisp transitivity. Some of the implicators may give values other than 1 in case of 

taking max-min transivity valid. The study of such situations is in progress. 

REMARK 5: What happens to the so defined equivalence relation? 

Next step after having defined a fuzzy transitivity, is fuzzy equivalence relation. That is equivalence 

up to a certain degree. That should be the exact picture of indistinguishbility i.e.; How 

indistinguishable two points are with respect to the pseudo-metrics associated with equivalence 

relation? If they are totally indistinguishable than an interesting fact is that similarity so defined 

conforms  following three properties:  

1. If R is a similarity relation then ∀ (x,y,z) ∈ X 3 , at least two of the degrees R(x,y), R(x,z) and 

R(y,z) are equal. 

2. R is a similarity relation if and only if  for all ]1,0]∈α  the α-cut R  is an equivalence relation. α

3. R is a similarity relation if and only if complement of R   is a [0,1]–valued pseudo-ultra metric on 

X.  

There is another beautiful aspect that the whole theory defined earlier remains valid and becomes a 

part of  the new one for example transitive closures will now be defined as the fuzzy binary relation 

with a value of transitivity 1 which contains the given relation. Moreover for a fuzzy binary relation 

R with transitivity value equal to 1, R  = R    holds. 
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This paper concerns an interdisciplinary approach to coalition formation. We apply the MacBeth soft-
ware (see also [7]), relational algebra, the RelView tool (see [3]), graph theory, bargaining theory,
social choice theory (see [4]), and consensus reaching (see also [6]) to the model of coalition forma-
tion introduced in [9].

In [9], the notion of a feasible stable government is central. Roughly speaking, a feasible govern-
ment is a pair consisting of a (majority) coalition of parties and a policy supported by this coalition.
Different governments may have different utilities (values) for different parties. Stability of a feasible
government means that it is not dominated by another feasible one.

MacBeth, which stands for ‘Measuring Attractiveness by a Categorical Based Evaluation Tech-
nique’, is an interactive approach to quantify the attractiveness of different alternatives, in such a way
that the measurement scale constructed is an interval scale; see [1], [2] or www.m-macbeth.com. The
MacBeth technique may be applied to many real life situations, and it appears to be a very useful tool
also for coalition formation. In [7], we present an application of the MacBeth approach to the model
of coalition formation presented in [9]. The MacBeth software increases the applicability of the coali-
tion formation model considerably. We use the MacBeth technique to quantify the attractiveness and
repulsiveness of feasible governments to parties. Using MacBeth, every party judges the difference
of attractiveness between each two policies on a given issue (including the majority coalitions). The
MacBeth software signals when the matrix of judgements of a party becomes inconsistent, and it gives
suggestions to make it consistent. We use the MacBeth software to calculate the utilities of govern-
ments to parties. Based on these utilities, stable governments are determined. In the original model
presented in [9], a party is assumed to express its preferences very precisely. However, the MacBeth
tool enables us also to deal with fuzzy preferences.

Since some decades relational algebra is used successfully for formal problem specification, pro-
totyping, and algorithm development. Also, relational algebra seems to be promising for computer-
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aided investigations of coalition formation. In [3], we present an application of relational algebra to
coalition formation. We formulate the notions of feasibility, dominance, and stability for governments
in relation-algebraic terms. Feasibility of a government can be described by two relations, which state
whether a party accepts a coalition and whether a party supports a policy. Stability can be defined in
terms of the ‘is-part-of’ relations between parties and governments, the dominance relation on gov-
ernments, and a list of relations comparing governments with respect to the utility of parties. This
enables us to use RelView, a tool for the visualization and manipulation of relations and for prototyp-
ing and relational programming, to compute the dominance relation and the set of all feasible stable
governments. To illustrate the power of the approach, we solve an example based on the structure of
the Polish government after the 2001 elections.

A stable government is by definition not dominated by any other government. However, it may
happen that all governments are dominated. In [4], we deal with the problem what to do when there
is no un-dominated government. We combine concepts from graph theory, bargaining theory and so-
cial choice theory to solve this problem. Using graph-theoretic terms, the non-existence of a stable
government means that the dominance graph does not possess a source. Using concepts of graph the-
ory (initial strongly connected components, minimum feedback vertex sets), we present a procedure
for choosing one government if the set of all stable governments is empty. As in [3], also in [4] the
decisive parts of our procedure are formulated as relational expressions and programs, respectively,
so that RelView can be used for executing them and for visualizing the results. Given a dominance
graph without a source, first we compute all initial strongly connected components. Next, for each
initial strongly connected component, we compute the set of all minimum feedback vertex sets, where
a feedback vertex set is a minimal set of vertices which breaks all cycles. Next, we choose a specific
minimum feedback vertex set according to the following rule. First, we choose the set(s) for which
the number of ingoing arcs is maximal. Since an ingoing arc denotes that a government is dominated,
such a choice means selecting governments dominated most frequently. Next, if there are at least two
such sets, we choose the one(s) for which the number of outgoing arcs is minimal, meaning the choice
of the governments which dominate other governments least frequently. Next, we break all cycles by
removing the chosen set of governments. One may say that we remove governments which are least
attractive for two reasons: because they are most frequently dominated and they dominate other gov-
ernments least frequently. According to our procedure, if there is more than one initial strongly con-
nected component, we select the final stable government (from the results of the procedure described
above) by applying bargaining or some well-known social choice rules. Concerning the application of
bargaining, we use several bargaining games (defined in [8]) and choose the government which is a
subgame perfect equilibrium result. Concerning the application of social choice theory, we apply the
plurality rule, the majority rule, the Borda rule, or approval voting. Of course, some of these applica-
tions may also lead to a non-unique solution. In this case, we propose to combine several techniques
and to apply a several-steps method consisting of, for instance, a social choice rule in the first step,
and a bargaining game in the second step.

In the model presented in [9], a party evaluates all governments the party belongs to with respect
to some criteria. We allow the criteria to be of unequal importance to a party. These criteria concern
majority coalitions and policy issues. The parties’ preferences are supposed to be constant, and no
possibility of adjusting the preferences of a party is considered. In [6], we introduce a dynamic model
of coalition formation in which parties may compromise in order to reach consensus. We apply a
consensus model analyzed in [5], where the authors study the problem of formalizing consensus,
within a set of decision makers trying to agree on a mutual decision. By combining some notions of
both the consensus model [5] and the model of a stable government [9], a new consensus model of
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political decision-making is constructed. Parties may be advised to adjust their preferences, i.e., to
change their evaluation concerning some government(s) or/and the importance of the criteria, in order
to obtain a better political consensus. If parties are willing to compromise, it is always possible to
reach consensus, and to create a feasible government. In the procedure there is an ‘outsider’, called
the chairman, who advises parties how to adjust their preferences.

First, each feasible coalition tries to reach consensus within this coalition about the government
to be formed. Parties consider only feasible governments, i.e., governments acceptable for all parties
belonging to the coalition involved, and if there is only one feasible government they can form, they
agree. If the parties from a given coalition manage to reach consensus, the coalition proposes to form
the government agreed upon. This consensus government is stable in the given coalition with respect
to the set of all feasible governments formed by that coalition.

If there are at least two coalitions that succeed in reaching consensus, that is, if at least two
governments are proposed, we select the governments which are ‘internally stable’. Next, if there are
at least two such internally stable governments, some extra procedures are applied in order to choose
one of these governments. The protocol given in [6] can be mechanized, resulting in a decision support
system for coalition-government formation. The informational requirements of the proposed protocol
are demanding, but the MacBeth software can deliver all information needed in a very rational way.
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Abstract. All quasivalues rest on a set of three basic axioms (efficiency, null player, and additivity), which
are augmented with positivity for random order values, and with positivity and partnership for weighted
values. We introduce the concept of Möbius value associated with a sharing system and show that this value
is characterized by the above three axioms. We then establish that (i) a Möbius value is a random order value
if and only if the sharing system is stochastically rationalizable and (ii) a Möbius value is a weighted value
if and only if the sharing system satisfies the Luce choice axiom.

1 Introduction

The general question raised by any cooperative game can be described as follows: how should the
utility sets available to all coalitions be used to determine an outcome from the set of feasible solu-
tions? So far, no single solution-concept has emerged that satisfies everyone’s sense of equity (Moulin,
1988). Yet, there seems to be a large agreement to consider the Shapley value as one of the most ap-
pealing solutions (Shapley, 1953). However, when players do not stand behind the veil of ignorance,
this solution is no longer valid. Various concepts have then been proposed to deal with social and
economic contexts in which players have idiosyncratic rights in sharing the final outcome (see Mon-
derer and Samet, 2002, for a recent survey). All these solutions rest on a common set of three basic
axioms (efficiency, null player, and additivity), which are augmented with positivity by Weber (1988)
in the case of random order values, and with positivity and partnership by Kalai and Samet (1987) for
weighted values. In this paper, we restrict ourselves to these three basic axioms only and characterize
the set of corresponding values that we call Möbius values.

The extensions of the Shapley value allow for a redistribution of the total worth according to
two dimensions: the marginal contribution of each player within all possible coalitions and a sharing
system which is given a priori. The idea behind the sharing system is that the reward of a player may be
related to her marginal contribution to each coalition in various ways. This aims at capturing the fact
that a society may be governed according to a large variety of distributive rules, which are themselves
based on various principles of justice (Bentham, Rawls, etc.). For example, in the theory of cooperative
values, Kalai and Samet (1987) attribute a given weight to each player that expresses her power within
each coalition whereas, in Weber (1988), the weight depends on the relative place of the player in
society endowed with different orderings. As will be shown in this paper, the additional axioms that
have been introduced in the literature (positivity and partnership) do actually restrict in a fairly strong
manner the admissible sharing systems. More precisely, we will see that the existing values, called
quasivalues, are such that the sharing rule within a particular coalition is constrained by the way
the sharing rule is defined within all broader coalitions (and vice versa). Put differently, saying how
to share within the grand coalition tells us how to share within all subcoalitions. In practice, the

? We are grateful to an anonymous referee for having pointed out an error in an earlier version, to Michel Grabisch for his
insightful comments and to Hervé Moulin for very stimulating discussions through the net. We also thank Jim Friedman,
Itzhak Gilboa, Shlomo Weber and Myrna Wooders for helpful comments and suggestions.
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existence of such a master sharing rule may be problematic because it requires the implicit agreement
of all players about it. By contrast, our approach allows for sharing systems that are independent
of the existence of such a master sharing rule and is, therefore, more general. Yet, we need some
minimal requirement linking sharing in a coalition and sharing in its subcoalitions. In this respect, we
suggest that the way the worth of a coalition is shared is such that, in all its subcoalitions, players’
shares cannot be lower than what they are in the referential coalition. Given this caveat, sharing within
a particular coalition need not be related to the way the worth of any subcoalition or supercoalition is
distributed among its members. In other words, by being the members of a coalition, the corresponding
players find themselves in a particular sharing context that defines what each of them will receive. It
is in that sense that the Möbius value allows for sharing when context matters.

In our paper, the Möbius value of a player is given by a linear combination of the pure contribution
of her cooperation within all coalitions including her; the coefficient associated with each coalition is
the share that this player can claim in this coalition. By “pure contribution of cooperation” (PCC), we
mean the net reward of cooperation within a coalition after having discounted for what cooperation
brings about in all possible proper subcoalitions. Formally, the PCC of a coalition is the Möbius
inverse of the characteristic function of the game. Focussing on the PCC of a coalition, instead of
the marginal contribution of its members, concurs with our idea that a coalition defines a specific
sharing context, which is a priori independent of all possible subcoalitions. Moreover, the coefficients
of the linear combination define a probability over the corresponding coalition, but they need not be
“consistent” across coalitions. By contrast, we identify two forms of consistency of the sharing system
used in quasivalues. First, a random order value is such that the sharing system is stochastically
rationalizable, that is, there exists a probability distribution defined over all orderings on the set of
players which yields the sharing system (Block and Marschack, 1960). Second, a weighted value, as
introduced by Kalai and Samet (1987), is such that the sharing system satisfies the more demanding
condition given by the Luce choice axiom used in discrete choice theory (Luce, 1959). This axiom says
that each sharing rule may be viewed as the Bayesian restriction of a master distribution defined on
the set of players. Hence, our approach to cooperative values allows us to characterize each quasivalue
by means of restrictions imposed on the corresponding sharing system.3

The remainder of this paper is organized as follows. Definitions and notation are given in Section
2. The concept of a Möbius value is defined and axiomatically characterized in Section 3 (Theorem 1).
The relationships with quasivalues are explored in Section 4 where the following results are proven: (i)
a Möbius value is a random order value if and only if the sharing system is stochastically rationalizable
(Theorem 3) and (ii) a Möbius value is a weighted value if and only if the sharing system satisfies the
Luce choice axiom (Theorem 4). In Section 4, we prove that a Möbius value is positive if and only
if the game is monotone (Theorem 5) and that the set of Möbius values is the core if and only if the
game is convex (Theorem 7). Section 6 concludes.

2 The Pure Contribution of Cooperation in a TU-Game

A cooperative game with transferable utility (TU-game) is a pair (Z,ν) where Z, the grand coalition
with ]Z = n, is defined by a finite set of players and ν, the characteristic function, is defined by
a mapping from 2Z to R such that ν( /0) = 0. Any subset Y of Z is called a coalition and for any
nonempty coalition Y , we denote Z\Y by Y , Y\{i} by Y−i, Y ∪{i} by Y+i and 2Y \ /0 by 2Y

− /0
.

3 These results also uncover some new connections between cooperative values and probabilistic discrete choices, a topic
which has already been under investigation (Monderer, 1992; Gilboa and Monderer, 1992).
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The set of TU-games whose set of players is Z is given by the vector space R2Z
− /0 . A characteristic

function ν is monotone if ν(X)≤ ν(Y ) for every X ⊂Y and convex if ν(X ∪Y )+ν(X ∩Y )≥ ν(X)+
ν(Y ) for every pair X ,Y ∈ Z. For convenience, all properties that are satisfied by ν on Z are said to be
satisfied by the TU-game itself.

A solution of the game (Z,ν) is a mapping ϕ : R2Z
− /0 → Rn. A solution ϕ(ν) is said to be positive

when ϕi (ν)≥ 0 for all i ∈ Z.
The above concepts are standard and we now introduce one of the new tools of this paper.
Consider any TU-game (Z,ν). Then, for any nonempty coalition Y , following Shapley (1953),

there exists a unique set of coefficients
(
Γν (X) : X ∈ 2Y

− /0

)
such that:

ν(Y ) = ∑
X∈2Y

− /0

Γν (X) (1)

that are given by
Γν (Y ) = ∑

X∈2Y
− /0

(−1)y−x
ν(X) (2)

where y and x stand for the cardinalities of Y and X , respectively. These coefficients may be interpreted
as follows. Set ν(i)≡ ν({i}). If Y = {i, j} ⊂ Z, the worth ν(Y ) may be different from [ν(i)+ ν( j)].
In such a context, two cases may arise. In the first, the cooperation is “negative” because the two
players are worse off when they cooperate. In the second, the cooperation is “positive” because the two
players are better off when they cooperate. In both cases, it is natural to express the pure contribution
of cooperation (PCC) Γν (Y ) of Y , also called the dividend of Y in Harsanyi (1963), by the difference

Γν (Y ) = ν(Y )− [ν(i)+ν( j)] . (3)

In other words, Γν (Y ) measures the exact contribution of the cooperation inside of Y because we have
accounted for the individual worthies. When Y = {i, j,k}, one might think that Γν (Y ) would be given
by Γν (Y ) = ν(Y )− [ν(i)+ν( j)+ν(k)]. However, this expression already includes the PCC of each
pair {i, j}, {i,k} and { j,k} to the PCC of Y . Given (3), the PCC of Y = {i, j,k} should instead be
defined as follows:

Γν (Y ) = {ν(Y )− [ν(i)+ν( j)+ν(k)]} (4)

−{Γν(i, j)+Γν (i,k)+Γν( j,k)} .

More generally, in view of these expressions, we define the PCC of a TU-game as the mapping Γν :
2Z
− /0
→ R such that, for each coalition Y ⊂ Z, (1) and (2) hold. In words, Γν (Y ) can be interpreted as

the contribution of cooperation within the coalition Y independently of what cooperation brings about
in all possible subcoalitions that could have been formed before the coalition Y is determined. Stated
differently, Γν (Y ) measures the total benefit generated by the coalition Y once we have accounted for
all the possible subcoalitions formed by any proper subset of players.4

The PCC Γν is equivalent to the Möbius inverse of the characteristic function ν (Rota, 1964;
Chateauneuf and Jaffray, 1992). Note that, for any Y ∈ 2Z

− /0
, we have:

ν(Y ) = ∑
i∈Y

ν(i)+ ∑
X⊂Y
x≥2

Γν (X) (5)

4 The PCC of a coalition is the game-theoretic counterpart of the “contextual utility” as defined by Billot and Thisse (1999)
in discrete choice theory and of the “evidence of an event” in Dempster-Shafer’s theory of belief functions.
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which means that the worth of a coalition is equal to the sum of the individual worthies plus the sum
of the PCCs of all possible subcoalitions. In particular, for the grand coalition, we have:

ν(Z) = ∑
Y⊂Z

Γν (Y )

that is, the worth of the grand coalition is equal to the sum of the pure contributions of all possible
coalitions.

In what follows, we show that the PCC of a coalition may be negative even when the TU-game is
monotone. The same example is used throughout the paper.

Example 1: Consider the TU-game (Z,ν) such that Z = {1,2,3} whereas its characteristic func-
tion v is defined by 

ν(Z) = 8,
ν(Z−i) = 7− i, ∀i ∈ Z
ν(i) = i, ∀i ∈ Z.

This characteristic function is monotone and convex. The associated PCCs can be computed as fol-
lows: 

Γν (Z) = Γν (123) = 8− (6+5+4)+(1+2+3) =−1,
Γν (Z−1) = Γν (23) = 6− (2+3) = 1,
Γν (Z−2) = Γν (13) = 5− (1+3) = 1,
Γν (Z−3) = Γν (12) = 4− (1+2) = 1,
Γν (1) = 1,
Γν (2) = 2,
Γν (3) = 3.

This implies that (i) the PCC of a pair Z−i is greater than that of the grand coalition Z, (ii) the PCC
of a pair is constant whoever is in the pair, and (iii) the PCC of the grand coalition is negative. Note
also that

ν(Z) = ∑
Y⊂Z

Γν (Y )

= −1+(1+1+1)+(1+2+3)
= 8

while 
ν(Z−1) = ν(23) = 1+2+3 = 6,
ν(Z−2) = ν(13) = 1+1+3 = 5,
ν(Z−3) = ν(12) = 1+1+2 = 4.

3 Möbius Values

3.1 Definition

The sharing rule of a coalition Y ∈ 2Z
− /0

is a probability distribution pY : 2Y → [0,1] where pY (i)
corresponds to the share player i ∈ Y ∈ 2Z

− /0
may claim in coalition Y , which satisfies the following

two conditions:

Individual sharing consistency : For all coalitions X ⊂Y ∈ 2Z
− /0

and all player i ∈ X , pY (i)≤ pX (i).
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Negligible player condition : If p{i, j} (i) = 0 for some i, j ∈ Y , then for all coalitions X ⊂ Y ∈ 2Z
− /0

,
pY (X) = pY−i (X−i).

The first condition implies that, when a coalition shrinks, an individual’s shares never decreases.
This precludes sharing context in which the departure of one individual from a group would reduce the
share the others can claim. The second condition means that a player gets a zero share in any coalition
when she gets such a share in a 2-person coalition. The latter condition implies that pY (i) = 0 for each
negligible player, whereas p{i}(i) = 1 for each player i ∈ Z.

A sharing system, denoted (Z,P ), is then defined by the set Z of players and by a mapping which
associates each coalition Y ∈ 2Z

− /0
with a sharing rule pY .

Apart from the two conditions above, the sharing rule pY depends only upon the particular redis-
tribution context defined by the coalition. Hence, for any coalition X different from Y , pX need not
be functionally related to pY in the system (Z,P ). As will be seen below, this makes our approach to
cooperative values more general than standard quasivalues (Monderer and Samet, 2002).

Consider a TU-game (Z,ν). We define the Möbius value of the player i ∈ Z associated with the
sharing system (Z,P ), denoted ϕi (ν,P ) by

ϕi(ν,P ) = ∑
Y∈2Z

− /0

Y3i

pY (i)Γν (Y ) . (6)

In words, the Möbius value of player i is given by a linear combination of the PCCs of all nonempty
coalitions Y including i, where the coefficient pY (i) associated with the coalition Y is the share that
player i can claim in this coalition.5 When the expression above holds for all sharing systems, we
discard P in ϕi(ν,P ); similarly, we denote pZ by p.

Remark 1: For any negligible player i, we have ϕi(ν) = ν(i).

Example 2: Consider a sharing rule P ∗ given by p∗ (1) = p∗ (2) = p∗ (3) = 1/3 , p∗12 (1) = 1/3
while p∗12 (2) = 2/3, p∗13 (1) = 2/3 while p∗13 (3) = 1/3 and p∗23 (2) = 2/3 while p∗23 (3) = 1/3. Then,
the associated Möbius value ϕi(ν,P ∗) defined by (17) leads to

ϕ1(ν,P ∗) = Γν (1) p∗1(1)+Γν (12) p∗12(1)+Γν (13) p∗13(1)
+Γν (Z) p∗(1)

= 1+
1
3

+
2
3
− 1

3
=

5
3
' 1.65,

ϕ2(ν,P ∗) = Γν (2) p∗2(2)+Γν (12) p∗12(2)+Γν (23) p∗23(2)
+Γν (Z) p∗(2)

= 2+
2
3

+
2
3
− 1

3
= 3,

and

ϕ3(ν,P ∗) = Γν (3) p∗3(3)+Γν (13) p∗13(3)+Γν (23) p∗23(3)
+Γν (Z) p∗(3)

= 3+
1
3

+
1
3
− 1

3
=

10
3
' 3.35.

5 A related, but different, approach in terms of interaction among players forming a coalition is developed by Grabisch and
Roubens (1999).
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The Möbius solution of our example is therefore given by the triplet

(1.65,3,3.35) .

Note that, in this example, p∗12, p∗13 and p∗23 are not Bayesian restrictions of p∗ onto the subsets
{1,2}, {1,3} and {2,3}. In other words, the sharing rule p∗12, p∗13 and p∗23 are independent of the
master rule p∗.

3.2 Axioms

We introduce the following three axioms to characterize the Möbius value as defined by (6).

Axiom 1 (ϕ-Efficiency) : Let (Z,ν) be any TU-game. Then,

ϕZ (ν) = ∑
i∈Z

ϕi (ν) = ν(Z).

This means that the solution of the grand coalition is equal to its worth.

Axiom 2 (ϕ-Null Player) : For each player i ∈ Z, if for each coalition Y ⊂ Z−i we have Γν (Y+i) = 0,
then

ϕi (ν) = 0.

This axiom says that the solution of an individual is zero when her PCC of any coalition she
belongs to is always zero. Note that ν(i) = 0 and ν(Y+i) = ν(Y ) when i is a null player.6

Axiom 3 (ϕ-Linearity) : Let (Z,ν) and (Z,µ) any two TU-games and α ∈ R. Then,

ϕ(αν+µ) = αϕ(ν)+ϕ(µ) .

For any X ⊂ Z, consider a X-unanimity TU-game
(
Z,νX

)
for which the characteristic function νX

is defined as follows:

ν
X (Y ) =

{
1 if X ⊂ Y ,
0 otherwise.

(7)

Lemma 1. : For any coalition X ⊂ Z, the PCC ΓνX associated with the unanimity TU-game
(
Z,νX

)
is such that:

ΓνX (Y ) =
{

1 if X = Y ,
0 otherwise.

Lemma 2. : For any TU-game (Z,ν), we have:

ν = ∑
X∈2Z

− /0

Γν (X)ν
X .

Proofs are straightforward and omitted. Note that Shapley (1953, p. 311) already proved that every
characteristic function can be decomposed in a unique way as a linear combination of unanimity
games (our Lemma 2).

6 This axiom is weaker than the dummy axiom used by Shapley (1953) and Weber (1988). See Nowak and Radzik (1994)
and Monderer and Samet (2002) for a discussion of the null player axiom vs the dummy axiom.
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Lemma 3. : Let i be any player of Z. Under A1-A3, for any nonempty Y , we have:

ϕi
(
αν

Y )
=

{
αpY (i) if i ∈ Y ,
0 otherwise.

Proof: By A3, we may assume without loss of generality that α = 1. First, consider a given
coalition Y . If i /∈Y , then, for each subcoalition X such that i /∈ X , (7) implies that νY (X+i) = νY (X) =
0. Thus, any player i ∈ Z\Y is a null player for νY . Hence, by A2, we have ϕ j

(
νY

)
= 0 for all i /∈ Y .

Second, if i ∈ Y , it follows from (6) that

ϕi
(
ν

Y )
= ∑

X⊂Y
X3i

pX(i)Γ
ν

Y (X) .

Now, Lemma 1 implies that ΓνY (X) = 0 for all X 6= Y and ΓνY (X) = 1 for X = Y . Consequently, we
obtain for all i ∈ Y :

ϕi
(
ν

Y )
= pY (i)ΓνY (Y ) = pY (i).

�
This result also shows the existence of a one-to-one correspondence between the Möbius values

and the sharing systems.
We may now state one of our main results.

Theorem 1. : Any solution ϕ(ν) of the TU-game (Z,ν) is a Möbius value if and only if ϕ(ν) satisfies
the axioms A1-A3.

Proof: (Sufficiency) Using Lemma 2 and A3, we have:

ϕi (ν) = ∑
Y∈2Z

− /0

ϕi
[
Γν (Y )ν

Y ]
.

Hence, from Lemma 3 and A3, it follows that

ϕi (ν) = ∑
Y⊂Z−i

∑
X⊂Y

ϕi
[
Γν (X+i)ν

X+i
]

= ∑
X3i

Γν (X) pX(i)

which is identical to (6).
(Necessity) The proof is straightforward.

�

3.3 The Shapley Value as a Uniform Möbius Value

The Shapley value of a TU-game (Z,ν), denoted S (ν), allocates the worth ν(Z) among all players
i ∈ Z as follows:

Si (ν) =
1
n! ∑

X⊂Z
i∈X

(x−1)!(n− x)![ν(X)−ν(X−i)]. (8)

The standard interpretation of the Shapley value is as follows. Assume that the players in Z are ran-
domly ordered as (i1, i2, · · · , in) such that each ordering is equally probable. The Shapley value Si (ν)
is then the average of player i’s marginal contributions ν(X)−ν(X−i) taken over all coalitions X ⊂ Z.
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The probability of any coalition X is defined by the probability that the predecessors of i in the random
ordering (i1, i2, · · · , in) are the elements of X .

Our next result suggests another interpretation: when player i cooperates within a coalition X
whose PCC equals Γν (X), player i gets the same “share” from this coalition than any other member
of X . In other words, the sharing of Γν (X) is uniform within X . Hence, the Shapley value of player
i is the unweighted and normalized sum of all coalition worthies. The associated sharing system is
denoted (Z,U) where U =

(
uY : Y ∈ 2Z

− /0

)
and uY the uniform probability distribution over Y .

As shown by Denneberg and Grabisch (1999, Theorem 4.1), this result can be proven by using
symmetry, whereas Grabisch (1997) gives a direct proof in a setting involving interactions among
individuals. Yet, in order to illustrate the nature of individual contributions to a coalition, we give in
Appendix B a different proof that does not rely on symmetry.

Theorem 2. : Let (Z,U) be the uniform sharing system. Then, the corresponding Möbius value of the
TU-game (Z,ν) is the Shapley value:

ϕi (ν,U) = ∑
Y∈2Z

− /0

Y3i

Γν (Y )
y

= Si (ν) for all players i ∈ Z.

In other words, the Shapley value corresponds to a sharing of the PCCs which is uniform across
players. This interpretation is perfectly consistent with the axiom of anonymity (or symmetry) which
defines the Shapley value (Shapley, 1953): players are a priori given the same share in all possible
coalitions. This should not come as a surprise since, on the one hand, we know from Kalai and Samet
(1987) that the Shapley value is a weighted value with identical weights and, on the other hand, that
the uniform distribution satisfies the Luce choice axiom that characterizes weighted values (see our
Theorem 4 below).

Example 3: Consider the uniform sharing rule given by uX (i) = 1/x for all i∈ X , all X ⊂ Z. Then,
the Shapley value Si (ν) defined by (17) leads to

S1 (ν) = Γν (1)u1(1)+Γν (12)u12(1)+Γν (13)u13(1)
+Γν (Z)u(1)

= 1×1+1× 1
2

+1× 1
2
−1× 1

3

= 1+
1
2

+
1
2
− 1

3
=

5
3
' 1.66 > 1,

S2 (ν) = Γν (2)u2(2)+Γν (12)u12(2)+Γν (23)u23(2)
+Γν (Z)u(2)

= 2+
1
2

+
1
2
− 1

3
=

8
3
' 2.66 > 2

and

S3 (ν) = Γν (3)u3(3)+Γν (13)u13(3)+Γν (23)u23(3)
+Γν (Z)u(3)

= 3+
1
2

+
1
2
− 1

3
=

11
3
' 3.66 > 3.

The Shapley solution of our example is therefore given by the triplet

(1.66,2.66,3.66) .
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4 Relationships between Möbius Values and Quasivalues

4.1 Random Order Values

Weber (1988) has introduced a generalization of the Shapley value, called random order (or probab-
listic) values, by weighting the marginal contributions ν(Y+i)−ν(Y ) of player i by the probability πi

Y
of joining any coalition Y in Z−i:

φi (ν) = ∑
Y⊂Z−i

π
i
Y [ν(Y+i)−ν(Y )]. (9)

Then, Weber (1988) has proved that a solution is a quasivalue if and only if it is a random order value.
When comparing (6) and (9), we first note that the coefficients πi

Y in (9) are interpreted by Weber
as the probability for i to become a member of Y (or to join Y ) while, in the present paper, pY (i)
in (6) is defined as the share attributable to player i when i is a member of the coalition Y . The
two interpretations are therefore different. Second, the marginal contribution ν(Y+i)− ν(Y ) differs
from the pure contribution Γν (Y+i) of coalition Y+i. So, the connection between the two values is not
clear (at least to us). Hence, our research strategy is naturally to uncover the relationships between
(6) and (9) through their respective coefficients. More precisely, we are interested in determining the
connections between the share a player may obtain within a particular coalition and the probability
she has to join this coalition.

Definition (6) may be rewritten in terms of marginal contribution as follows:

ϕi (ν) = ∑
Y∈2Z

− /0

Γν (Y ) pY (i)

= ∑
Y⊂Z
i∈Y

pY (i) ∑
X⊂Y

(−1)y−x
ν(X)

= ∑
X⊂Z

ν(X) ∑
Y⊃X+i

(−1)y−x pY (i)

that is

ϕi (ν) = ∑
Y⊂Z−i

{
∑

X⊃Y+i

(−1)x−(y+1)pX(i)

}
[ν(Y+i)−ν(Y )] . (10)

This shows that the Möbius value involves coefficients γi
Y of the marginal contributions of i to Y of

the type
γ

i
Y ≡ ∑

X⊃Y+i

(−1)x−y−1 pX(i), for all Y ⊂ Z−i (11)

which are not here primitives of the game, as they are in the various extensions of the Shapley value
(Monderer and Samet, 2002). Furthermore, γi

Y need not be a probability and may even be negative. As
will been seen, all quasivalues are special cases of the Möbius value in which the coefficients γi

Y take a
particular form. Stated differently, all quasivalues are special Möbius values associated with specific
sharing systems. In particular, the Möbius value is a random order value if and only if the coefficients
γi

Y are probabilities. In this case, whenever the game is monotone, the positivity axiom for quasivalues
- which one can find from Kalai and Samet (1987) to Monderer and Samet (2002) through Weber
(1988) - always holds. Hence, it remains to identify the restrictions to be imposed on the sharing
system for a Möbius value to have probabilistic coefficients.

28



If Y = Z−i, then the coefficient πi
Y for player i to join the coalition Y is identical to her share p(i).

Consider now Y = Z−i j. Once i has joined Y , either i belongs to the coalition Z− j or to the coalition Z
because Y+i is a subset of both. Since Y = Z−i j, the weight for i to join Y is therefore given by:

π
i
Y = pZ− j(i)− p(i). (12)

In other words, πi
Y is the coefficient of joining the coalition Y without being in the coalition Z. If

Y = Z−i jk, one might think that πi
Y is such that

π
i
Y = pZ− jk(i)− pZ− j(i)− pZ−k(i)− p(i).

However, this expression does not account for the fact that, when i belongs to Z− j (resp. Z−k), this
may be because she has joined Z−i j (resp. Z−ik). Deleting these occurrences, we obtain:

π
i
Y = pZ− jk(i)−

[
pZ− j(i)−π

i
Z−i j

]
−

[
pZ−k(i)−π

i
Z−ik

]
− p(i).

Given (12), this may be rewritten as follows:

π
i
Y = pZ− jk(i)− pZ− j(i)− pZ−k(i)+ p(i).

More generally, for all i ∈ Z and all Y,X ⊂ Z−i, the coefficient for i to join Y is given by:

π
i
Y = ∑

X⊃Y
(−1)x−y pX+i(i).

It is readily verified that this expression can be also written as follows:

π
i
Y = pY+i(i)− ∑

X)Y

[
pX+i(i)−π

i
X
]

where πi
Z ≡ 0.

The difference pX+i(i)−πi
X may be viewed as the net share of player i for being in X+i, once πi

X
is interpreted as the (normalized) “cost” she bears to join the coalition X . Then, the coefficient for i
to join the coalition Y is equal to her share in the coalition Y+i minus the sum of the net shares that
i belongs to all the supercoalitions X+i ⊃ Y . Put differently, πi

Y is the coefficient to join Y directly
and not through any of its supercoalitions. Using again (1) and (2), we then have: for all i ∈ Z, all
Y,X ⊂ Z−i,

π
i
Y = ∑

X⊃Y
(−1)x−y pX+i(i) (13)

if and only if
pY+i(i) = ∑

X⊃Y
π

i
X . (14)

Remark 2: Expressions (13) and (14) can be viewed as, respectively, the Möbius and the co-
Möbius inverse of a set function vi (which is unrelated to the characteristic function ν), such that the
following two conditions hold (see Appendix A for more details):{

pY+i(i) = ∑X⊃Y (−1)z−x vi (X) ,
vi (Y ) = ∑X⊃Y (−1)x pX+i (i) .

(15)
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Hence, the properties of the Möbius and co-Möbius inverse of vi can be used for studying the rela-
tionships between πi

Y and pY+i(i) where the former corresponds to the Möbius inverse and the latter to
the co-Möbius (see, e.g. the proof of Theorem 5).

Remark 3: Expression (14) may be given the following interpretation: the share of player i in Y+i

is equal to the sum of the coefficients that this player has to join all supercoalitions of Y , that is, her
share must cover exactly the sum of the costs that she would incur by joining all the supercoalitions
of Y .

Remark 4: In the special case where there exist some players i such that p(i) = 0, then (13)
implies πi

Y = 0 for all coalitions Y 6= /0. In other words, all such players always stay alone because
πi

/0
= 1.

Equations (13) and (11) imply
γ

i
Y = π

i
Y .

However, for πi
Y to be a probability, the sharing system (Z,P ) must satisfy some additional conditions

that we now investigate. Following Block and Marschak (1960) and Falmagne (1978), we say that the
sharing system (Z,P ) is stochastically rationalizable if and only if the Block-Marschak polynomials
of (Z,P ) are all nonnegative. Recall that the Block-Marschak polynomials of (Z,P ) are defined for
all subsets Y ⊂ Z−i by the expression:

K(i,Y ) =
y

∑
k=0

(−1)k
∑

X∈F (Y,y−k)
pX(i)

where F (Y,y−k) is the family of subsets of Y whose cardinal is equal to y−k and X the complement
of X in Z. We thus have:

Theorem 3. : For any TU-game (Z,ν), the Möbius value is a random order value, i.e.

ϕi (ν) = φi (ν) ,

if and only if the sharing system (Z,P ) is stochastically rationalizable.

Proof: Expressions (13) and (14) define a one-to-one correspondence between the two sets of
coefficients γi

Y and πi
Y . To prove that the coefficients πi

Y correspond to Weber’s probabilities, it remains
to show, on one hand, that they are all nonnegative and, on the other hand, that ∑Y⊂Z−i πi

Y = 1.
Let X and Y be any two subsets of Z such that i /∈ X and i ∈ Y . We have

K(i,Y ) =
y

∑
k=0

(−1)k
∑

X∈F (Y,y−k)
pX(i)

= ∑
X⊂Y

(−1)y−x pX(i)

= ∑
X⊃Y

(−1)x−y pX(i)

= π
i
Y . by (13)

Since Y is arbitrary, πi
Y is nonnegative if and only if the sharing system (Z, p) is stochastically

rationalizable. Moreover, it is readily verified that ∑Y⊂Z−i πi
Y = pi(i) = 1, which ends the proof.

�
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Corollary 1. : Any Block-Marschak polynomial K(i,Y ) of a choice probability system (Z,P ) corre-
sponds to the coefficient πi

Y as defined by (13).

Theorem 3 is consistent with the following result derived by Monderer (1992): for any random or-
der value, there exists a rationalizable system of choice probabilities defined on Z consistent with the
probabilities πi

Y in (9). Note also that the stochastic rationality of the sharing system (Z,P ) is equiva-
lent to the positivity axiom. Then, a solution satisfying A1-A3 whose sharing system is stochastically
rationalizable is a quasivalue.

Observe that (13) allows for the computation of the coefficients used by Weber from the individual
shares. This, in turn, permits the study of the likelihood of various coalitions and, therefore, to analyze
the occurrence of coalition formation and to perform some “comparative statics” on the sharing rule.
Everything else equal, the smaller (resp. the larger) a player’s share, the higher (resp. the lower) her
probability to stand alone, a situation which involves no coalitional cost. Likewise, the smaller (resp.
the larger) a player’s share, the higher (resp. the lower) her probability to be joined by players with
larger shares. Unfortunately, it seems hard to say something about players with intermediate shares
without specifying the connections between the sharing system P and the characteristic function ν.

4.2 Weighted Values

Kalai and Samet (1987) have considered a subset of quasivalues defined as follows. Set a weight
system w = (wX)X∈2Z

− /0
such as

wX(i) =
wY (i)
wY (X)

for all Y ⊃ X , all i ∈ X and wY (X) > 0. It is worth noting that a weight system w is strictly positive.
The associated weighted value φw is then defined for any unanimity game νX by

φ
w
i (νX) =

{
wX(i) if i ∈ X ,
0 otherwise.

In words, a player belonging to coalition X receives her weight within this coalition. Moreover, a
coalition Y is said to be a coalition of partners or a p-type coalition in (Z,ν) if, for every subcoalition
X ⊂ Y and each W ⊂ Y , ν(W ∪X) = ν(W ). In other words, players are called partners when they
refuse to cooperate outside the coalition of partners. A value φ satisfies the partnership axiom if,
whenever Y is a p-type coalition:

φi (ν) = φi(φY (ν)ν
Y ) for all i ∈ Y (16)

where φY is the share attributed to the coalition Y . This axiom, introduced by Kalai and Samet (1987),
requires that if subcoalitions of Y are irrelevant, then it makes no difference either players of Y receive
their individual shares in ν, or they altogether receive their group share in ν and determine their
individual shares later. Kalai and Samet (1987) then proves that a weighted value is a quasivalue that
satisfies the partnership axiom. Hence, we need to identify the properties of the sharing rules which
characterize a Möbius value as a weighted value, i.e. to interpret the partnership axiom in terms of
shares.

Lemma 4. : For any TU-game (Z,ν), a Möbius value satisfies the partnership axiom if and only if
the sharing system (Z,P ) satisfies the Luce choice axiom: for all Y ∈ 2Z

− /0

p(i) = p(Y )× pY (i) for all i ∈ Z such that 0 < p(i) < 1.
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Proof: As noticed by Chun (1991, p.186), it is always possible to define the weight system w by
wi = ϕi

(
νZ

)
where νZ is the characteristic function of the unanimity game

(
Z,νZ

)
. Accordingly, since

wY (X) > 0 for all nonempty coalitions X ⊂Y ⊂ Z, we have ϕi
(
νZ

)
> 0 for all i ∈ Z. Furthermore, A1

implies that ∑i∈Z ϕi
(
νZ

)
= 1. As a result, we can identify the weight system w with a strictly positive

sharing rule p such that ϕi
(
νZ

)
= p(i) > 0 for all players i∈ Z. Let

(
Z,νY

)
be a unanimity game such

that Y ⊂ Z and Y 6= Z. The coalition Y being a p-type coalition for νZ , we have for any player i ∈ Y :
ϕi

(
νZ

)
= ϕi(ϕY

(
νZ

)
νY ). Using A3, this expression becomes ϕi

(
νZ

)
= ϕY

(
νZ

)
×ϕi(νY ), i.e.

ϕi(νY ) =
ϕi

(
νZ

)
ϕY (νZ)

=
p(i)
p(Y )

.

Now, by Lemma 3, we have ϕi(νY ) = pY (i) and, then, the Luce choice axiom holds.
�

We are now able to establish the following result:

Theorem 4. : For any TU-game (Z,ν), the Möbius value is a weighted value, i.e.

ϕi(ν) = φi(ν)

if and only if the sharing system (Z,P ) satisfies the Luce choice axiom.

Monderer and Samet (2002, Th. 5) have proved that a weighted value is a random order value
that satisfies the partnership axiom, a result consistent with our Theorem 4. Hence, since a random
order value is a Möbius value with a stochastically rationalizable sharing system (our Theorem 3),
we know, using Luce and Suppes (1965), that the necessary and sufficient condition for the sharing
system (Z,P ) to satisfy the Luce choice axiom is (1) to be stochastically rationalizable and (2) to
satisfy the following condition:

π
i
Y = pY+i (i)× pY+i j ( j)× pY+i jk (k) ...

which always holds for weighted values.

Remark 5: Example 2 in Section 3.1 is associated with a sharing system that does not satisfy
stochastic rationality (because γ2

/0
= −1/6) nor the Luce choice axiom (because p∗ (2) 6= p∗ (23)×

p∗23 (2)). Hence, it is neither a random order value nor a weighted value, but a Möbius value.

5 Properties of the Möbius Value

5.1 Monotone TU-Games

Most variations on the Shapley value assume that the positivity axiom holds: whenever the game
is monotone, each individual value is positive (Monderer and Samet, 2002). Hence, the literature
seems to focus on values for which the monotonicity of the game would be a sufficient condition
for positivity. We show below that monotonicity is both a necessary and sufficient condition for any
Möbius value to be positive. This implies that the positivity axiom may be replaced by the assumption
of game monotonicity in the study of Möbius values.

Theorem 5. : Any Möbius value ϕ(ν) is positive if and only if the TU-game (Z,ν) is monotone.
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Proof: It is sufficient to show that ϕi (ν)≥ 0 for any player i ∈ Z. Using (10), we get:

ϕi (ν) = ∑
X⊂Z−i

[ν(X+i)−ν(X)]︸ ︷︷ ︸
(A)

∑
Y⊃X+i

(−1)y−(x+1) pY (i)︸ ︷︷ ︸
(B)

.

As (A) is positive if only if the game (Z,ν) is monotone, we just have to show that (B) is positive
for each characteristic function ν, each player i and each coalition Y . Using Remark 2, we see that (B)
corresponds to the definition of the Möbius inverse of a particular set function vi, so that pY+i (i) is the
co-Möbius of that same function vi. Now, we know that (i) a Möbius inverse is always nonnegative
if and only if vi is ∞-monotone, that is, vi is a belief function and (ii) a characteristic function vi is
a belief function if and only if its co-Möbius is decreasing (see Shafer, 1976; Grabisch et al., 2000).
The individual sharing consistency condition shows that pY (i) satisfies this last condition.

�

Since a quasivalue is defined by a solution characterized by the axioms A1-A3 as well as by
positivity (Weber, 1988), it then follows from Theorem 1 that a quasivalue is a Möbius value that
satisfies the positivity axiom. This proves our claim that quasivalues are special cases of Möbius
values.

5.2 Convex TU-Games

We know from Shapley (1971) that the core of a convex game is nonempty. The following result shows
that all the Möbius values belong to the core for a convex game.

Theorem 6. : Any Möbius value ϕp (ν) is in the core of the TU-game (Z,ν) if and only if this game is
convex.

The proof is given in Appendix C.
We may now show that the set of Möbius values is identical to the core of a convex game. Indeed,

when the game is convex, all the Möbius values belong to the core as shown by Theorem 6. Hence,
for a nonconvex game, the set of random order values is a proper subset of Möbius values and, when
the game is convex, we have the following result:

Theorem 7. : For any TU-game (Z,ν), the set of all Möbius values is equal to its core if and only if
the game is convex.

Theorems 3 and 6 together with Weber’s Theorem 14 imply that the core of a convex game being
equal to the set of random order values, then the set of stochastically rationalizable Möbius values is
equal to that of Möbius values, i.e. is equal to the core itself.

6 Concluding Remarks

Our approach to cooperative values allows us to shed new light on cooperative game theory. Indeed,
we have shown that the weighted values correspond to the most constrained class of solutions. They
are axiomatically characterized by Kalai and Samet (1987) through efficiency (A1), null-player (A2),
additivity, positivity and partnership. Since positivity and additivity imply homogeneity (as shown by
Kalai and Samet, 1987, p.213), the first two axioms may be replaced by linearity (A3) while positivity
may be replaced by the stochastic rationality of the sharing system and partnership by the Luce choice
axiom. Hence, our main results may be summarized as follows.
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– For any sharing system, a solution that satisfies A1-A3 is a Möbius value.
– For any stochastically rationalizable sharing system, a solution that satisfies A1-A3 is a random

order value (i.e. a solution that satisfies A1, A2, additivity and positivity).
– For any sharing system satisfying the Luce choice axiom, a solution that satisfies A1-A3 is a

weighted value (i.e. a solution that satisfies A1, A2, additivity, positivity and partnership).

Some questions remain open. First, is there always an element in the nonempty core of a non-
convex game that can be represented by a Mobius value? If yes, what are the restrictions that the
corresponding sharing system satisfies? And more generally, can Theorem 7 be extended to the case
of nonconvex games with a nonempty core?
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Appendix A

It is useful to introduce the following three related concepts: a set function f , the Möbius inverse
of f , denoted m, and the commonality function (Shafer, 1976) or co-Möbius inverse (Grabisch et al.,
2000) of f , denoted m̂. Then, the following four expressions simultaneously hold: for all Y ∈ 2Z

− /0
,


m̂(Y ) = ∑X⊃Y m(X)
m(Y ) = ∑X⊃Y (−1)x−y m̂(X)
m̂(Y ) = ∑X⊃Y (−1)z−x f (X)
f (Y ) = ∑X⊃Y (−1)x m̂(X) .

Appendix B

Proof of Theorem 2: The uniform Möbius value ϕ(ν,U) is defined for each nonempty coalition
X ⊂ Z by

ϕX (ν,U) = ∑
Y∈2Z

− /0

Y⊃X

Γν (Y )uY (X) (17)

where

uY (X) =
x
y
,

x and y being the cardinalities of X and Y , respectively. Hence, by definition of the PCC, for each
player i ∈ Z, (17) becomes

ϕi (ν,U) = ∑
Y∈2Z

− /0

Γν (Y )uY (i) (18)

= ∑
Y∈2Z

− /0

Γν (Y )
1
y

= ∑
Y⊂Z
i∈Y

∑
X⊂Y

(−1)y−x
ν(X)

y

= ∑
X⊂Z

∑
Y⊂Z

X+i⊂Y

(−1)y−x

y
ν(X) .

Set

λ(i,X)≡ ∑
Y⊂Z

X+i⊂Y

(−1)y−x

y
.
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When the player i ∈ X , there are
(

n− x
y− x

)
coalitions Y such that X ⊂ Y . Consequently, we have:

λ(i,X) = ∑
Y⊂Z

X+i⊂Y

(−1)y−x

y
(19)

=
n

∑
y=x

(−1)y−x
(

n− x
y− x

)
1
y

=
n

∑
y=x

(−1)y−x
(

n− x
y− x

)Z 1

0
ty−1dt

=
Z 1

0
tx−1

n

∑
y=x

(−1)y−x
(

n− x
y− x

)
ty−xdt

=
Z 1

0
tx−1 (1− t)n−x dt.

It is well known that
Z 1

0
tx−1 (1− t)n−x dt =

(x−1)!(n− x)!
n!

= λ(i,X) . (20)

Note that, in (18), if the player i ∈ X , then λ(i,X−i) =−λ(i,X). Hence, (18) may be rewritten as
follows:

ϕi (ν,U) = ∑
X⊂Z
i∈X

λ(i,X)(ν(X)−ν(X−i)) . (21)

Using (20) and (21), we then get the desired expression, i.e.

ϕi (ν,U) =
1
n! ∑

X⊂Z
i∈X

(x−1)!(n− x)!(ν(X)−ν(X−i)) = Si (ν) .

�

Appendix C

Proof of Theorem 6: (Sufficiency) If the TU-game (Z,ν) is convex, then we must show that
∑i∈Y ϕ

p
i (ν)≥ ν(Y ) for all nonempty coalitions Y ⊂ Z, i.e. ϕ

p
Y (ν)≥ ν(Y ).

By (6), we know that:

∑
X⊂Y− /0

∑
T⊂Y

Γν (X ∪T ) pX∪T (X) (22)

= ∑
X⊂Y− /0

∑
T⊂Y

∑
S⊂T

(−1)t−s
∑

W⊂X
(−1)x−w

ν(W ∪S) pX∪T (X)

whereas, by definition of a PCC,

∑
X⊂Y− /0

∑
T⊂Z\Y

∑
S⊂T

(−1)t−s
∑

W⊂X
(−1)x−w

ν(W ) pX∪T (X)

= ∑
X⊂Y− /0

Γν (X) pX(X) = ∑
X⊂Y− /0

Γν (X) = ν(Y ) . (23)
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Hence, from (22) and (23), we obtain:

ϕ
p
Y (ν)−ν(Y ) = ∑

X⊂Y− /0

∑
T⊂Y

∑
S⊂T

(−1)t−s
∑

W⊂X
(−1)x−w (24)

× [ν(W ∪S)−ν(W )] pX∪T (X)
= ∑

X⊂Y− /0

∑
S⊂Y

∑
W⊂X

(−1)x−w [ν(W ∪S)−ν(W )]

× ∑
S⊂T⊂Y

(−1)t−s pX∪T (X)

= ∑
S⊂Y

∑
R⊂Y\S

(−1)r
∑

X⊂Y− /0

∑
W⊂X

(−1)x−w

× [ν(W ∪S)−ν(W )] pX∪S∪R (X)
= ∑

S⊂Y
∑

R⊂Y\S

(−1)r

∑
i∈Y

∑
X⊂Y
i∈X

pX∪S∪R (i)× ∑
W⊂X

(−1)x−w [ν(W ∪S)−ν(W )]

︸ ︷︷ ︸
.

(A)

We may rewrite (A) as follows:

∑
X⊂Y−i

{
∑

W⊂X+i

(−1)(x+1)−w [ν(W ∪S)−ν(W )]

}
×pX+i∪S∪R (i) .

Hence, (A) is equivalent to:

∑
X⊂Y−i

{
∑

V⊂X
∑

W⊂V+i

(−1)(v+1)−w [ν(W ∪S)−ν(W )]

}
(25)

×

{
∑

U⊂(Y−i)\X
(−1)u pU∪X+i∪S∪R (i)

}
= ∑

X⊂Y
i∈X

∑
V⊂X
i∈V

∑
W⊂V

(−1)v−w [ν(W ∪S)−ν(W )]

︸ ︷︷ ︸
(B)

×

{
∑

U⊂Y\X
(−1)u pU∪X∪S∪R (i)

}
.

By interchanging the summations, (B) becomes

∑
W⊂X
i∈W

[
∑

W⊂V⊂X
(−1)v−w

]
[ν(W ∪S)−ν(W )]

+ ∑
W⊂X−i

[
∑

W⊂V⊂X−i

(−1)v+1−w

]
[ν(W ∪S)−ν(W )]

= ν(X ∪S)−ν(X)−ν(X−i∪S)+ν(X−i) .
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First, set

σ(i,X ,S)≡ [ν(X ∪S)−ν(X)]− [ν(X−i∪S)−ν(X−i)] .

Since X ∩ S = /0, the convexity of (Z,ν) implies that σ(i,X ,S) ≥ 0. Second, setting W ≡U ∪R, we
have

ρ(i,X ,S)≡ ∑
W⊂Z\(X∪S)

(−1)w pX∪S∪W (i) .

Using the same argument as for (??), we obtain ρ(i,X ,S)≥ 0.
Therefore, using (24) leads to

ϕ
p
Y (ν)−ν(Y ) = ∑

S⊂Y
∑
i∈Y

∑
X⊂Y

σ(i,X ,S)×ρ(i,X ,S)≥ 0.

(Necessity) The proof is by contradiction. Assume the TU-game (Z,ν) is not convex and show
that there exists a Möbius value that does not belong to the core. First, applying Proposition 4 of
Chateauneuf and Jaffray (1989) allows one to say that the PCC Γν of ν satisfies:

∑
{i, j}⊂X⊂Y

Γν (X)≥ 0

for all pair of players {i, j} belonging to each coalition Y ⊂ Z if and only if the TU-game (Z,ν) is
convex. Then, since our game is not convex, there exists a coalition Y ⊂ Z and a pair of players i, j ∈Y
such that:

∑
{i, j}⊂X⊂Y

Γν (X) < 0. (26)

We now have to prove that there exists a Möbius value, ϕp (ν), which is not in the core, that is,
ϕ

p
Y−i

(ν)−ν(Y−i) < 0. Recall that pX(Y−i) = 1 when X ⊂ Y−i. From (6), it follows that:

ϕ
p
Y−i

(ν)−ν(Y−i) = ∑
X⊂Z

X 6⊂Y−i

Γν (X) pX (Y−i) (27)

= ∑
X⊂Y
i∈X

Γν (X) pX (Y−i)

+ ∑
X⊂Z
X 6⊂Y

Γν (X) pX (Y−i) .

Two cases may then arise. In the first one, we have Y = Z. Then, replace ϕp (ν) in (27) by ϕpε (ν)
associated with the probability p = pε in which pε (i) = pε( j) = (1− ε)/2 and pε (k) = ε/(n−2) for
all player k ∈ Z−i. Then:

lim
ε→0

[
ϕ

p
Y−i

(ν)−ν(Y−i)
]

=
1
2 ∑
{i, j}⊂X⊂Y

Γν (X) , (28)

which is negative by (26), i.e., there exists a positive ε such that ϕ
p
Y−i

(ν)−ν(Y−i) < 0.
In the second case, we have Y  Z. Then, replace ϕp (ν) in (27) by ϕpε (ν) associated with the

probability p = pε where pε (i) = pε( j) = ε, pε (k) = ε2 for all player k ∈ Y−i and

pε (k) =
1− pε (Y )

n− y
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for all player k ∈ Z\Y . Again, (28) holds , i.e. there exists a positive ε such that ϕ
p
Y−i

(ν)−ν(Y−i) < 0.
Hence, if the TU-game (Z,ν) is not convex, the constructed Möbius value ϕp (ν) does not belong to
the core.

�
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Abstract. This short note briefly presents a new and original way to solve the problem of a “best choice”
recommendation in a multiple criteria decision aid framework. In particular it discusses how such a “best
choice” can be constructed from a binary valued outranking relation defined on a finite set X of potential
decision alternatives. The discussion is based on five natural principles.

1 Introduction

The goal of this extended abstract is to discuss how a “best choice”3 recommendation may be ratio-
nally constructed from a binary valued outranking relation defined on a finite set X of potential deci-
sion alternatives. Such an outranking relation expresses the likelyhood of a global pairwise preference
situation between the alternatives which combines an “at least as good” statement with the absence of
any local veto. This decision aid problem is generally non trivial. In practise, most outranking relations
result from a multiple criteria preference aggregation involving a majority concordance principle. In
general such an aggregation doesn’t produce a complete or transitive relation.

From a pragmatic point of view, the BC problematics is turned towards the selection of a unique
ultimate “best” alternative. In practise, this kind of decision aid consists in the elicitation of a subset
of “good” alternatives which is as restricted as possible. It is meant to help the decision maker to
get as close as possible to the selection of a unique “best” alternative. In case this recommendation
consists of several candidates, the decision aid process may be restarted with new and more detailed
information in order to help selecting the final “best” alternative.

Apart from the European multiple criteria decision aid community [Roy85], this specific BC prob-
lematics has attracted quite low attention by the Operational Research field. Seminal work on it goes
back to the first articles of Roy on the Electre I methods [Roy68,Roy69]. After Kitainik [Kit93], in-
terest in solving the BC problem differently from the classical optimisation paradigm has reappeared.
The recent work of Bisdorff and Roubens on valued kernels [BR96] has resulted in new attempts to
solve the BC problem directly from the valued outranking graph. After first positive results [Bis00],
methodological difficulties appeared when applying the outranking kernel concept to highly non tran-
sitive and partial outranking relations.

In this short note we therefore propose to present the major ideas of a new proposal to the BC

problem and to revisit the logical and pragmatic foundations of this problematics. The objective is to
propose a new and innovative decision aid methodology in the tradition of the pioneering work of Roy
and Bouyssou [RB93].

3 “best choice” will be written BC in the sequel.
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2 Some fundamental concepts

Our starting point is a valued outranking digraph, denoted G̃L(X , S̃), where X is a finite set of decision
alternatives and S̃ : X ×X → L is a bipolar valued characterisation of an outranking relation on X
taking its values in a bipolar evaluation domain L .

Commonly L consists of the rational unit interval expressing the more or less credibility or ro-
bustness of an outranking statement. Throughout this paper we shall however suppose, except if stated
otherwise, that L = {−m, . . . ,0, . . . ,+m} is a finite ordinal scale with 2m+1 (m≥ 1) values express-
ing a degree of likelyhood or robustness. If x and y are two alternatives of X , S̃(x,y) = m signifies that
the assertion “x outranks y” is certainly true; S̃(x,y) > 0 signifies that the assertion “x outranks y” is
more true than false; S̃(x,y) = 0 signifies that the assertion “x outranks y” is logically undetermined,
i.e. neither true nor false; S̃(x,y) < 0 signifies that the assertion “x outranks y” is more false than true;
S̃(x,y) =−m signifies that the assertion “x outranks y” is certainly false.

To be short we say that “x outranks y” is L-true (respectively L-false) if S̃(x,y) > 0 (respectively
S̃(x,y) < 0).

A non empty subset Y of X is called a choice in G̃L . Such a choice Y is said to be L-outranking
if and only if either, Y = X , or x 6∈ Y ⇒ ∃y ∈ Y : S̃(y,x) > 0. Similarly, a choice Y is said to be
L-outranked if and only if either Y = X , or x 6∈ Y ⇒ ∃y ∈ Y : S̃(x,y) > 0.

A choice Y is said to be L-independent if and only if either, Y is a singleton, or ∀x,y∈Y : S̃(x,y) <
0. One should notice here that the concept of independence is not based on the negation of the L-true
outrankings. Such a negation would also include the couples of alternatives (x,y) for which S̃(x,y) = 0
holds.

An L-outranking (L-outranked) kernel is an L-outranking (L-outranked) and L-independent
choice.

The goal of our research is to determine a choice Y of X which can be used as a BC recommenda-
tion.

3 New foundations for the BC problematics

It is shown in [BRM05] that classical approaches to the BC problem present flaws and weaknesses.
For example, the optimisation problem requires that any two alternatives are comparable. The Elec-
tre IS method [RB93] requires modifications of the original outranking digraph in order to present
a single BC to the decision maker. The concept of L-outranking kernel is also insufficient for the
BC problematics, as it may not exist in certain digraphs or be only a subset of possible interesting
recommendations.

Therefore we estimate that a new vision of this problem must be adopted. We define a new set of
fundamental principles for the BC problematics. The two classical principles defined by Roy [Roy85]
are still be present in this set, but are completed by 3 other natural ones.

A BC recommendation is a set of alternatives which will be used for a future proposal of a unique
best alternative. This definition shows an important characteristic of any BC procedure. It should be
interactive and tend towards the proposal of a unique best alternative. This observation is concordant
with Roy’s definition of the BC problem (see [Roy85]) where this implicit objective is emphasised.

A BC recommendation Y should therefore verify these 5 principles

– B1 Each alternative which in not selected must be considered as worse as at least one alternative
of Y ;

– B2 The subset of retained alternatives Y must be as small as possible;
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– B3 The subset of retained alternatives should not be simultaneously a “best” and a “worst” choice
(effective outranking);

– B4 The BC recommendation cannot contain another smaller BC recommendation (BC-stability);
– B5 The BC recommendation must be robust (with respect to impreciseness in the data) (robust-

ness).

The interested reader can refer to an extended version [BRM05] of this short note where we detail
each of these principles and their consequences. Furthermore we justify the choice of these principle
in view of the BC problematics.

4 Solving the BC problematics

As shown in [BRM05], the problems linked to classical approaches of the BC problematics, lead
us to define a particular choice, namely the hyper-kernel. A choice Y in G̃L is said to be L-hyper-
independent if it consists of disjoint cordless L-circuits Cp of odd order (p = 1,3, . . .)4. Consequently
an L-outranking (L-outranked) hyper-kernel is an L-hyper-independent L-outranking (L-outranked)
choice. It is possible to show that these hyper-kernels verify the five principles introduced in Section 3.
A pre-hyper-kernel is a hyper-kernel for which at least one cordless L-circuits Cp of odd order is in an
undetermined situation. This means that it is impossible to determine if it belongs or not to the choice.
Nevertheless, a deeper analysis on the choice may exclude it or include it for good.

We now present the algorithm for the resolution of the BC problematics:

1. Detection of the odd cordless L-circuits of G̃L .
2. Search for the L-outranking (L-outranked) (pre-)hyper-kernels (B1, B2 and B4).
3. Determination of the robust effective L-outranking (pre-)hyper-kernels (B3 and B5).
4. Ranking of the robust effective L-outranking (pre-)hyper-kernels according to decreasing logical

determination.

The BC recommendation is then given by the L-outranking hyper-kernel(s) with the highest degree of
logical determination.

5 Concluding remarks

This short note describes the very basic ideas of the RUBY procedure for the determination of a BC

in a valued outranking digraph. For further details the interested reader should refer to [BRM05]. The
procedure is based on five natural principles and introduces the concept of hyper-kernel of a digraph
in order to build a BC recommendation.
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[Roy68] B. Roy. Classement et choix en présence de points de vue multiples. RIRO, (8):57–75, 1968.
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The dominant model in the field of MCDM uses additive value functions. This model has received a
thorough axiomatic treatment within the framework of conjoint measurement, following the works of
Gérard Debreu and Duncan Luce. This model implies that criteria are mutually independent, which
may not always be appropriate. Choquet and Sugeno integrals have recently attracted much interest in
MCDM as convenient tools to model interactions between criteria. The main purpose of this paper is
to review the existing literature on these two models from the point of view of conjoint measurement,
i.e., within a framework in which the only primitive is a preference relation defined on a product set
that does not have to be homogeneous.

Whereas the measurement-theoretic foundations of Choquet and Sugeno integrals have been well
studied in the area of decision making under uncertainty, a comparable analysis is still lacking in
the area of MCDM. Indeed, the very conception of these two tools implies a “commensurability”
hypothesis between the scales of the various criteria that is not easy to formalize within the framework
of conjoint measurement.

We shall first review the various attempts that have been made to axiomatize Choquet and Sugeno
integrals within a classical conjoint measurement framework. We then concentrate on the Sugeno
integral, showing that existing axiomatic analyses of this tool allow suggesting new and simple inter-
pretations of the aggregation it promotes. This will lead to a novel interpretation of the Sugeno integral
that emphasizes its ordinal character and links it with “noncompensatory” aggregation models.

This analysis is based on joint work with Thierry Marchant and Marc Pirlot [1] and uses recent
work in the area by Salvatore Greco, Benedetto Matarazzo and Roman Slowinski [2, 3]

References

1. D. Bouyssou and Th. Marchant. An axiomatic approach to noncompensatory sorting methods in MCDM, I: The case of
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3. R. Słowiński, S. Greco, and B. Matarazzo. Axiomatic characterization of a general utility function and its particular
cases in terms of conjoint measurement and rough-set decision rules. European Journal of Operational Research,
158(2):271–292, 2004.

44



Representing Comparative Aggregate Likelihoods

G. Busanello1, G. Coletti1, R. Scozzafava2, and B. Vantaggi2

1 Dept. Matematica e Informatica, University of Perugia
Perugia, Italy

{busanello|coletti}@dipmat.unipg.it
2 Dept. Metodi e Modelli Matematici, University “La Sapienza”

Roma, Italy
{romscozz|vantaggi}@dmmm.uniroma1.it

Abstract. We deal with coherent conditional probability as a general approach able to encompass some
existing theories of uncertainty, as e.g. fuzzy sets [3]. We focus on situations where the decision maker is
not able to evaluate numerically membership functions, but only to compare the relevant conditional events
E|H, for a given E (comparative aggregate likelihoods). In this context we give a representation of these
relations in terms of aggregate likelihoods.

1 Introduction

Coherent conditional probability is a general framework for dealing with different existing theories of
uncertainty [2], as for example fuzzy sets [3].

We refer to the state of information (at a given moment) of a real (or fictitious) person (for instance,
a “randomly” chosen one) that will be denoted by “You”. If X is a (not necessarily numerical) random
quantity with range CX , let Ax, for any x in the range, be the event (X = x). Now, let ϕ be any property
related to the random quantity X : You can refer to a suitable membership function of the fuzzy subset
of “elements” of CX with the property ϕ. For example, if X is a numerical quantity and ϕ is the
property “small”, for You the membership function may be put equal to 1 for values of X less than a
given x1, while it is put equal to 0 for values greater than x2; then it is taken as decreasing from 1 to
0 in the interval from x1 to x2: this choice of the membership function implies that, for You, elements
of CX less than x1 have the property ϕ, while those greater than x2 do not. So the real problem is that
You are uncertain on having or not the property ϕ those elements of CX between x1 and x2. Then the
interest is in fact directed toward conditional events such as E|Ax, where x ranges over the interval
from x1 to x2, with E =“You claim the property ϕ”.

It follows that You may assign a probability value P(E|Ax) equal, e.g., to 0.2, while You do not
assign a degree of belief of 0.8 to the event E under the assumption Ac

x, since an additivity rule with
respect to the conditioning events does not hold. In other words, it is sensible to identify the values of
the membership function with suitable conditional probabilities [3]. In particular, putting Ho = “the
value of X is greater than x2”, H1 = “the value of X is less than x1”, we may assume that E and
Ho are incompatible and that H1 implies E, so that, by the properties of a conditional probability,
P(E|Ho) = 0 and P(E|H1) = 1. Notice that the conditional probability P(E|Ax) has been directly
introduced as a function on the set of conditional events, and this is possible since Ax are pairwise
incompatible [2]. However, it is interesting to extend this evaluation to other conditional events; for
example, it is possible to assign the (conditional) probability that “You claim the number x is small”
knowing that its value is between x and x. This aspect is very crucial, since in our approach an essential
role is played by conditioning: in fact the very concept of conditional probability is deeper than the
usual restrictive view emphasizing P(E|H) only as a probability for each E given H (looked on as a
given fact). Regarding instead the conditional probability as function only of the conditioning event
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P(E|·), in [1] it is shown that coherence implies that the extension on E|H are obtained as weighted
averages (weights equal to zero or one are allowed) of the values P(E|Ax) on the atoms. Possibility
measures can be seen as borderline case [2].

In this talk we are dealing with situations where the decision maker is not able to give a numerical
membership P(E|Ax), but he is able only to compare the conditional events E|H and E|K, for a given
event E. Then, we focus on these relations and we study the representability by a sort of aggregate
likelihoods (i.e. coherent conditional probabilities on E|H, for a given E). As particular case we obtain
comparative possibilities.

2 Comparative relations

Let � be a binary relation on a set of conditional events F = {Ei|Hi,Fi|Ki}i∈I expressing the intuitive
idea of being “no more believable than”. The symbols ∼ and ≺ represent, respectively, the symmet-
ric and asymmetric parts of �: E|H ∼ F |K means (roughly speaking) that E|H is judged “equally
believable” as F |K, while E|H ≺ F |K means that F |K is “more believable” than E|H.

The relation � expresses a qualitative judgement and it is necessary to set up a system of rules
assuring the consistency of the relation with some numerical model. More precisely, given a numerical
framework of reference (singled-out by a numerical measure of uncertainty), it is necessary to find the
conditions which are necessary and sufficient for the existence of a numerical assessment on the events
representing a given ordinal relation.

We recall that a function f from F to IR+ represents the relation � iff

E|H � F |K =⇒ f (E|H)≤ f (F |K),

E|H ≺ F |K =⇒ f (E|H) < f (F |K).

In [4] a condition – called (ccp) – assuring the representability of �, defined on an arbitrary family F
of conditional events, by means of a coherent conditional probability, and an interpretation in terms
of coherent bets have been given:

(ccp) for every Ei|Hi � Fi|Ki ∈ F there exist αi,βi ∈ [0,1] with αi ≤ βi with αi < βi for Ei|Hi ≺
Fi|Ki, such that, for every n ∈ IN and for every Ei|Hi � Fi|Ki, λi,λ

′
i,≥ 0,(i = 1, ...,n), one has (IA is the

indicator of event A):

sup
Ho

{
∑

i

[
λ
′
i(IFi∧Ki −βiIKi)+λi(αiIHi − IEi∧Hi)

]}
≥ 0

where Ho is the union of the conditioning events whose corresponding λi (or λ′i) is positive.
Now, we focus on relations defined in a more specific setting, that one refereing to the above fuzzy

context. Given an additive set H , put

E = {E|H, /0|H,H|H : H ∈H }.

We consider a relation � defined on E , and we give some necessary conditions for the existence of a
coherent conditional probability on E representing �:

(a) for any E|H ∈ E one has /0|H � E|H � H|H;
(b) for any H,K ∈H , one has /0|H ≺ H|H, H|H ∼ K|K and /0|H ∼ /0|K;
(c) H ∈H , E ∧H = /0⇒ E|H ∼ /0|H, and E ⊇ H ⇒ E|H ∼ H|H;
(d) H,K ∈H , with H ∧K = /0, E|K � E|H ⇒ E|K � E|(H ∨K)� E|H;
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(e) H,K ∈H with H∧K = /0, E|H ∼E|(H∨K) and E|K 6∼E|H imply E|G∼E|(G∨K′) with K′⊆K,
for any event G∈H such that Gc∧H ∈H and either E|(Gc∧H) 6∼E|H or E|H 6∼E|(G∧Hc∨H);

(f) H1,H2,H1∧H2,Hc
1 ∧K,Hc

2 ∧K,K ∈H and (H1∨H2)⊆ K,
E|(Hc

1 ∧K) 6∼ E|K 6∼ E|(Hc
2 ∧K)⇒ E|(H1∧H2)∼ E|K.

The proof that the above conditions holds for any relation induced by a coherent conditional probabil-
ity is based on the characterization theorem given in [2], moreover these conditions can be deduced
from (ccp). However the above conditions are not sufficient to assure the representability of � by
means of a coherent conditional probability, it is enough to take the partition {H1, ...,H4} and con-
sider the following ordinal relation

/0|H1 ∼ ... ∼ /0|Ω ≺ E|H1 ≺ E|(H1 ∨ H2) ≺ E|H2 ∼ E|(H1 ∨ H3) ∼
∼ E|(H1 ∨H2 ∨H3) ∼ E|(H1 ∨H4) ∼ E|(H1 ∨H2 ∨H4) ≺ E|(H2 ∨H3) ≺ E|(H2 ∨H4) ≺ E|H3 ∼
E|H4 ∼ E|(H3∨H4)≺ . . ..

For lack of space we omit the proof that � satisfies the conditions (a)–(f), but there is no coher-
ent conditional probability representing it. Then, the above example shows that also in this simpler
situation we cannot avoid a condition based on a betting scheme criterion.

Definition 1. Let H be an additive class and Ho =
_

H∈H
H. A complete relation� on E = {E|H, /0|H,H|H :

H ∈H } is a comparative aggregate likelihood if it satisfies conditions (a), (b), (c) and, for any choice
of λi,µ j,δk,ξr ≥ 0 such that ∑J µ j > 0,

sup
Ho

∑
I

λi [kiIHi −hiIKi)]+∑
J

µ j
[
k jIH j −h jIK j )

]
−∑

K
δkIHk +∑

R
ξr(IHr −1) > 0

where ki is the number of atoms contained in Ki (analogously hi) and i ∈ I, j ∈ J,k ∈ K,r ∈ R such
that E|Hi � E|Ki, E|H j ≺ E|K j, E|Hk ∼ /0|Hk, E|Hk ∼ Hr|Hk.

For comparative comparative aggregate likelihood we have the following result:

Theorem 1. Let H be an additive class generated by n atoms {A1, ...,An}, and � be a relation on
E = {E|H, /0|H,H|H : H ∈H } The following two statements are equivalent:
(i) � is a comparative aggregate likelihood;

(ii) there exists a coherent conditional probability on E representing � with extensions such that
P(Ar|Ho) = 1

n for any atom Ar in H .

The proof is based essentially on a classic alternative theorem and on the characterization theorem for
coherent conditional probability (see [2]).

Conditions (d), (e) and (f) are useful to split the problem into subproblems, by detecting the
conditioning events belonging to different zero-layers [2], as the following result shows:

Theorem 2. Let � be an ordinal relation on E satisfying the conditions (a–f). Let Ho =
_

H∈H
H, H i =

_

K

{K ∈ H : K ⊆ H i−1,E|K 6∼ E|(Kc ∧ H i−1) ∼ E|H i−1}.

If the restriction of � on E j = {E|H : H ∈ H ;H ⊆ H j,H 6⊆ H j+1} for any j = 0, ...,k, is repre-
sentable by a coherent conditional probability, then � also is representable by a coherent conditional
probability.

From the above result it comes out that a relation satisfying conditions (a–f) and that can be decom-
posed in comparative aggregate likelihoods on E j (with j = 0, ...,n), is representable by a coherent
conditional probability on E .

In the talk we show how to get as particular case (when H i∧H i+1 contains only one suitable atoms
for i = 0, ...,k) comparative possibilities.
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We define the concept of two-persons (noncooperative) game as follows. Each player i ∈ {1,2} has
a set of alternatives Yi and has to choose one of those alternatives based on more or less plausible
information he has about what the other player intends to do. The information player i has about
player’s j 6= i intentions is ”fuzzy” and represented by fuzzy subsets Ai of Yj. A strategy of player
i is defined as a pair (Ai,yi), where Ai is a fuzzy subset of Yj and yi ∈ Yi. The meaning of such a
strategy is that player i, based on the information described by the fuzzy set Ai, chooses alternative
yi. The degree of membership Ai(y j) of y j ∈ Yj in the fuzzy subset Ai of Yj represents the certainty
of player i (determined by his evaluation of some information he has on player j) that player j will
choose alternative y j. The expected payoff of player i in the case that strategies s1 = (A1,y1) and
s2 = (A2,y2) are played is a number Ei(s1,s2) ∈ [0,1]. A pair of strategies s∗i = (A∗

i ,y
i
∗), i = 1,2 is

called equilibrated if

E1(s∗1,s
∗
2)≥ E1(s1,s∗2) and E2(s∗1,s

∗
2)≥ E2(s∗1,s2),

for any other pair of strategies si = (Ai,yi), i = 1,2. The question is whether, and under which con-
ditions, equilibrated strategies exist and, if affirmative, how to determine them. We will show that
existence of equilibrated strategies is, essentially, a fixed point problem for a special type of fuzzy
mapping. However, effectively computing such strategies is difficult in most practical cases. The spe-
cial case where the rules of the game exclude any other simultaneous choices of strategies than pairs
of the form s1 = ({y2},y1) and s2 = ({y1},y2) is exactly the situation when the players know for
sure that in exchange for choosing alternative yi the other player will choose y j. This is the classical
model of non-cooperative game in which each strategy can be identified with an alternative and in
which equilibrated strategies are Nash equilibria. In such cases finding equilibrated strategies is still a
computationally complex problem but, under certain conditions, it can be numerically solved (we will
sketch an algorithm for doing that using a basic principle that seems to be new). The problem of find-
ing equilibrated strategies in nonclassical games seems to be much more difficult. One reason for that
is that players have to deal with uncertain information. The considerations above are still true when
more than two players are involved in non-cooperative games where the behavior of each individual
is conditioned by fuzzy information he has on the behavior of the other players.
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We present a rigorous framework for dealing with a specific type of supervised classification called
supervised ranking, or, more precisely, supervised ordered sorting. The following major differences
need to be distinguished:

(i) objects are assigned labels belonging to a totally ordered set of labels;
(ii) objects are not described in terms of attributes, but in terms of (true) criteria;

(iii) the labels are assigned in a monotone way: objects with equal or higher scores on all criteria do
not receive a lower overall score, or, in other words, are not assigned a lower label.

The purpose of supervised ranking is then to produce such a monotone classifier on the basis
of a learning sample. Existing approaches comprise instance-based methods as well as model-based
methods such as various adaptations of decision trees, rough set methods, aggregation models such as
TOMASO, etc.

Real-world data sets of this kind are usually pervaded with two undesirable phenomena: doubt, i.e.
objects with identical scores but carrying a different label, and reversed preference, i.e. objects with
better scores but carrying a lower label. We prefer to adopt a non-invasive approach by transforming
contamination of the second type into the first type.

In this talk, we will focus on distribution classifiers, i.e. classifiers that do not necessarily as-
sign a unique class label, but a probability distribution over the set of labels. In the present context,
the monotonicity constraint naturally leads to the notion of stochastic dominance. We will confine
ourselves to an ordinal setting and present a general framework from which several instance-based
supervised ranking algorithms can be derived, such as the Ordinal Stochastic Dominance Learner.

The occurrence of reversed preference is indeed one of the limiting factors for the development
of what could be called ranking trees. We will explain by means of some examples that ranking trees
require non-trivial adaptations of the principles of growing, splitting and pruning of the usual classifi-
cation trees. Of course, ranking trees are more appealing than OSDL because of their interpretability.

This talk is based on joint work with Kim Cao-Van and Stijn Lievens.
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We consider a possibility distribution  associated to a variable X, (x) = Po(X=x), for all x 
belonging to R, and we associate to this possibility distribution, two shadow distributions 

Xf Xf

+
XF  and : FX

−

           (x) =  Po(X  = +
XF )x≥ )uX(Pomax

xu
=

≥
 ;    −

XF (x) =  Po(X )x≤  = .   )uX(Pomax
xu

=
≥

 
Starting with two variables and their corresponding marginal possibility distributions and f , 
we define the degree of possibility of X over Y according to the extension principle [4] : 

Xf Y

 
                                    Po(X  =  C( (u),                                        (1) )Y≥ max

vu≥
Xf ))v(Yf

 
where C is a conjunctor operator (also called semicopula, see [1]).  

C: [0,1]   [0,1] satisfies two basic properties 2 →
(i)  :  monotonic   (C is non decreasing in both arguments) 
(ii) : limit conditions (zero is a neutral element : C(1,x) = C(y,1)  = 1, 1,0[y,x ∈∀ ]) 
 
Obviously C(x, y) ≤  min(x, y) 
 
 We prove that 
 
                     max (Po(X , Po(Y ) = 1, for any pair X and Y                                   (2) )Y≥ )X≥
                     Po(X  = C(Po(X , Po(Y)Y≥ max

x
)x≥ )x≤ ) for any pair X and Y                   (3)                                      

                     Po(X ≤≥ )Z  max (Po(X ,  Po(Y ), for any triple X, Y,Z                    (4)                            )Y≥ )Z≥
 
(2) and (4) indicate that Po(X  is a possibility relation that presents the property of negative 
transitivity (or min-max transitivity).  The necessity relation  

)Y≥
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Ne(X  = 1- Po(Y is a transitive relation (in the max-min sense). )Y≥ )X≥
 
If  one takes as  conjunctor C  the t-norm “min” that is usually considered when the extension 
principle is introduced (see Zadeh [4-5]) indicating that the bidimensional possibility distribution 

 corresponds  to non-interactive variables , it has been proved by Roubens and Vincke [4] that 
the fuzzy possibility relation Po(X  is a Ferrers relation, i.e. 

XYf
)Y≥

 
                    min ( Po(X , Po(Z)Y≥ )T≥ ≤  max( Po(X ,  Po(Z  )T≥ )Y≥
 
Finally if the  bidimensional possibility distribution f is used to define the possibility relation  
Po(X :  

XY
)Y≥

                                    Po(X  =  (u, v)  )Y≥ max
vu≥

XYf

 
the negative transitivity property does not necessarily hold. 
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We establish a pairwise comparison method for random variables. This comparison results in a prob-
abilistic relation on a given set of random variables. The transitivity of this probabilistic relation is
investigated in the case of independent random variables, as well as when these random variables are
pairwisely coupled by means of a copula, more in particular the minimum operator or the Łukasiewicz
t-norm. A deeper understanding of this transitivity, which can be captured only in the framework of
cycle-transitivity, allows to identify appropriate strict or weak thresholds, depending upon the cop-
ula involved, turning the probabilistic relation into a strict order relation. Using 1/2 as a fixed weak
threshold does not guarantee to yield an acyclic relation, but is always one-way compatible with the
classical concept of stochastic dominance. The proposed method can therefore also be seen as a way
of generating graded as well as non-graded variants of that popular concept.
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Transitivity is an essential property in an ordering process and therefore a basic element in preference
modeling. Our presentation is focused on the study of the propagation of transitivity from a large
preference relation to its symmetric and asymmetric components.

This contribution is structured in two parts. In the first one we briefly recall some bounds found
for the decomposition of transitivity from a large preference relation to its symmetric and asymmet-
ric components. In the second part we present results that close the problem. We characterize the
transitivity that any symmetric and asymmetric parts of a transitive large preference relation satisfy.

A large preference relation is just a reflexive relation denoted by R. The relation R connects two
alternatives a and b (aRb) if the alternative a is at least as good as the alternative b.

In the crisp setting, a large preference relation admits a unique decomposition into a symmetric
part I (indifference relation) and an asymmetric part P (strict preference relation). It is well known that
in the classical setting the transitivity of I and P follow from the transitivity of R. It is also well known
that if R is complete (R connects every pair of alternatives), the transitivity of R is characterized by
the transitivity of I and P (see [1]).

In the fuzzy set context, there is neither a unique symmetric component nor a unique asymmetric
component. Any generator, i.e. any commutative binary operator bounded between the Łukasiewicz
t-norm and the minimum operator i leads to a decomposition of a large fuzzy preference relation [5].
We recall that given a generator i, we can decompose R as follows

I = i(R,Rt)
P = R− i(R,Rt)

where Rt is the transpose of R defined by Rt(a,b) = R(b,a).
It is also well known that there is no unique definition of transitivity for fuzzy relations. The most com-
mon definition is associated to t-norms. The first studies on the propagation of transitivity (see [2–4])
concern only complete large preference relations. These works are focused on some types of transitiv-
ity related to the most important t-norms and they study which of those few types of transitivity I and
P inherit from R. We have considered a more general approach in which T -transitivity for T a t-norm
turns out to be a too restrictive notion. Given the transitivity of R we first bounded the transitivity of
the generated I and P in the setting of f -transitivity for f a conjunctor [7]. Some of the most important
bounds we found are presented in the first part of our contribution.
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In the second part of this presentation we go much further. We characterize the transitivity that
any indifference relation I obtained from an f -transitive R by means of any generator i satisfies. We
also characterize the transitivity that the strict preference relation P satisfies.

We close several years of research on the problem of the decomposition of the transitivity of large
preference relations since we also prove that the characterizations obtained are upper bounds for the
transitivity of I and P. We present examples showing that those bounds cannot be surpassed.
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1 Introduction

Several definitions of preference transitivities were introduced in the past, see e.g. [2]. In this paper
we deal with two new transitivity definitions, namely the additive and the multiplicative transitivity.

Definition 1. Let p(x,y) be a preference function. It fulfills the additive transitivity if(
p(x,y)− 1

2

)
+

(
p(y,z)− 1

2

)
= p(x,z)− 1

2
, ∀x,y,z ∈ [0,1].

Definition 2. Let p(x,y) be a preference function. It fulfills the multiplicative transitivity if

p(y,x)
p(x,y)

p(z,y)
p(y,z)

=
p(z,x)
p(x,z)

, ∀x,y,z ∈ [0,1].

These definition correspond respectively to the nilpotent and the strict classes of fuzzy operators.
We give two new preference functions which fulfill these transitivities. Both of them originate from
the concept of aggregative operators [1]. The pseudo-associative additive aggregative operator is the
mean operator

m(x,y) = f−1
m

(
fm(x)+ fm(y)

2

)
,

where fm : [0,1] → [0,1] is a nilpotent generator function. The associative multiplicative aggregative
operator is

a(x,y) = f−1
a ( fa(x) fa(y)) ,

where fa : [0,1]→ [0,∞] is a strict generator function. We define a preference function to be

p(x,y) = o(n(x),y),

where o(x,y) is either an additive or a multiplicative aggregative operator and n(x) is its corresponding
strong negation. We prove that the (additive and multiplicative) preferences are strongly related to
the Łukasiewicz and the Dombi operators, respectively. We show that the generator functions of the
preference functions can only be the generators of these operators.

Theorem 1. The preference function

p(x,y) = f−1
(

1
2

( f (y)− f (x))+ f (ν)
)

has additive transitivity if and only if its generator function is f (x) = cx and so

p(x,y) =
y− x+1

2
.
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Theorem 2. The preference function

p(x,y) = f−1
(

f (ν)
f (y)
f (x)

)
has multiplicative transitivity if and only if its generator function is f (x) = 1−x

x and so

p(x,y) =
1

1+ 1−y
y

x
1−x

.

We also show some interesting properties of these preferences and their corresponding aggregative
and negation operators.

Proposition 1. The following identities hold:

– p(x,y) = n(p(y,x))
– p(x,y) = p(n(y),n(x))
– p(x,y) = n(p(n(y),n(x)))
– p(o(x1, . . . ,xn),o(y1, . . . ,yn)) = o(p(x1,y1), . . . , p(xn,yn))
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Refining Discrete Sugeno Integrals by Means Oo Choquet Integrals
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1 Introduction

Decision rules generalizing maximin and maximax criteria can be defined on an ordinal scale in the
form of a Sugeno integral. An axiomatic approach to these qualitative criteria for decision under
uncertainty in the style of Savage is in [1]. But these criteria suffer from a lack of discrimination.
In order to cope with this limitation, extensions have been defined when the likelihood of events is
measured by a possibility or a necessity measure— see [2]. Following this approach, a refined ranking
of acts can be defined that is qualitative (it relies on the use of nested leximin and leximax procedures),
and satisfies all the properties of expected utility rankings. And it can indeed be represented as a
discrete expected utility or weighted average, where the utility function and the probability measures
are big-stepped, i.e. form super-increasing (or decreasing) sequences.

Sugeno integral as a qualitative decision criterion suffers from the same defects. Here, we refine
this criterion using similar leximin and leximax ingredients. The refinement of weighted maximin or
maximax possibilistic criteria by expected utility made sense because these criteria do not strongly
violate the sure thing principle: only a blurring effect is observed, which causes the lack of discrimi-
nation. However due to the strong violation of the Sure Thing Principe by Sugeno integral, the latter
cannot be refined by means of an expected utility criterion. In fact, due to the role of comonotonic
acts in the representation of Sugeno integrals, the natural numerical criterion refining them is Choquet
integral. It makes sense to try and refine a Sugeno integral-based ordering by means of a Choquet
integral. Indeed the expression of a Sugeno integral and of a discrete Choquet integral are similar.
Moreover while Choquet integrals are additive for comonotonic acts, Sugeno integrals are both max-
itive and minitive for comonotonic acts. Intuitively, restricting to acts that rank states in a prescribed
order of consequence utilities, Choquet integral behaves like a regular integral and Sugeno integral
behaves like a possibilistic criterion. So refining a Sugeno integral by means of a Choquet integral
looks like the right way to go, relying on the possibility of refining possibilistic criteria by expected
utility.

There are two approaches one might think of for achieving this program.

– Applying the possibilistic criteria transformation directly on the original definition of Sugeno
integral, preserving the nature of the original capacity. However, this approach does not address
the potential lack of discrimination of the set-function. The latter can be refined in turn if needed.

– Applying the possibilistic criteria transformation on the power set of the state space and the ordinal
Moebius transform of the capacity, so as to get a big-stepped random set on the numerical side.
The questionable feature of this method is that the nature of the capacity changes during the
transformation.

2 Capacity-preserving refinements

Let f be a mapping (an act) from a finite set S (states) to a finite set X (consequences), and γ be
an L-capacity on S for a finite chain L. In the standard expression of Sugeno integral, Sγ,u( f ) =
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maxλi∈L min(λi,γ(Fλi)) (where Fλi = {s∈ S, f (s)≥ λi}), the two operators max and min are monotonic
but not strictly, hence two nested drowning effects. The simplest idea to refine Sugeno integral is to
consider a refinement of its maxmin expression using a leximin criterion embedded within a leximax
criterion [2]. To make this generalization clear, let us simply consider that leximin and leximax or-
derings are defined on sets of tuples whose components belong to a totally ordered set (Ω,D), say
Leximin(D) and Leximax(D). Suppose (Ω,D) = (Ll,Leximin) or (Ω,D) = (Ll,Leximax), with any
l ∈ N. Then, nested lexicographic ordering relations can be recursively defined, in order to compare
L-valued matrices.

Consider for instance the relation �lmax(�lmin) obtained by the procedure Leximax(Leximin(≥)).
It applies to matrices [a] of dimensions p× q with coefficients ai j in (L,≥). These matrices can be
totally ordered in a very refined way by this relation. Denote by ai· row i of [a]. Let [a?] and [b?] be
rearranged matrices [a] and [b] such that terms in each row are reordered increasingly and rows are
arranged lexicographically top-down in decreasing order. [a] �lmax(�lmin) [b] is defined as follows :
∃k ≤ p s.t. ∀i < k,a?

i· =Leximin b?
i· and a?

k· >Leximin b?
k·.

Relation �lmax(�lmin) is a complete preorder. [a] 'lmax(�lmin) [b] if and only if both matrices have
the same coefficients up to the above described rearrangement. Moreover, �lmax(�lmin) refines the
ranking obtained by the optimistic criterion: maxi min j ai j > maxi min j bi j implies [a]�lmax(�lmin) [b].

Especially, if [a] Pareto-dominates [b] in the strict sense (∀i, j,ai j ≥ bi j and ∃i∗, j∗ such that ai∗ j∗ >
bi∗ j∗), then [a]�lmax(�lmin) [b].This leads to the following decision rule:

f �lsug g⇔ [ f ]γ,u �lmax(�lmin) [g]γ,u (1)

where ∀ f ∈ XS, [ f ]γ,u is a (m + 1)× 2 matrix [ f ] on (L,≤) with coefficients fi1 = λi and fi2 =
γ(Fλi), i = 0,m. The properties of the �lmax(�lmin) are thus inherited: �lsug is a complete and transitive
relation. It refines the ranking of events provided by Sγ,u. Moreover, f is indifferent to g ( f ∼lsug g) iff
∀λ,γ(Fλ) = γ(Gλ).

Being a leximax(leximin) procedure, �lsug can be encoded by a sum of products. We can for
instance use a “big-stepping” function χ∗, built with respect to the number of levels in L :χ∗(λm) = 0;
and χ(λi) = K

N2i , i = 0,m−1, where N = m and K can be any normalization factor. Let us set it so that
χ(γ(S)) = 1. We can now immediately derive:

f �lsug g⇔ ∑
λ∈L

χ
∗(λ) · χ

∗(γ(Fλ))≥ ∑
λ∈L

χ
∗(λ) · χ

∗(γ(Gλ))

So, we defined a new evaluation function EU lex = ∑λ∈L χ∗(λ) · χ∗(γ(Fλ)), that refines the ranking
provided by Sγ,u. It should be noticed that EU lex(1LA0L) = χ∗(γ(A)) i.e. the comparison of events in
the sense of EU lex is perfectly equivalent to the one in terms of γ — that is why we say that this
refinement preserves the capacity. More generally, the procedure is perfectly unbiased in the sense
that the original information, i.e. the ordinal evaluation of the likelihood of the events on L and the
one of the utility degrees of the consequence on the same scale is preserved.

It can be shown that �lsug satisfies Savage axioms P1, and P3 to P5 – but obviously not P2, since
γ can be a non additive capacity. Unsurprisingly, �lsug satisfies the comonotonic Sure Thing Principle
— and is ordinally equivalent to a Choquet integral, namely the one based on the utility u′ = χ∗ ◦ u
and the capacity ν = χ∗ ◦ γ: f �lsug g⇔Chχ∗◦γ,χ∗◦u( f )≥Chχ∗◦γ,χ∗◦u(g).

The intuition behind this result is that the ranking of acts is not modified when replacing χ∗(γ(λi)
by χ∗(γ(λi))−χ∗(γ(λi+1)) in the definition of EU lex since γ(λi+1) is negligible with respect to γ(λi).
We thus get the Choquet integral. It should be noticed that, when the capacity is a possibility measure
Π (resp. a necessity measure N), one does not recover the ranking of acts provided by the refinements

59



of possibilistic decision criteria into expected utility as done in [2]. �lsug preserves the capacity while
in this reference a probability measure is used that refines it.

2.1 Refinement using Moebius transforms

Another approach to the same problem may start from the expression of Sugeno integral involving all
subsets of S:

Sγ( f ) = max
A⊆S

min(γ#(A),uA( f ))

where uA( f ) = mins∈A u( f (s)) and γ#(A) = γ(A) if γ(A) > maxB(Aγ(B), and 0L otherwise. We look for
an expression of the form ∑A⊆S mν(A)× uA( f ) which is a Choquet integral in terms of the Moebius
transform mν of a numerical capacity ν.

The above expression of the Sugeno integral has the standard maxmin form w.r.t. a possibility
distribution (over the power set). The increasing transformation χ∗ that changes a maxmin form into a
sum-product encoding of its leximax(leximin) refinement, yields EU lex#( f )= ∑A∈2S χ∗(uA( f )).χ∗((γ#(A))).

Notice that here the referential is not S nor L, but 2S; so, in the definition of χ∗, we set N = 2Card(S).
We normalize the transformation is such a way that ∑A∈2S χ∗(γ#(A)) = 1. So, the function m∗ : 2S 7→
[0,1]: m∗(A) = χ∗(γ#(A)) is a mass assignment. Note that m∗ is a big-stepped mass function in the
sense that: m∗(A) > 0 =⇒ m∗(A) > ∑B⊆S, s. t.m∗(B)<m∗(A) m∗(B).

It is easy to show that χ∗(uA( f )) = χ∗(mins∈A u( f (s))) = mins∈A χ∗(u( f (s))). Then:

EU lex#( f ) = ∑
A⊆S

m∗(A) . min
s∈A

χ
∗(u( f (s)))

is a Choquet integral w.r.t. a belief function which refines the original Sugeno integral. This shows
that any Sugeno integral can be refined by a Choquet integral w.r.t a belief function.

Contrary to what happens with the Choquet integral obtained in the previous section, the capac-
ity γ is generally not preserved under this second transformation. The resulting Choquet integral is
always pessimistic, and sometimes not more discriminant than the original criterion, sometimes more
discriminant than the previous refinement. Two particular cases are interesting to consider:

– If γ is a possibility measure Π, then γ#(A) is positive on singletons of positive possibility only. In
other words, γ# coincides with the possibility distribution of Π and the Moebius expression of the
Sugeno integral coincides with the expression of the optimistic possibilistic criterion. So m∗ is a
regular big-stepped probability and the Choquet integral collapses on a regular expected utility.
We retrieve the maximal expected utility refinement proposed in [2].

– On the contrary if γ is a necessity measure N, ChBel∗,u∗ does not collapse at all with an expected
utility. Indeed, Bel∗ is a necessity measure ordinally equivalent to the original one. In this case,
the resulting Choquet integral is one with respect to a necessity measure. Only the “max-min”
framing of the Sugeno integral has been turned into a “sum-product” framing: the transformation
has preserved the nature of the original capacity and the refinement identified in Section 2 is
retrieved.

When utilities are of the zero-one type, the above refinements are generally void since Sugeno integral
coincide with γ(A) for some event A. Moreover this is also true when the capacities are uninforma-
tive (for instance a necessity function induced by a uniform possibility distribution). The full-fledged
refinement of a Sugeno integral should then involve a third step : refining the capacity itself. Some
preliminary definitions and results will be presented to this aim.
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Nonstrict Bisymmetric Aggregation Functions Revisited
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Among the oldest tools both in mathematics and in applications are the means of two or more numbers:
arithmetic, geometric, harmonic means for example. Such means are special cases of the so-called
regular quasi-arithmetic mean M:

M(x,y) = f−1
(

f (x)+ f (y)
2

)
(x,y ∈ [a,b]), (1)

where f is some strictly monotonic and continuous function on the interval [a,b].
Aczél [1] proved the nice result that a function M of two variables defined on [a,b]2 is a reg-

ular quasi-arithmetic mean (i.e., can be represented as in (1)) if and only if M is continuous, sym-
metric, strictly increasing in each argument, idempotent and fulfils the bisymmetry equation for all
x11,x12,x21,x22 ∈ [a,b]:

M[(M(x11,x12),M(x21,x22)] = M[M(x11,x21),M(x12,x22)]. (2)

In [2] we studied means satisfying the conditions of Aczél’s theorem, except strict monotonic-
ity. That is, we completely described the family of continuous, symmetric, (non-strictly) increasing,
idempotent, bisymmetric functions.

The aim of the present talk is to extend some of the results in [2]. The extension is twofold: on
one hand, we can prove essentially the same results as we did in [2], but under weaker conditions.
On the other hand, some interesting ordinal-sum-like new constructions of continuous bisymmetric
aggregations can be derived.
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Capacities and Games on Lattices: A Survey of Results
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Abstract. We provide a survey of recent developments about capacities(or fuzzy measures) and ccoper-
ative games in characteristic form, when they are defined on more general structures than the usual power
set of the universal set, namely lattices. In a first part, we give various possible interpretations and applica-
tions of these general concepts, and then we elaborate aboutthe possible definitions of usual tools in these
theories, such as the Choquet integral, the Möbius transform, and the Shapley value.

1 Introduction

Among the recent advances in capacity (or fuzzy measures) and cooperative game theory, a notable
fact is the emergence of new notions of capacities and games which are defined on more general
structures than the usual Boolean lattice of the subsets of the universal set. Apart of the mathematical
interest brought by such works, the main motivation lies in an attempt to model the real world in a
more accurate way.

As it is often the case with generalizations, the main difficulty is to find the right definitions for
the usual tools and concepts used in the theory. Concerning capacity theory, fundamental concepts are
the Choquet integral and the Möbius transform, while for cooperative game theory, the Shapley value
and the core are important notions.

Our aim is to provide a survey of recent advances along these lines. We will see that, although
the generalization of the Möbius transform and Choquet integral do not raise particular difficulties,
a proper definition of the Shapley value is much more a topic ofdiscussion. We will address also
the case of bipolar structures, and show that these structures cannot be reduced to a classical lattice
structure, although they can be isomorphically mapped to lattices.

In all our discussion, we consider the universal set to be finite. We denote it byN, and|N| = n.

2 Capacities, fuzzy measures, games and the like

Definition 1. A capacityon N is a set function µ: 2N →R+ such that µ( /0) = 0, and A⊆B⊆N implies
µ(A) ≤ µ(B). This last property is calledmonotonicity.

Capacities have been introduced by Choquet in 1953 [9]. A capacity is normalizedif µ(N) = 1. In
1974, Sugeno proposed a similar notion (up to some conditionof continuity), which he calledfuzzy
measures[47]. Other names which are commonly used arenonadditive measures(Denneberg [12]),
andmonotonic measures.

Definition 2. A transferable utility game in characteristic formor for simplicitygame, is a set function
v : 2N → R such that v( /0) = 0.

The above definition is the central concept ofcooperative game theory(see, e.g., [13, 10, 3, 43]).
The only difference between games and capacities is that monotonicity is dropped for the former.
Hence monotonic games coincide with capacities, and non monotonic fuzzy measures, a term which
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is sometimes used, coincide with games. In the sequel, notation v implicitely designates a game, while
µ refers to a capacity.

Given a subsetA⊆ N, the precise meaning of the quantityµ(A) or v(A) depends on the kind of the
intended application or domain, in fact essentially what the universal setN is supposed to represent.

– N is the set of states of nature.ThenA⊆N is anevent, andµ(A) is the degree of certainty, belief,
etc., thatA contains the true state of the world. We are here in decision under uncertainty or under
risk.

– N is the set of criteria, or attributes, or sources. ThenA⊆ N is a group of criteria (or attributes,
sources), andµ(A) is the degree of importance ofA for making decision. Corresponding domains
are multicriteria decision making, multiattribute utility theory, multiattribute classification, data
fusion, etc. In the framework of multicriteria decision making, it is possible to give a more precise
definition for µ(A): it is the overall score of an alternative having score = 1 (maximal) for all
criteria inA, and 0 (minimal) for other criteria [29, 38]. This kind of interpretation can be carried
on other domains as well.

– N = set of voters. ThenA⊆ N is called acoalition, andv(A) = 1 iff the bill passes when coalition
A votes in favor of the bill, andv(A) = 0 else.

– N = set of political parties. ThenA ⊆ N is called acoalition, andv(A) = 1 iff the coalition
of parties wins the election, andv(A) = 0 else. These two last examples are a subdomain of
cooperative game theory, calledvoting games.

– N = set of players, agents, companies, etc.ThenA⊆ N is also called a coalition, andv(A) is the
worth (payoff, income, etc.) won byA if all players inA agree to cooperate, and the other ones do
not. The concerned domain is cooperative game theory.

3 Generalizations of games and capacities

3.1 Motivations

A first question is:

Why do we need generalizations of classical games and capacities?

The answer to this question is simply that we need them in order to model reality in a more accurate
way. Let us elaborate on this, and distinguish several cases.

– A first situation is that some subsets ofN may be not meaningful, so that the structure is no more
the Boolean lattice 2N of all subsets ofN, but a subcollection of it. More specifically, whenN
is the set of states of nature, some events may be not observable or not meaningful. Note that in
probability theory, it is the usage to define probabilities on algebras (families of subsets closed
under unions and complement), not on the whole power set. In the case of political parties, it
means that some coalitions of parties are unlikely to occur,or even impossible (coalitions mixing
left and right parties). WhenN is the set of voters, it means that some voting situations (i.e., the set
of voters voting in favor) are unlikely to occur or impossible. Lastly, whenN is the set of players
in a general sense, it may happen that some coalitions are infeasible, for some reasons depending
on the precise meaning attached to players (e.g., competitive companies for which it is impossible
to cooperate).

– A second possibility is that subsets ofN may be not “black and white”, which means that the
membership of an element toN may be not simply resume to a matter of member or nonmember.
This is the case with multicriteria decision making when underlying scales are bipolar, i.e., a
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central value exists on each scale, which is a demarcation between values considered as “good”,
and values considered as “bad”, the central value being neutral. When building the model, we
must then distinguish for a given alternative criteria which have a good value, from those which
have a bad value (or a neutral one). In voting games, it is convenient to consider that players
may also abstain, hence each voter has three possibilities,so that giving only the set of voters
voting in favor is not enough to describe the voting situation (ternary voting games). WhenN is
the set of players, one may consider that each player can playat different levels of participation,
ranging from no participation to full participation. If there is a finite number of such participation
levels, it corresponds to multichoice games, when a degree of participation is defined on[0,1], it
corresponds to fuzzy games.

– A last possibility is that, after all, elements of interest may be not subsets ofN. Global games
work on partitions of players, not on coalitions, while games in partition function form and global
coalitional games work on the set of partitions and coalitions together.

3.2 Examples of generalized games

Let us introduce main examples of games defined on more general structures.

Games on convex geometries (Bilbao 1998)[2, 4, 3]: a vvvvvvvcollectionL of subsets ofN is a
convex geometryif it contains the empty set, is closed under intersection, and S∈ L , S 6= N implies
that it exists j ∈ N \S such thatS∪ j ∈ L . Then,v : L → R is a game on convex geometryL if
v( /0) = 0. Convex geometries are dual of antimatroids (see, e.g., [37]), and Bilbao studied also games
defined on matroids [3], which are an abstraction of independent systems (see again [37]).

Games with precedence constraints (Faigle 1989)[15, 16]: N being the set of players, let us define
a partially ordered setP := (N,≤), where≤ is a relation ofprecedenceamong players:i ≤ j if the
presence ofj enforces the presence ofi in any coalitionS⊆ N. Hence, avalid coalition of P is a
subsetSof N such thati ∈ Sand j ≤ i entails j ∈ S.

Ternary voting games (Felsenthal and Machover 1997)[17]: a ternary voting gameis a voting game
where each voteri ∈ N may vote in favor, against or abstain. Hence, a voting situation is denoted
(A,B), whereA is the set of voters voting in favor, andB those voting against. Introducing the notation

Q (N) := {(A,B) | A,B⊆ N,A∩B= /0} (1)

which represents the set of all voting situations, a ternaryvoting game is a functionv : Q (N) →
{−1,1}. v(A,B) = 1 iff the bill passes in voting situation(A,B), v(A,B) = −1 iff the bill is rejected.

Another way of denoting a situation(A,B) is to use a vector notationx∈ {−1,0,1}n defined as
follows:

(A,B) ∈ Q (N) ∼= x∈ {−1,0,1}n, with xi =





1, if i ∈ A

−1, if i ∈ B

0, else.

(2)

HenceQ (N) ∼= {−1,0,1}n ∼= 3N.

Bi-cooperative games (Bilbao 2000)[3]: they can be seen as a generalization of ternary voting games,
like voting games are generalized to (classical) cooperative games. In such games, each playeri ∈ N
may play as a defender, a defeater, or does not participate. Abi-coalition (A,B) ∈ Q (N) represents a
situation whereA is the defending coalition, andB the opponent coalition. Abi-cooperatice gameis
a functionv : Q (N) → R such thatv( /0, /0) = 0. v(A,B) is the payoff of the game in situation(A,B).
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Multichoice games (Hsiao and Raghavan 1993)[34]: each playeri ∈ N has at disposal a totally
ordered set of levels of participation labelled 0,1, . . . ,m, where 0 indicates no participation, andm full
participation. A coalition is replaced by aprofile of participation x∈ {0,1, . . . ,m}n, wherexi is the
level of participation of playeri. A multichoice gameis a functionv : {0,1, . . . ,m}n → R such that
v(0, . . . ,0) = 0. The quantityv(x) is the payoff of the game for profilex.

Fuzzy games (Aubin, 1981)[1]: each player has a membership degree in a coalition, considered as
a fuzzy set. It can be seen as a multichoice game with a continuum of level of participations. Fuzzy
games have been studied by Butnariu and Klement [7], and morerecently by Branzei and Tijs [6, 49].

Global games (Gilboa and Lehrer 1991)[20]: let us consider the set of partitions ofN, which we
denote byΠ(N). When endowed with the relation of coarseness (i.e., a partition P is coarserthan a
partition P ′ if any set ofP is a superset of some set ofP ′), the set of partition is a lattice (nondis-
tributive, but geometric). Figure 3.2 shows the lattice of partitions of{1,2,3,4}. A global gameis a
functionv : Π(N)→ R.

1,2,3,4

12,3,4 1,2,34 13,2,4 1,3,24 1,4,23 14,2,3

12,34 123,4 134,2 13,24 124,3 1,234 14,23

1234

Fig. 1. The lattice of partitions of{1,2,3,4}

Games in partition function form (Thrall and Lucas 1963)[48]: in these games, the worth of a coali-
tion A depends on the other coalitions which are formed, supposingthe set of formed coalitions is a
partition ofN. For a given partitionP ∈ Π(N), a quantityv(S,P ) is defined for anyS∈ P .

3.3 Examples of generalized capacities

There is much less examples in this category. Here are the fewexamples we are aware of.

Bi-capacities (Grabisch and Labreuche 2002)[24, 24]: they have been introduced in the field of
multicriteria decision making. LetN be the set of criteria. Each criterioni ∈ N is defined on abipolar
scale: a neutral levelexists (most often the value 0 is taken as neutral level), such that values above
it are felt as “good”, and values below it are felt as “bad” by the decision maker. Hence, 3 reference
levels are needed to describe the DM’s preferences: thesatisfactory level(usually the value 1), the
neutral level (0), and theinacceptable level(usually taken as the value−1). Any combination of the 3
levels is called aternary alternative, denoted by(A,B): A is the set of satisfied criteria, andB the set
of unsatisfied criteria. Hence,Q (N) is the set of ternary alternatives.

A bi-capacityis a functionv : Q (N)→R such thatv( /0, /0) = 0, andA⊆B impliesv(A, ·)≤ v(B, ·),
v(·,A) ≥ v(·,B). If normalization applies thenv(N, /0) = 1 andv( /0,N) = −1.

Although bi-cooperative games and bi-capacities were proposed independently and in different
domains, formally bi-capacities are monotonic normalizedbi-cooperative games.
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k-ary capacities (Grabisch and Labreuche 2003)[23]: instead of considering 3 reference levels as for
bi-capacities,k+1 reference levels are considered on each criterion, their meaning depending on the
application considered.k-ary capacities correspond in fact to monotonic multichoice games.

4 Games and capacities on lattices

All previous examples of games and capacities are particular cases of games and capacities on lattices.

Definition 3. Let L be a set and≤ a partial order (antisymmetric and transitive) on L.(L,≤) is said
to be alattice if for any x,y∈ L, the least upper bound x∨y and the greatest lower bound x∧y always
exist.⊤ and⊥ are the greatest and least elements of L, if they exist.

Definition 4. Let (L,≤) be a lattice.

(i) v : L → R is agame on latticeL if v(⊥) = 0.
(ii) µ : L → R+ is a capacity on latticeL if it is a monotonic game, i.e. x≤ y implies v(x) ≤ v(y)

(isotoneor order-preservingmapping from(L,≤) to (R,≤)).

We denote byG (L) the set of games onL.

4.1 Some useful facts on lattices

We give in this section some basic results and definitions on lattices which are useful for the sequel
(for a good introduction to the topic, see [11]).

For x,y∈ L, we say thatx covers y(denotedx≻ y) if x > y and there is noz such thatx > z> y.
The lattice isdistributive if ∨,∧ obey distributivity.

An elementj ∈ L is join-irreducible if it is not the bottom element and it cannot be expressed as
a supremum of other elements. Equivalentlyj is join-irreducible if it covers only one element. Join-
irreducible elements covering⊥ are calledatoms, and the lattice isatomistic if all join-irreducible
elements are atoms. The set of all join-irreducible elements of L is denotedJ (L).

An important property is that in a distributive lattice, anyelementx can be written as an irredun-
dant supremum of join-irreducible elements in a unique way (Birkhoff theorem):

x =
_
i∈J

i, for someJ ⊆ J (L) (3)

P⊆ L is adownsetor ideal if y≤ x andx∈ P imply y∈ P. Remarking that in a distributive lattice
one can always writex=

W
i∈J (L)|i≤x i, Birkhoff’s theorem can be rephrased as follows: any distributive

lattice is isomorphic to the lattice of all downsets ofJ (L).
In a finite setting,Boolean latticesare of the type 2N for some setN, i.e. they are isomorphic to

the lattice of subsets of some set, ordered by inclusion. Boolean lattices are atomistic, and atoms cor-
responds to singletons. Alinear latticeis such that≤ is a total order. All elements are join-irreducible,
except⊥.

Given lattices(L1,≤1), . . . ,(Ln,≤n), the product lattice L= L1 × ·· · × Ln is endowed with the
product order≤ of ≤1, . . . ,≤n in the usual sense. Elements ofx can be written in their vector form
(x1, . . . ,xn). We use the notation(xA,y−A) to indicate a vectorz such thatzi = xi if i ∈ A, andzi = yi

otherwise. SimilarlyL−i denotes∏ j 6=i L j , while LK := ∏ j∈K L j . All join-irreducible elements ofL are
of the form(⊥1, . . . ,⊥ j−1, i0,⊥ j+1, . . . ,⊥n), for somej and some join-irreducible elementi0 of L j .

A vertexof L is any element whose components are either top or bottom. We denoteΓ(L) the set
of vertices ofL. Note thatΓ(L) = L iff L is Boolean.
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4.2 Games on product lattices

We focus from now on on a specific type of game on lattice, wherethe lattice is a product of distribu-
tive lattices. The motivation for such an approach will be given below.

We considerL := L1 × ·· · × Ln, whereL1, . . . ,Ln are finite distributive lattices. Each latticeLi

represents the (partially) ordered set of actions, choices, levels of participation of playeri to the game.
Each lattice may be different.

Let us show that most of previous examples can be casted into this framework. IfLi := {⊥,⊤},∀i ∈
N, then we get classical games on 2N. If Li = {0,1,2},∀i ∈ N we obtain bi-cooperative games (how-
ever, see Sec. 10), and ternary voting games on 3N. If Li = {0,1, . . . ,m},∀i ∈N we obtain multichoices
games on(m+1)N.

One may wonder how the setLi of all possible actions of playeri can be obtained, and why it
should be distributive. We consider that each playeri ∈N has at his disposal a set ofelementaryor pure
actions j1, . . . , jni . These elementary actions form a partially ordered set(J i,≤), but not necessarily
a lattice. Then the set(O (J i),⊆) (i.e. the set of downsets) is a distributive lattice denotedLi, whose
join-irreducible elements precisely correspond to the elementary actions, by Birkhoff’s theorem.

For example, assume that players are gardeners who take careof some garden or park. Elementary
actions are watering (W), light weeding (LW), careful weeding (CW), and pruning (P). All these ac-
tions are benefic for the garden and clearly LW<CW, but otherwise actions seem to be incomparable.
They form the following partially ordered set:

W P LW

CW

which in turn form the following lattice of possible actions:

W

P

LW

LW,CW

Let us give now an equivalent view of games on lattices, whichis due to Faigle and Kern [16],
namely games with precedence constraints. We recall that avalid coalition of P is a subsetS of N
such thati ∈ S and j ≤ i entails j ∈ S. Hence, the collectionC (P) of all valid coalitions ofP is the
collection of all downsets (ideals) ofP. It is known that the collection of downsets of a poset is a
distributive lattice. Take for exampleN = {a,b,c,d}, anda≤ b,c ≤ b,c ≤ d as a precedence order
(Fig. 4.2). Let us show that we can recover our situation, considering thatN is the set of players, and
for eachi ∈ N, let J i := { j1, . . . , jni} be the set of elementary actions of playeri. We know from the
above thatLi = O (J i) for all i. We introduce now the set of virtual players

N′ :=
[
i∈N

J i (4)

equipped with the partial order≤ induced by the partial orders on eachJ i. Then valid coalitions of
(N′,≤) in the sense of Faigle and Kern correspond bijectively to elements ofO (J1)×·· ·×O (Jn) =
L1×·· ·×Ln.
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a

b

c

d
a c

abc acd

ac cd

abcd

Fig. 2.Exemple of precedence order (left) and the corresponding set of valid coalitions (right)

4.3 Roadmap

This general framework being established, we should re-build usual tools from game theory and ca-
pacity theory for the general case of lattice structure. Thefollowing concepts lie among the most
useful ones:

– the Choquet integral (capacity theory)
– the Möbius transform (capacity theory), otherwise calleddividends (game theory); unanimity

games
– the Shapley value (game theory, capacity theory)
– the core (game theory, capacity theory)
– the entropy (probability theory, hence capacity theory).

In the sequel we provide a survey of results on these topics.

5 The Choquet integral for bi-capacities

Let f : N → [0,1] and a capacityµ. We denote for simplicityf (i) by fi , i ∈ N. TheChoquet integral
[9] of f w.r.t. µ is defined by: Z

f dµ :=
n

∑
i=1

[ f(i) − f(i−1)]µ(A(i)) (5)

with 0 =: f(0) ≤ f(1) ≤ ·· · ≤ f(n) andA(i) := {(i), . . . ,(n)}, i.e., we have applied a permutation onN
such thatf becomes non decreasing. Thecanonical polyhedraof [0,1]n are defined by{x∈ [0,1]n |
xσ(1) ≤ ·· · ≤ xσ(n)}, for some permutationσ onN. Clearly, these canonical polyhedra partition the set
of functions fromN to [0,1] into simplices where the same “weights”µ() are used in (5).

We recall the following result.

Proposition 1. Let F be a function on[0,1]n, which is known only on the vertices of the hypercube,
and let us find a simplest linear interpolation to determine Fentirely:

F(x) = ∑
A⊆N|(1A,0Ac)∈V (x)

[
α0(A)+

n

∑
i=1

αi(A)xi

]
F(1A,0Ac),

whereV (x) is the set of vertices used for the linear interpolation of x,and αi(A) ∈ R, i = 0, . . . ,n,
∀A∈ V (x). Moreover, we impose thatconv(V (x)) contains x, and any x∈ [0,1]n should belong to a
unique polyhedron (except for common facets), with continuity ensured (triangulation of[0,1]n).

Then the unique linear interpolation with no constant termsis the Choquet integral, and the tri-
angulation is obtained by the canonical polyhedra.
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Lovász [39], considering the problem of extending the domain of pseudo-Boolean functions to
[0,1]n in a linear way (for this extension problem, see also Singer [46]), incidentally discovered the
formula of the Choquet integral. The fact that the so-calledLovász extensionwas the Choquet integral
was remarked by Marichal [40]. The above result of uniqueness can be found in [27].

Let us apply the same interpolative approach to the case of bi-capacities. The main idea is that for
a given pointx∈ [−1,1]n, it suffices to go back into the positive quadrant[0,1]n by taking the absolute
value|x|, and there to apply the interpolation formula (classical Choquet integral), but using vertices
of the original quadrant containingx. This leads to the following definition.

Definition 5. Let v be a bi-capacity and f be a real-valued function on N. The(general) Choquet
integralof f w.r.t v is given by Z

f dv :=
Z

| f |dνN+
f

(6)

whereνN+
f

is a game on N defined by

νN+
f
(C) := v(C∩N+

f ,C∩N−
f ), (7)

and N+
f := {i ∈ N| fi ≥ 0}, N−

f = N\N+
f .

A similar construction can be done fork-ary capacities [23].

6 The Möbius transform

Following the general definition of Rota [44] (see also [5, p.102]), we have readily a definition for
any game defined on any lattice, or even for games defined on anypartially ordered set, provided it
is locally finite (i.e., any interval is finite) and with a bottom element. Letv be a game on(L,≤), the
Möbius transformof v is the functionm : L −→ R solution of the equation:

v(x) = ∑
y≤x

m(y). (8)

The expression ofm is obtained through the Möbius functionµ by:

m(x) = ∑
y≤x

µ(y,x) f (y) (9)

whereµ is a function onL2 defined inductively by

µ(x,y) =





1, if x = y
−∑x≤t<yµ(x, t), if x < y
0, otherwise.

(10)

Note thatµ depends only on the structure of(L,≤).

7 The Shapley value

7.1 The classical case

The Shapley value, or more generally the notion of value, is one of the most important concept in
cooperative game theory. Avalueor solution conceptis any functionφ : G (2N) −→ RN, which repre-
sents an imputation of income to each player, supposing thatall players will join the grand coalition
N, so that the amountv(N) has to be shared among players. The value isefficientif ∑i∈N φi(v) = v(N).
Among other properties or axioms values should satisfy, thefollowing ones are classical.

70



– linearity (l) : φ is linear overG (2N).
– dummy axiom (d): if i is dummy forv, thenφv(i) = v(i).
– null axiom (n): if i is null for v, thenφv(i) = 0.
– symmetry (s): φ does not depend on the labelling of the players.

A player i is dummyif v(S∪ i) = v(S)+ v(i) for anyS⊆ N \ i. A player isnull if v(S∪ i) = v(S) for
anyS⊆ N \ i. Remark that a null player is such thatv(i) = 0, hence it is also a dummy player. Note
also that the dummy axiom is stronger than the null axiom. TheShapley value[45] is the unique value
satisfying axiomsl, n, sand efficiency, and is given by

φv(i) := ∑
S⊆N\i

(n−s−1)!s!
n!

[v(S∪ i)−v(S)], (11)

wheres := |S|.
An equivalent definition can be obtained in a combinatorial way as an average of the contribution

of playeri over all maximal chains in 2N:

φv(i) =
1
n! ∑
C ∈M (2N)

[v(Si
C )−v(Si

C \ i)] (12)

whereM (2N) is the set of all maximal chains in the lattice 2N, and for each such chainC , Si
C is the

first subset in the maximal chain containingi.
The Shapley value can be also obtained through unanimity games and linearity as follows. Una-

nimity games are closely linked to the Möbius transform, since any gamev can be written as

v = ∑
S⊆N

m(S)uS (13)

wherem is the Möbius transform ofv, anduS is theunanimity game centered on S, defined by:

uS(T) =

{
1, if T ⊇ S

0, else.
(14)

A natural axiom for the Shapley value of unanimity games is

φuS(i) =

{
1
|S| , if i ∈ S

0, else,
(15)

since only players inS have a contribution to the game, and all players inS are symmetric (anony-
mous). By linearity of the Shapley value, we get

φv(i) = ∑
S∋i

m(S)

|S|
, (16)

which is equivalent to (11).
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7.2 The Shapley value for multichoice games

We shall examine in the sequel various propositions for a definition of the Shapley value for mul-
tichoice games. We recall thatL = L1 × ·· · × Ln, and allLi ’s are linear lattices, denoted byLi :=
{0,1,2, . . . , l i}, where 0 means non participation. Elementsx of L are called participation profiles,
with xi the level of participation of playeri. (0−i ,ki) is the profile where playeri plays at levelk, the
other ones not participating. We often writẽki for (0−i ,ki), and⊤i for l i . Many different approaches
exist, which do not coincide:

– approach of Faigle and Kern [16]
– approach of Hsiao and Raghavan [34]
– approach of Grabisch and Lange [21, 30]

Let us detail first the approach of Faigle and Kern. The basic idea is to axiomatize the Shapley
value for unanimity games, and then to apply linearity (combinatorial approach). The expression is
the following:

φv
FK(ki) =

1
|M (L)| ∑

C∈M (L)

[v(xki )−v(xki
)] (17)

whereM (L) is the set of maximal chains inL, andxki is the first in the sequenceC such thatxki ≥ k̃i ,
and xki

is its predecessor. Although the expression is simple and appealing, let us remark that the
number of maximal chains for the multichoice case is:

|M (L)| =

(
∑i∈N l i

)
!

∏i∈N(l i !)
=

(
l
l1

)(
l − l1

l2

)(
l − l1− l2

l3

)
· · ·1, (18)

with l := ∏i∈N l i . For 5 players having each 3 actions, this already gives(15)!/65 = 168,168,000.
Also, some of the axioms proposed by Faigle and Kern are not intuitive in a game theoretic sense
(e.g., the hierarchical strength axiom).

The basic idea of the Shapley value of Hsiao and Raghavan is also to axiomatize the Shapley
value for unanimity games, and then to apply linearity. The original feature is to put weightsw1 <
w2 < · · · < wl on participation levels. The expression of the Shapley value for unanimity games they
obtain is as follows:

φux
HR(ki) =

{
wk

∑i∈N wxi
, if k = xi

0, otherwise.
(19)

The expression for any game is extremely complex and will notbe reported here. It has been proved
that for no set of weightsw1, . . . ,wl , the values of H-S and F-K always coincide [6]. Although the
axioms are appealing, the resulting formula is almost inapplicable. Also, the role of the weights
w1, . . . ,wn is not clear.

We present now our approach. The main idea is to follow as muchas possible the original axioms
of Shapley. We aim at defining a valueΦv(ki) representing the contribution of playeri playing at
level k vs. non participation ofi. This contrasts with the two previous approaches, which represent
the contribution of playeri playing at levelk compared to the situation where he plays at levelk−1.
For somek ∈ Li, k 6= 0, playeri is said to bek-null (or simplyki is null) if v(x,ki) = v(x,0i), for any
x∈ L−i. Similarly, for somek ∈ Li, k 6= 0, playeri is said to bek-dummy(or simply ki is dummy) if
v(x,ki) = v(x,0i)+v(k̃i), ∀x∈ L−i. Based on these definitions, we propose the following axioms.

– Linear axiom (L): Φv is linear on the set of gamesG (L)
– Null axiom (N): ∀v∈ G (L), for all null ki , Φv(ki) = 0.
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– Dummy axiom (D): ∀v∈ G (L), for all dummyki , Φv(ki) = v(k̃i).
– Monotonicity axiom (M): if v is monotone, thenΦv(ki) ≥ 0, for all k > 0, i ∈ N.

The next axiom is similar to the symmetry axiom. Since all lattices Li may be different, a direct
transposition of the classical symmetry axiom is not possible. Let Γ(L) := {01,⊤1}× ·· ·×{0n,⊤n}
be the set of vertices ofL. We introduce a subspace ofG (L):

G0(L) := {v∈ G (L) | v(x) = 0,∀x 6∈ Γ(L)} (20)

– Symmetry axiom (S):Let σ be a permutation onN. Then for any gamev∈ G0(L),

Φvσ−1

(⊤σ
i ) = Φv(⊤i) (21)

where for anyx∈ Γ(L), xσ := (xσ
1 , . . . ,xσ

n), and

xσ
i :=

{
0i , if xσ(i) = 0σ(i)

⊤i, if xσ(i) = ⊤σ(i)
(22)

and for anyv∈ G0(L), vσ is a game inG0(L) such thatvσ(x) := v(xσ), for anyx∈ Γ(L).

For example, ifL := {0,1,2}×{0,1,2,3,4}×{0,1,2,3}, and the permutationσ is defined by

i 1 2 3
σ(i) 2 3 1

then(2,0,0)σ = (0,0,3), (2,0,3)σ = (0,4,3).
Next axiom is not in the original set of axioms of Shapley, andconcerns a kind of homogeneity of

the structure of theLi ’s.

– Invariance axiom (I): Let us considerv1,v2 on L such that for somei ∈ N,

v1(x,ki) = v2(x,(k−1)i), ∀x∈ L−i,∀1 < k≤ l i
v1(x,0i) = v2(x,0i), ∀x∈ L−i.

ThenΦv1(ki) = Φv2((k−1)i), 1< k≤ l i .
– Efficiency axiom (E): ∑i∈N Φv(⊤i) = v(⊤).

Proposition 2. Under axioms(L), (D), (M), (S), (I) and(E),

Φv(ki) = ∑
x∈Γ(L−i)

(n−h(x)−1)!h(x)!
n!

[v(x,ki)−v(x,0i)], 1≤ k≤ l i , i ∈ N, (23)

where h(x) := |{k∈ N\ i | xk = ⊤k}|.

Remark that the result is very close to the classical formulaof Shapley. For a formula on more general
lattices (but without axiomatization) and for the interaction index, see [28].
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8 The core

8.1 The classical case

In game theory, thecoreof v is another way to define rational imputations for players. Specifically, it
is a set of imputations such that no subcoalition has interest to form:

C (v) := {φ ∈ Rn | φ(N) = v(N) andφ(A) ≥ v(A),∀A⊆ N} (24)

with φ(A) := ∑i∈A φ(i). Otherwise said, it is the set of additive games dominatingv and coinciding
on N. Whenever nonempty, the core is a convex set. It is reduced tothe singleton{v} if the game is
additive.

The same concept exists also in capacity theory. It is seen asthe set of probability measures
dominating a given capacity (see properties of the core in [8]).

A related concept is theWeber set. It is the convex hull of the setM (v) of marginal worth vectors

W (v) := co(M (v)), (25)

where a marginal worth vector is defined as the increment ofv along a maximal chain in the Boolean
lattice 2N. Specifically, to any permutationπ on N, we associate a maximal chain

Aπ
0 := /0 ⊂ Aπ

1 := {π(1)} ⊂ Aπ
2 := {π(1),π(2)} ⊂ ·· · ⊂ Aπ

n := N (26)

with Aπ
i := {π(1), . . . ,π(i)}. Then, the correspondingmarginal worth vector xπ(v) is defined by:

xπ
π(i)(v) := v(Aπ

i )−v(Aπ
i−1), i = 1, . . . ,n. (27)

The following proposition summarizes well-known results.We recall that a game is convex if
v(A∪B)+v(A∩B)≥ v(A)+v(B) for anyA,B⊆ N.

Proposition 3. Let v be a game on N. The following holds.

(i) C (v) ⊆W (v).
(ii) C (v) 6= /0 if v is convex.

(iii) v is convex iffC (v) = W (v) (i.e., the set of marginal worth vectors is the set of vertices of the
core).

8.2 The case of multichoice games

Here also, several different approaches have been proposed, the first one being by Faigle [15], see also
the works of Tijs et al. [50]. For a detailed comparison of these previous works with our approach, see
[51, 31]. We give below the main elements of our approach, andthe one of Faigle.

v being a multichoice game, we say thatv is convexif v(x∨ y) + v(x∧ y) ≥ v(x) + v(y), for all
x,y∈ L, andv is additiveif for every x,y∈ L such thatx∧y = ⊥, it holdsv(x∨y) = v(x)+v(y).

We denote byA (L) the set of additive games onL. The following definition is a direct transposition
of the classical definition.

Definition 6. Theprecoreof a multichoice game v on L is defined by

P C (v) := {φ ∈ A (L) | φ(x) ≥ v(x),∀x∈ L, andφ(⊤) = v(⊤)}. (28)
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This is in fact the definition of Faigle. However, it is easy tosee that the precore, although convex, is
unbounded. Indeed, considering a 2-choice game with two players, henceL := {0,1,2}2, the condi-
tions onφ to be element of the precore write:

φ(2,0)+ φ(0,2) = v(2,2)

φ(1,0) ≥ v(1,0)

φ(0,1) ≥ v(0,1)

φ(1,0)+ φ(0,1) ≥ v(1,1).

Remark thatφ(1,0) andφ(0,1) may be taken arbitrarily large. We denote byP C F(v) := co(Ext(P C (v)))
the polytope ofP C (v), where Ext() is the set of extreme points (vertices) of some convex set.

To avoid these drawbacks, we propose the next definition, where normalization occurs at each
level.

Definition 7. Thecoreof a multichoice game v on N is defined as:

C (v) := {φ ∈ A (L) | φ(x) ≥ v(x),∀x∈ L,

andφ(k∧ l1, . . . ,k∧ ln) = v(k∧ l1, . . . ,k∧ ln),k = 1, . . . ,max
j

l j}.

As for the classical case, we introduce marginal worth vectors ψC as the vectors of increments
along maximal chainsC in the latticeL. Coordinates ofψC are denoted byψC

kj
, for any playerj ∈ N

and any levelk > 0 in L j . To any marginal vector is associated an additive gameφC defined by

φC
kj

:=
k

∑
p=1

ψC
pj

. (29)

The set of all such additive games is calledP M (v), and thepre-Weber setP W (v) is defined as the
convex hull of all additive games inP M (v). Considering onlyrestrictedmaximal chains inL, i.e.,
those passing through all(k∧ l1, . . . ,k∧ ln), k = 1, . . . ,maxj l j , we defineM (v), the set of all additive
gamesφC corresponding to marginal worth vectors associated to all restricted maximal chains. Then
theWeber setW is defined as the convex hull of all additive games inM (v).

The following has been shown, which generalizes the classical results of Prop. 3.

Proposition 4. Let v be a multichoice games on L. The following holds.

(i) P C F(v) ⊆ P W (v)
(ii) C (v) ⊆W (v)

(iii) If v is convex, thenC (v) =W (v)
(iv) If v is convex, thenP C F(v) = P W (v).

9 The entropy

The entropy is a central notion in probability and information theory. The first attempt to generalize
the classical definition of Shannon to the case of capacitieswas done by Yager [52], by considering
the Shannon entropy of the Shapley value of the capacity. A slightly different approach was taken by
Marichal and Roubens [42, 41], which turned out to have better properties. In particular, it is strictly
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increasing towards the capacity which maximizes entropy. Its expression for some capacityµ is given
below:

HMR(µ) :=
n

∑
i=1

∑
S⊆N\i

(n−s−1)!s!
n!

h(µ(S∪ i)−µ(S)) (30)

whereh(x) := −xlogx, for x > 0, andh(0) := 0. An important result, due to Dukhovny [14], shows
that the definition of Marichal and Roubens can be written as an average of classical entropy along
maximal chains of the Boolean lattice 2N, specifically:

HMR(µ) =
1
n! ∑
C ∈M (2N)

HS(pµ,C ) (31)

whereHS is the Shannon entropy, andpµ,C the probability induced by the maximal chainC and the
capacityµ, i.e., using the same notations as for Eq. (12):

pµ,C ({i}) = µ(Si
C )−µ(Si

C \ i), i ∈ N (32)

(identical to marginal worth vectors).
Honda and Grabisch have shown that the above definition couldbe generalized without losing its

nice properties for capacities on particular set systems [33]. Let us considerN a subcollection of 2N.
Then we call(N,N ) (or simplyN if no ambiguity occurs) aset systemif N contains/0 andN. A
set system is a particular partially ordered set when endowed with inclusion, hence usual definitions
apply, in particular the notion of maximal chain. We denote the set of all maximal chains ofN by
M (N ). (N,N ) is a regular set system if for anyC ∈ M (N ), the length ofC is n, i.e. |C | = n+ 1.
Equivalently,N is a regular set system if and only if|A\B| = 1 for anyA,B∈ N such thatA ≻ B.
Let µ be a capacity on(N,N ). For anyC ∈M (2N), definepµ,C by (32) again. Then the entropy ofµ
on (N,N ) is given by:

HHG(µ) :=
1

|M (N )| ∑
C ∈M (N )

HS(pµ,C ). (33)

HHG is a continuous function ofµ, and 0≤ HHG ≤ logn, with equality at left attained if and only ifµ
is a 0-1 valued capacity, and at right if and only ifµ is the additive uniform capacity. Moreover,HHG

is strictly increasing towards the value of the additive uniform capacity.
The entropy for capacities has been axiomatized by Kojadinovic et al.[36] using a recursive axiom

difficult to interpret. Honda and Grabisch have axiomatizedHHG in a different way [32], avoiding such
an axiom, and following Faddeev’s classical axiomatization of Shannon entropy.

10 The case of bipolar structures

Let us come back on bi-capacities and bi-cooperative games.First works on bi-capacities [22, 24, 25]
have taken for granted that these were capacities defined on the lattice(Q (N),⊑), with (A,A′) ⊑
(B,B′) ⇔ A⊆ B andA′ ⊇ B′. Doing so, bi-capacities are indeed monotonic mappings andmatch the
general definition of capacities on lattices (see Def. 4).

There is nevertheless something discordant in the fact thatdoing so, since(Q (N),⊑) is isomorphic
to the lattice 3n, bi-cooperative games become in some sense isomorphic to multichoice games with
m= 2, a conclusion which may be surprising if one consider the interpretation behind them. Let us
elaborate on this last point. We may say that for a 2-choice game, the underlying levels of participation
are naturally labelled 0,1,2, with 0 indicating non participation, 1 a mild participation, and 2 a full
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participation. For bi-cooperative games, keeping the samelabelling leads to something rather odd,
since 0 means (full) participation against, 1 non participation, and 2 (full) participation. Hence, a more
natural labelling would be−1,0,1, the 0 value being central, and−1,1 being symmetric extremes.
This suggests that:

(i) the point( /0, /0) is central in the structureQ (N), although in 3N, (1, . . . ,1) has no central role;
(ii) bi-cooperative games are not 2-choice games, but rather a symmetrization of classical cooperative

games.

Looking at the definition of the Choquet integral for bi-capacities (Sec. 5), one can see that it already
follows the above principle.

Consequently, the order⊑ should be replaced by the product order⊆: (A,A′) ⊆ (B,B′) ⇔ A⊆ B
andA′ ⊆ B′. Interestingly enough, this was the first definition proposed by Bilbao [3] for the underly-
ing structure of bi-cooperative games. Now,(Q (N),⊆) is no more a lattice, but an inf-semilattice.

Consequently, a proper definition of the Möbius transform is not the one proposed in [24], solution
of the equation:

v(A,A′) = ∑
(B,B′)⊑(A,A′)

m(B,B′) (34)

but it should be the solution of the equation:

v(A,A′) = ∑
(B,B′)⊆(A,A′)

m(B,B′) (35)

whose solution is:
m(A,A′) = ∑

B⊆A
B′⊆A′

(−1)|A\B|+|A′\B′|v(B,B′). (36)

This functionm, which could be called thebipolar Möbius transform, has been first proposed by
Fujimoto [18, 19], in order to avoid the complicated expression of the Choquet integral in terms of the
Möbius transform given in [25]. Indeed, using the (bipolar) Möbius transform, the Choquet integral
simply writes: Z

f dv= ∑
(A,A′)∈Q (N)

m(A,A′)
[

î∈A

f +
i ∧

ĵ∈A′

f−j

]
. (37)

The definition of entropy for bi-capacities, as it is given byKojadinovic and Marichal [35], follows
in fact the same philosophy. It writes:

HKM(v) :=
1
2n ∑

N+⊆N

1
n! ∑

π∈ΠN

HS(pv
π,N+) (38)

whereπ is any permutation onN, and pv
π,N+ is the probability distribution induced byv and the

maximal chain induced byπ in the sublattice[( /0, /0),(N+,N\N+)].
In summary, bi-capacities and bi-cooperative games shouldbe considered as a particular sym-

metrization of capacities and cooperative games, as well asQ (N) should be considered as a sym-
metrization ofP (N) = 2N. We call this particular symmetrizationbipolar extension, and show now
that this can be made fairly more general [27].

Definition 8. Let (L,≤) be an inf-semilattice with bottom element⊥. We define itsbipolar extension
by

L̃ := {(x,y) | x,y∈ L,x∧y = ⊥}, (39)

which we endow with the product order≤ on L2.
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Clearly,Q (N) = P̃ (N). The following holds.

Proposition 5. Let (L,≤) be an inf-semilattice.

(i) (L̃,≤) is an inf-semilattice whose bottom element is(⊥,⊥), where≤ is the product order on L2.
(ii) The set of join-irreducible elements ofL̃ is

J (L̃) = {( j,⊥) | j ∈ J (L)}∪{(⊥, j) | j ∈ J (L)}. (40)

(iii) The Möbius function oñL is given by:

µL̃((z, t),(x,y)) = µL(z,x)µL(t,y). (41)

Bipolar extensions have been further investigated in [26],concerning the definition of the Choquet
integral or other aggregation operators on such structures.
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For a characteristic function form game there are two fundamental and strongly linked problems:
(i) what coalitions will form, and (ii) how will the members of these coalitions distribute their to-
tal coalitional worth. We attempt to answer these questions. Following Harsányi [2], we presuppose
some bargaining process among the players. At first, one of the players proposes some outcome (a
payoff vector augmented with a coalition structure). In case some coalition could gain by acting for
themselves, it can reject this initial outcome and propose a second outcome. Of course, in order to
be able to make a counter-proposal, the deviating coalition is a member of the new coalition struc-
ture and none of the players in the deviating coalition loses when moving towards the new outcome.
We impose an additional condition that we call outsider-independence: a coalition C that belongs to
the initial coalition structure and that does not contain a deviating player survives the deviation; the
players in C stay together and keep their pre-deviation payoffs. This contrasts with, for example, the
approach by Sengupta and Sengupta [4], and Shenoy [6, Section 5]. They tackle the same problem
without incorporating such an outsider-independence condition: the deviating coalition is allowed to
determine the payoffs and the structure of all players. This seems unrealistic to us. In contrast, our
approach is based on the observation that outsiders’ payoffs are unaffected by the formation of the
deviating coalition and hence outsiders do not necessarily notice the deviation until the new coalition
structure is announced.

Once such a counter-proposal has popped up, another coalition may reject this counter-proposal
in favour of a third outcome, and so forth. This bargaining process generates a dominating chain of
outcomes. In case the game has a non-empty coalition structure core [1], the bargaining process enters
this core after a finite number of steps [3]. Conclusion: the coalition structure core, if non-empty, is
accessible.

Similarly to the core, the coalition structure core has an important shortcoming: non-emptiness is far
from being guaranteed. The present paper tackles games with an empty set of undominated outcomes.

We impose three conditions upon a solution concept. First, we insist on accessibility: from each out-
come there is a dominating chain that enters the solution. Second, the solution is closed for domina-
tion: each outcome that dominates an outcome in the solution also belongs to the solution. The intu-
ition behind this axiom is straightforward. In case there are no “undominated outcomes”, there might
exist “undominated sets” of outcomes. Such a set must be closed for outsider-independent domina-
tion. A collection of outcomes that combines accessibility and closedness is said to be a dominant set.
And, third, from all the dominant sets, we only retain the minimal (with respect to inclusion) ones.

? The first author acknowledges the support of the Catholic University Leuven, the Soros Foundation and the Netherlands
Organisation for Scientific Research (NWO). We thank Hans Peters, Effrosyni Diamantoudi and Licun Xue for their
helpful comments.
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The following observation provides a further argument in favour of these three conditions: in
case the game generates undominated outcomes, then the accessibility of the coalition structure core
implies that this core is the unique minimal dominant set. Uniqueness and non-emptiness extends to
arbitrary games:

Theorem 1. Each characteristic function form game has exactly one minimal dominant set. More-
over, this minimal dominant set is non-empty.

In other words, the minimal dominant set is a non-empty coalition structure core extension. On the
one hand, the three conditions we impose upon a solution concept are strong enough to filter out the
coalition structure core (in case it is non-empty), and on the other hand these conditions are weak
enough to return a non-empty set of outcomes in case the game has an empty coalition structure core.
As a matter of fact, the minimal dominant set meets Zhou’s [8] minimal qualifications for a solution
concept: non-imposition with respect to the coalition structure3 and non-emptiness.
We close the discussion on Theorem 1 with an example. Consider a three player game with an empty
core: singletons have a zero value, pairs have a value equal to 8, and the grand coalition has a value
9. The payoff vector (4,4,0) supported by the coalition structure ({1,2},{3}) belongs to the mini-
mal dominant set. This outcome, however, is not efficient: the total payoff in this vector amounts to
8, where the value 9 is obtainable. On the other hand, the efficient outcome (3,3,3;{1,2,3}) does
not belong to the minimal dominant set. Hence, the minimal dominant set might contain inefficient
outcomes and at the same time there might be efficient outcomes outside the minimal dominant set.
Where the core selects those outcomes that satisfy efficiency and stability, these two properties are not
so well linked as soon the core is empty (Section 5 returns to this issue).
Along the proof of Theorem 1 we come across the following properties of the outsider-independent
domination relation. First, the set of outcomes that indirectly dominate an (initial) outcome is closed
in the Euclidean topology. And, second:

Theorem 2. There exists a natural number τ = τ(n) such that for each game with n players and for
all outcomes a and b in this game, we have that a indirectly dominates b if and only if there exists a
dominating chain from b to a of length at most τ.

As a consequence, the accessibility axiom can be sharpened: for each game the minimal dominant set
can be reached via τ subsequent counter-proposals. This number τ can be imposed as a time-limit for
the completion of the bargaining process.

Theorem 2 dramatically improves previous results on the accessibility of the core. We mention two of
them. First, Wu [7] has shown the existence of an infinite bargaining scheme that converges to the core
and rephrased this result as “the core is globally stable”. Second, Sengupta and Sengupta [5] construct
for each imputation a sequence of dominating imputations that enters the core in finitely many steps.
We extend these results to the coalition structure core and to the minimal dominant set. In addition,
we provide an upper bound for the length of the dominating chains.
Finally, Theorem 2 implicitly provides directions on how to compute the minimal dominant set. The
proof of Theorem 2 rests upon a stratification of the set of all imputations into a finite number of
classes. Each class gathers imputations that we label similar. Apparently, the minimal dominant set
coincides with the union of some of these classes. As such, the search for the minimal dominant
set boils down to a finite problem. As an illustration, we retake the above three player game. Here,

3 In the framework of endogenous coalition formation, a solution concept “is not a priori defined for payoff vectors of a
particular coalition structure, and it does not always contain payoff vectors of every coalition structure,” [8, p. 513].
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the set of outcomes is partitioned into 29 classes. First, there are 19 (non-empty) classes of efficient
outcomes:

(x,{1,2,3}) with x1 + x2 + x3 = 9, xi + x j ./1
i j 8, xk + xl ./2

kl 9, xm ≥ 0,

where the indices i, j, k, l, and m all run over the set {1,2,3} and where ./ stands for either < or
≥. Additional labels are used to distinguish different instances –which may be different inequalities–
from each other.

Next, there are 9 classes in which one player is standing alone: (x;{i, j} ,{k}) with {i, j,k} =
{1,2,3} , xi +x j = 8, xi ./

1
i 8, x j ./

2
j 8, and xk = 0. Finally, there is the zero-outcome: (0;{1} ,{2} ,{3}).

The minimal dominant set collects 26 of these classes: the (large) class

(x,{1,2,3}) with x1 + x2 + x3 = 9, x1 + x2 < 8, x1 + x3 < 8, and x2 + x3 < 8,

and the zero-outcome are excluded from the minimal dominant set.
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LINA CNRS FRE 2729
44306 Nantes, France

Ivan.Kojadinovic@polytech.univ-nantes.fr

With outranking methods [Roy and Bouyssou, 1993], multi-attribute utility theory (MAUT) [Keeney
and Raiffa, 1976] is probably the most frequently applied approach to multi-criteria decision aiding
(MCDA) [Vincke, 1992]. Given a set A := {a,b,c, . . .} of alternatives and a set N := {1, . . . ,n} of
criteria, the practical application of MAUT roughly consists in synthesizing, for each alternative, the n
different points of view quantified by the criteria in order, typically, to help the decision maker choose
a subset of alternatives that can be considered the best for him. More precisely, in such a context,
each alternative a ∈ A is identified with its vector of scores (a1, . . . ,an) ∈ Rn where, for any i ∈ N,
ai represents the utility of a for the decision maker with respect to (w.r.t.) criterion i. The preferences
of the decision maker over the alternatives, represented by a binary relation �A supposed transitive
and complete in the considered context, are then to be modeled by means of a global utility function
U : Rn → R such that

a�A b ⇐⇒ U(a1, . . . ,an)≥U(b1, . . . ,bn), ∀a,b ∈ A .

For the above model to make sense, it is clearly necessary that the utilities be commensurable, i.e.
ai = a j if and only if, for the decision maker, the alternative a is satisfied to the same extent on criteria
i and j [see e.g. Grabisch et al., 2003, for a more complete discussion on commensurability].

The form of the global utility function U depends on the hypotheses on which the MCDA problem
is grounded. When mutual preferential independence [see e.g. Vincke, 1992] among criteria can be
assumed, it is frequent to consider that the global utility function is additive and takes the form of a
weighted arithmetic mean. This assumption is however rarely verified in practice. In order to be able to
take interaction phenomena among criteria into account, it has been proposed to substitute a monotone
set function on N := {1, . . . ,n}, called capacity [Choquet, 1953] or fuzzy measure [Sugeno, 1974], to
the weight vector involved in the calculation of weighted arithmetic means. Such an approach can be
regarded as taking into account not only the importance of each criterion but also the importance of
each subset of criteria. A natural extension of the weighted arithmetic in such a context is the Choquet
integral w.r.t. the defined capacity [Grabisch, 1992, Marichal, 2000, Labreuche and Grabisch, 2003].

Grabisch and Labreuche [2005a,b] have however recently shown that even such a general aggre-
gation function as the Choquet integral w.r.t. a capacity is not suited for situations where the utilities
to be aggregated lie on a bipolar scale. Compared to a classical (unipolar) scale, a bipolar scale is
characterized by the additional presence of a neutral value such that values above this neutral refer-
ence point are considered to be “good” or “positive” by the decision maker, whereas values below it
are considered to be “bad” or “negative” [see Grabisch and Labreuche, 2005c, for a complete discus-
sion on bipolarity]. In order to derive aggregation models taking into account the specificity of bipolar
scales, Grabisch and Labreuche [2005a,b,c] have recently introduced the notion of bi-capacity, ex-
tending that of capacity, and have proposed a natural generalization of the Choquet integral in that
context.
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The use of a Choquet integral as a global utility function clearly requires the prior identification
of the underlying capacity if the utility scale is unipolar, or of the underlying bi-capacity if the utility
scale is bipolar. The learning data from which the capacity or the bi-capacity is to be determined
consists of what Marchant [2003] calls the initial preferences of the decision maker : usually, a partial
preorder over the set of alternatives, a partial preorder over the set of criteria, intuitions about the
importance of the criteria, etc.

Generalizing the minimum variance approach to capacity identification recently put forward in
[Kojadinovic, 2005] and following Marichal [1998, Chap. 7], we propose to use a minimum distance
principle for capacity (resp. bi-capacity) identification grounded on natural distances between capac-
ities (resp. bi-capacities). For practical purposes, we focus on quadratic distances between capacities
and bi-capacities which enables us to implement the minimum distance principle under the form of a
strictly convex quadratic program. Furthermore, as we shall see, the capacity (resp. bi-capacity) iden-
tification problem is closely related to the capacity approximation problem [Marichal, 1998, Chap. 7]
(resp. bi-capacity approximation problem), which we are able to address as well using the proposed
minimum distance principle. The derived methodology has been implemented within the kappalab
package [Grabisch and Kojadinovic, 2005] for the GNU R statistical system [R Development Core
Team, 2005], an application of which will be presented.

In the first part of our presentation, after defining the notions of game, capacity and Choquet inte-
gral in the context of aggregation, we shall study quadratic objective functions, and in particular we
will focus on quadratic distances, that can be practically used within a quadratic program for capac-
ity identification or approximation. In the second part of our presentation, the concepts presented in
the first part shall be generalized : the notions of bi-cooperative game, bi-capacity and Choquet inte-
gral w.r.t. a bi-capacity will be introduced and the quadratic distances between capacities previously
defined shall be extended to bi-capacities. The last part of the presentation will be devoted to two
applications of the proposed minimum distance approach, one to capacity approximation, the other to
capacity identification.
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Classical fuzzy sets are convenient as far as a simple interpretation in the set-theoretical language is
concerned. However, we could ask: How can we imagine a fuzzy information, say X , in such a way
that by adding it to the fuzzy information A the fuzzy information C will be obtained? We answer that
question in terms of the so-called ordered fuzzy numbers (OFN). For constructing those numbers the
concept of the membership function of a fuzzy set, introduced by L. Zadeh in 1965 as a fundamental
concept of the fuzzy (multivalued) logic, has been weakened by requiring a mere membership rela-
tion; consequently a fuzzy number arises as an ordered pair of continuous real functions defined on
the interval [0,1]. Four algebraic operations: addition, subtraction, multiplication and division of such
fuzzy numbers are constructed in a way that renders them an algebra. Further, a normed topology is
introduced which makes them a Banach space. Several drawbacks of the Zadeh’s fuzzy calculation
are then absent. Defuzzyfication operations on the algebra of ordered fuzzy number can be introduced
with the help of the Banach-Kakutami-Riesz representation theorem in terms of pairs of Radon mea-
sures. Algebraic operations on OFN give a unique possibility to define new types of compositional
rules of fuzzy inference which play a key role in approximate reasoning when conclusions from a set
of fuzzy If-Then rules are to derive. The proposed operations have been implemented as the algebra
in the form of a fuzzy calculator working under Windows and written as a component of operating
system - Windows (9x/XP) as well as a fuzzy controler.
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Abstract. Expressing the characteristic properties of a left-continuous t-norm in terms of contour lines,
provides us more insight into its geometrical structure. In particular, we focus on the decomposition and
construction of t-norms that are rotation invariant w.r.t. one of their contour lines.

1 Introduction

The contour lines of a left-continuous increasing [0,1]2 → [0,1] mapping T are defined as follows:

Ca : [0,1]→ [0,1] : x 7→ sup{t ∈ [0,1] | T (x, t)≤ a} ,

with a ∈ [0,1]. It will be clear from the context which mapping T we are considering. In particular,
whenever T is a t-norm, it holds that Ca(x) = IT (x,a), where IT denotes the residual implicator of
T . Hence, IT determines the contour lines of T and can be used to interpret Ca(x) as a [0,1]2 → [0,1]
mapping (variables x and a). The contour lines of a continuous t-norm T are also called level functions
[9]. Based on the contour lines of a left-continuous t-norm T , Jenei [8] provides sufficient conditions
for T to be the Łukasiewicz t-norm TL, resp. the product t-norm TP. In this paper, we provide new
insights into the geometrical structure of a rotation-invariant t-norm by examining its contour lines.
Rotation-invariant t-norms play a profound role in various fields such as fuzzy preference modelling
[1] and fuzzy logic [3].

2 T-norm properties

Starting from a left-continuous increasing [0,1]2 → [0,1] mapping T , we can easily redefine left-
continuous t-norms by means of contour lines. The neutral element, commutativity and associativity
are easily translated to conditions on contour lines.

Theorem 1. [11] A left-continuous increasing [0,1]2 → [0,1] mapping T has neutral element 1 if and
only if the equivalence Ca(x) = 1 ⇔ x≤ a holds for every (x,a) ∈ [0,1]2.

The commutativity of a left-continuous increasing [0,1]2 → [0,1] mapping T satisfying T (0,1) =
T (1,0) = 0 does not always ensure the symmetry of its contour lines. However, we can illustrate that
the commutativity of T shows up through the orthosymmetry of its contour lines [10, 11]. A contour
line Ca of T is orthosymmetrical if and only if Ca(x) = inf{t ∈ [0,1] |Ca(t) < x}.

Theorem 2. [11] A left-continuous increasing [0,1]2 → [0,1] mapping T that satisfies T (0,1) =
T (1,0) = 0 is commutative if and only if all its contour lines Ca, with a ∈ [0,1], are orthosymmet-
rical.

We can also use contour lines to express the associativity of T .
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Theorem 3. [11] A left-continuous increasing [0,1]2 → [0,1] mapping T that satisfies T (1,0) = 0 is
associative if and only if Ca(T (x,y)) = CCa(x)(y) holds for every (x,y,a) ∈ [0,1]3.

For a left-continuous t-norm T , taking into account the correspondence between its residual implicator
IT and its contour lines Ca, the equality in the previous theorem coincides with the portation law [4]:
IT (x, IT (y,z)) = IT (T (x,y),z), for every (x,y,z) ∈ [0,1]3.

3 Rotation-invariant t-norms

Consider a non-constant decreasing [0,1]→ [0,1] mapping M that is involutive on [1M,1]. Note that
we use an exponential notation xM to denote the immage of x under M. A t-norm T is said to be
rotation invariant w.r.t. M if

T (x,y)≤ z ⇔ T (y,zM)≤ xM ,

for every (x,y,z) ∈ [1M,1]3. If 1M = 0, we obtain the classical definition of rotation invariance [2, 4].
Take a ∈ [0,1[ and consider an arbitrary increasing [a,1]→ [0,1] bijection σ. The following lemma is
indispensable to lay bare the tight relationship between our definition of rotation invariance and the
classical one.

Lemma 1. For every t-norm T , the [0,1]2 → [0,1] mapping T a, defined by

T a(x,y) = σ(max(a,T (σ−1(x),σ−1(y))))

is a t-norm. For every b ∈ [0,1] it then holds that Ca
b = σ◦Cσ−1(b) ◦σ−1 where Ca

b denotes the corre-
sponding contour line of T a.

Given a strict negator N and a ∈ [0,1[, define the mapping Na : [0,1]→ [a,1] by

xNa =

{
1 , if x≤ a ,

σ−1(σ(x)N) , elsewhere .

In particular N0 = N and xN1 = 1, for every x ∈ [0,1].

Theorem 4. Let M be a non-constant decreasing [0,1] → [0,1] mapping that is involutive on [a,1],
with a := 1M. Then there exists an involutive negator N such that M = Na. A t-norm T is rotation
invariant w.r.t. M if and only if T a is rotation invariant w.r.t. N.

Every t-norm T that is rotation invariant w.r.t. an involutive negator N is necessarily left-continuous
and N = C0 [4]. Taking into account Lemma 1 and Theorem 4 we immediately obtain the following
result.

Theorem 5. Consider an involutive negator N and a ∈ [0,1[. If a t-norm T is rotation invariant w.r.t.
Na, then it is left-continuous on D = {(x,y) ∈ [0,1]2 | xNa < y} and Na = Ca.

Furthermore, it can be shown that the rotation invariance of a t-norm is equivalent to the continuity of
one of its contour lines.

Theorem 6. [11] A t-norm T is rotation invariant w.r.t. a contour line Ca, a ∈ [0,1[, if and only if Ca

is continuous.
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4 Constructing rotation-invariant t-norms

Dealing with rotation-invariant t-norms it suffices to only consider those t-norms for which the contour
line C0 is continuous (Theorem 4). Assuming some additional continuity conditions, we will now
attempt to reconstruct a rotation-invariant t-norm T in the area D strictly above C0. First, partition D
into four parts:

DI = {(x,y) ∈ ]β,1]2 | y > Cβ(x)} ,

DII = {(x,y) ∈ ]a,β]× ]β,1] | y > Ca(x)} ,

DIII = {(x,y) ∈ ]β,1]× ]a,β] | y > Ca(x)} ,

DIV = {(x,y) ∈ ]β,1]2 | y≤Cβ(x)} .

Let β denote the unique fixpoint of C0 (i.e. C0(β) = β). As will become clear, area DI is crucial in the
construction and decomposition of rotation-invariant t-norms.

Theorem 7. Consider a t-norm T that is rotation invariant w.r.t. its contour line C0. Let σ be an
arbitrary increasing [β,1] → [0,1] bijection, with β the unique fixpoint of C0. Then there exists a
t-norm T̃ with contour lines C̃b such that

T (x,y) =


σ−1

[
T̃ (σ(x),σ(y))

]
, if (x,y) ∈DI ,

C0
(
σ−1

[
C̃σ(C0(x))(σ(y))

])
, if (x,y) ∈DII ,

C0
(
σ−1

[
C̃σ(C0(y))(σ(x))

])
, if (x,y) ∈DIII .

(1)

Conversely, we wonder when an arbitrary left-continuous t-norm T̃ without zero divisors ensures that
T |D fulfills the properties of a t-norm.

Theorem 8. Consider an involutive negator N and its unique fixpoint β. Let T̃ be a left-continuous
t-norm without zero divisors and with contour lines C̃b. Take an arbitrary increasing [β,1] → [0,1]
bijection σ. Define C0 := N and Cβ := (C̃0)β. Then the [0,1]2 → [0,1] mapping T , defined by Eq. (1)
and satisfying T (x,y) = 0, whenver (x,y) 6∈ D , is a t-norm that is rotation invariant w.r.t. its contour
line C0.

Our approach in the previous theorem amounts to the rotation construction of Jenei [5, 7]. On the other
hand, if T̃ has zero divisors and we still want that T |DI∪DIV is just a rescaling of T̃ , then DIV must be a
square (see also [5, 7]). For t-norms T that are continuous on D we will show that T |D is totally fixed
by T |DI .

Theorem 9. Consider a t-norm T that is rotation invariant w.r.t. its contour line C0 and that is con-
tinuous on D . Let σ be an arbitrary increasing [β,1]→ [0,1] bijection, with β the unique fixpoint of
C0. Then there exists a t-norm T̃ with contour lines C̃b such that

T (x,y) =



σ−1
[
T̃ (σ(x),σ(y))

]
, if (x,y) ∈DI ,

C0
(
σ−1

[
C̃σ(C0(x))(σ(y))

])
, if (x,y) ∈DII ,

C0
(
σ−1

[
C̃σ(C0(y))(σ(x))

])
, if (x,y) ∈DIII ,

C0
(
σ−1

[
T̃

(
σ(Cβ(x)),σ(Cβ(y))

)])
, if (x,y) ∈DIV .

(2)
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Conversely, every continuous t-norm T̃ can be used to construct T |D .

Theorem 10. Consider an involutive negator N and its unique fixpoint β. Let T̃ be a continuous t-
norm with contour lines C̃b. Take an arbitrary increasing [β,1]→ [0,1] bijection σ. Define C0 := N
and Cβ := (C̃0)β. Then the [0,1]2 → [0,1] mapping T , defined by Eq. (2) and satisfying T (x,y) = 0,
whenver (x,y) 6∈D , is a t-norm that is rotation invariant w.r.t. its contour line C0.

We only presented here a selection of our results. We are able to interpret Jenei’s rotation-annihilation
construction [6, 7] into our framework and we can uniquely determine T |DIV under some additional
conditions. Examining numerous examples, we know that T |DIV is not always uniquely fixed by the
behaviour of T |DI .
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1 Introduction

Some authors (e.g. [9, 4, 2, 1, 3, 6, 7]) have characterized different measurement techniques that permit
us to represent the membership of some objects by a function that is unique up to some transforma-
tions (strictly increasing, positive affine or linear) thereby showing how we can try to measure the
membership on some kind of scale (ordinal, interval, ratio).

In these papers, the set X of objects for which we want to measure the membership has no special
structure (for example, X = { Ahmed, Bob, Chan }) and the membership function directly maps X in
[0,1], as illustrated in fig. 1. So, even if we measure the membership of these objects (or people) in
the fuzzy set ‘tall’ on an interval scale, we cannot obtain a parametric membership function like the
trapezoidal one.

But in many applications, contrary to what is done in these theoretical papers, the membership of
an object in a fuzzy set is not defined directly: the set X is first mapped into R (often using a physical
instrument). For example, the height of Ahmed is represented by the real number f (Ahmed), in meters.
Then another mapping—the membership function µtall—maps each real number (in some range) on
a membership degree. For example, f (Ahmed) is mapped on µtall( f (Ahmed)). This is illustrated in
fig. 1.

B

A

0

1

C

µtall(Α)

µtall(Β)

µtall(C)

1

B

A

f(A)f(B) f(C)

C

µtall(f(A))

µtall(f(B))

µtall(f(C))

Fig. 1. Left: Direct representation of the membership. Right: Indirect representation of the membership

In Section 2, We will try to analyze, from a measurement-theoretic viewpoint, the indirect ap-
proach. We will not suppose that f is given. Instead, we will start with a structure allowing to con-
struct the representation f (for example the height measured in meters) with some nice uniqueness
properties. Then we will introduce another structure allowing to construct the representation µ of the
membership in some fuzzy set. Finally, we will present some conditions, linking both structures, that
permit to indirectly measure the membership and that yield trapezoidal membership functions.

Note that, in order to obtain a trapezoidal membership function, f must be unique up to some
transformations and the set of transformations must be a subset of the positive affine transformations.
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Otherwise, when varying the representation f , we cannot guarantee that the membership function will
remain trapezoidal. This means that f must be an interval or ratio scale. There are different measure-
ment techniques leading to interval scales: extensive measurement, bisection, conjoint measurement,
difference measurement, . . . In this paper, only extensive measurement will used.

2 Main result

In this paper, the primitives are

– X = {x,y, . . .} , the universal set (uncountable),
– %∗

A, a binary relation defined on X ×X and representing differences of membership in a fuzzy set
A, as perceived by an expert. For instance, xy %∗

A wz means the difference of membership between
x and y is at least as large as the difference of membership between w and z,

– ◦, a binary operation from X ×X into X . It is a ‘concatenation’ operation. For instance, if x and y
are rods, then x◦y represents the composite rod obtained by laying x and y end to end in a straight
line,

– %, a binary relation on X .

The primitives are empirically observable. They are not explained nor defined by the theory. In par-
ticular, the fuzzy set A has no mathematical structure or property. It is just an expression in ordinary
language (e.g. ‘tall’) that can be seen as a fuzzy set.

The conditions guaranteeing the existence of a numerical representation µA of the relation %∗
A,

unique up to positive affine transformations are well known. These conditions are those characterizing
algebraic difference structures [5].

Similarly, the conditions that guarantee the existence of a numerical representation f of the rela-
tion %, unique up to positive linear transformations are also standard in the literature. These conditions
are those characterizing closed extensive structures [5].

We now introduce some new notation and two new conditions that will make it possible to con-
struct a trapezoidal membership function.

Let %A be a binary relation on X defined by x %A y iff xy %∗
A xx. If 〈X ,%∗

A〉 is an algebraic difference
structure, then %A is a weak order. Let T (A) = {x ∈ X : x %A y ∀y ∈ X} (the set of elements with
maximal membership in A) and B(A) = {x ∈ X : y %A x ∀y ∈ X} (the set of elements with minimal
membership in A). These two sets may be empty. Let LA = {x∈ X : z - x - y ∀y∈ T (A) and ∀z∈ B(A)
with z ≺ y} and RA = {x ∈ X : z - x - y ∀z ∈ T (A) and ∀y ∈ B(A) with z ≺ y}. The elements in LA

correspond to the increasing part of the membership function while those in RA correspond to the
decreasing part.

A 1 Quasi-Convexity. There are x1,x2,x3,x4 ∈ X, with x1 ≺ x2 ≺ x3 ≺ x4, such that:

– x ∈ B(A) iff x - x1 or x % x4;
– x ∈ T (A) iff x2 - x - x3;
– x1 ≺ x - y ≺ x2 implies y %A x;
– x3 ≺ x - y ≺ x4 implies x %A y.

Remark that Quasi-Convexity implies that T (A) and B(A) are not empty.
Quasi-Convexity is a very mild condition. It just says that, when moving from small to large

elements (w.r.t. %), the membership is first minimal then increases, reaches a maximum, decreases
and reaches again the same minimum. The next condition is much stronger: it imposes a very strict
consistency or compatibility between the closed extensive structure (often measured with a physical
instrument) and the algebraic difference structure (based on the knowledge of the expert).
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A 2 Consistency. For all x,y in LA, if there is z such that z◦ z ∼ x ◦ y, then xz ∼∗
A zy. The same holds

for all x,y in RA.

We denote by X/∼ the set of equivalence classes on X under ∼.

Theorem 1. Let the structures 〈X ,%∗
A〉 and 〈X ,%,◦〉 be, respectively, an algebraic difference struc-

ture and a closed extensive structure with X/ ∼ uncountable. If, in addition, 〈X ,%∗
A,%,◦〉 satisfies

Quasi-Convexity (A1) and Consistency (A2), then there exist fA : X 7→ R+
0 and µA : X 7→ [0,1] such

that

µA(x)−µA(y)≥ µA(z)−µA(w)
m (1)

xy %∗
A zw,∀x,y,z,w ∈ X ,

µA(x) = 0 ∀x ∈ B(A), (2)

µA(x) = 1 ∀x ∈ T (A), (3)

f (x)≥ f (y)⇔ x % y, ∀x,y ∈ X , (4)

f (x◦ y) = f (x)+ f (y) ∀x,y ∈ X , (5)

µA(x) = aL
A f (x)+bL

A ∀x,y ∈ LA. (6)

and
µA(x) = aR

A f (x)+bR
A ∀x,y ∈ RA, (7)

with aL
A > 0 and aR

A < 0.
The function µA is unique. The functions µA and f ′ also satisfy (2–7) iff there is a real numbers p >

0 such that f ′ = p f . We then have a′L = aL/p, b′L = bL(1−aL/p), a′R = aR/p and b′R = bR(1−aR/p).

The proof strategy is simple. Using classical results about algebraic difference structures and
extensive structures, we construct two representations: one of %∗

A and one of %. By Quasi-Convexity,
one of these representations must be an increasing transformations φ of the other one on LA and on
RA. Using Consistency allows us to write a functional equation involving φ. This functional equation
has only one solution: φ must be affine. A detailed proof of a similar result on bisymmetric structures
can be found in [8].

3 Conclusion

Theorem 1 does not justify or legitimize the use of trapezoidal membership functions; it presents
conditions under which such membership functions can represent the knowledge of an expert. Some
experimental research is necessary to determine whether these conditions are met in practice.
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Abstract. We give the cumulative distribution functions, the expected values, and the moments of weighted
lattice polynomials when regarded as real functions. Since weighted lattice polynomial functions include
Sugeno integrals, lattice polynomial functions, and order statistics, our results encompass the corresponding
formulas for these particular functions.

1 Introduction

The cumulative distribution functions (c.d.f.’s) and the moments of order statistics have been discov-
ered and studied for many years (see e.g. [4]). Their generalizations to lattice polynomial functions,
which are nonsymmetric extensions of order statistics, were investigated very recently by Marichal
[7] for independent variables and then by Dukhovny [5] for dependent variables.

Roughly speaking, an n-ary lattice polynomial is any well-formed expression involving n real
variables x1, . . . ,xn linked by the lattice operations ∧= min and ∨= max in an arbitrary combination
of parentheses. In turn, such an expression naturally defines an n-ary lattice polynomial function. For
instance,

p(x1,x2,x3) = (x1∧ x2)∨ x3

is a 3-ary lattice polynomial function.
Lattice polynomial functions can be generalized by regarding certain variables as parameters, like

in the 2-ary polynomial
p(x1,x2) = (c∧ x1)∨ x2,

where c is a real constant. Such “parameterized” lattice polynomial functions, called weighted lattice
polynomial functions [8, 11], are very often considered in the area of nonlinear aggregation functions
as they include the whole class of discrete Sugeno integrals [12, 13].

In this paper we give a closed-form formula for the c.d.f. of any weighted lattice polynomial
function in terms of the c.d.f.’s of its input variables. More precisely, considering an n-ary weighted
lattice polynomial function p and n independent random variables X1, . . . ,Xn, Xi (i = 1, . . . ,n) having
c.d.f. Fi(x), we give a formula for the c.d.f. of Yp := p(X1, . . . ,Xn). We also yield a formula for the
expected value E[g(Yp)], where g is any measurable function. The special cases g(x) = x, xr, [x−
E(Yp)]r, and etx give, respectively, the expected value, the raw moments, the central moments, and the
moment-generating function of Yp.

This paper is organized as follows. In Section 2 we recall the basic material related to lattice
polynomial functions and their weighted versions. In Section 3 we provide the announced results. In
Section 4 we investigate the particular case where the input random variables are uniformly distributed
over the unit interval. Finally, in Section 5 we provide an application of our results to the reliability
analysis of coherent systems.
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Weighted lattice polynomial functions play an important role in the areas of nonlinear aggregation
and integration. Indeed, as we mentioned above, they include all the discrete Sugeno integrals, which
are very useful aggregation functions in many areas. More details about the Sugeno integrals and their
applications can be found in the remarkable edited book [6].

2 Weighted lattice polynomials

In this section we give some definitions and properties related to weighted lattice polynomial func-
tions. More details and proofs can be found in [8].

As we are concerned with weighted lattice polynomial functions of random variables, we do not
consider weighted lattice polynomial functions on a general lattice, but simply on an interval L := [a,b]
of the extended real number system R := R∪ {−∞,+∞}. Clearly, such an interval is a bounded
distributive lattice, with a and b as bottom and top elements. The lattice operations ∧ and ∨ then
represent the minimum and maximum operations, respectively. To simplify the notation, we also set
[n] := {1, . . . ,n} for any integer n > 1.

Let us first recall the definition of a lattice polynomial (with real variables); see e.g. Birkhoff [2,
§II.5].

Definition 1. Given a finite collection of variables x1, . . . ,xn ∈ L, a lattice polynomial in the variables
x1, . . . ,xn is defined as follows:

1. the variables x1, . . . ,xn are lattice polynomials in x1, . . . ,xn;
2. if p and q are lattice polynomials in x1, . . . ,xn, then p∧ q and p∨ q are lattice polynomials in

x1, . . . ,xn;
3. every lattice polynomial is formed by finitely many applications of the rules 1 and 2.

When two different lattice polynomials p and q in the variables x1, . . . ,xn represent the same
function from Ln to L, we say that p and q are equivalent and we write p = q. For instance, x1∨(x1∧x2)
and x1 are equivalent.

The weighted lattice polynomial functions are defined as follows.

Definition 2. A function p : Ln → L is an n-ary weighted lattice polynomial function if there exists an
integer m > 0, parameters c1, . . . ,cm ∈ L, and a lattice polynomial function q : Ln+m → L such that

p(x1, . . . ,xn) = q(x1, . . . ,xn,c1, . . . ,cm) (x1, . . . ,xn ∈ L).

Because L is a distributive lattice, any weighted lattice polynomial function can be written in
disjunctive and conjunctive forms as follows.

Proposition 1. Let p : Ln → L be any weighted lattice polynomial function. Then there are set func-
tions α : 2[n] → L and β : 2[n] → L such that

p(x) =
_

S⊆[n]

[
α(S)∧

^
i∈S

xi

]
=
^

S⊆[n]

[
β(S)∨

_
i∈S

xi

]
.

Proposition 1 naturally includes the classical lattice polynomial functions. To see it, it suffices to
consider nonconstant set functions α : 2[n] →{a,b} and β : 2[n] →{a,b}, with α(∅) = a and β(∅) = b.

The set functions α and β that disjunctively and conjunctively generate the polynomial function p
in Proposition 1 are not unique. For example, as we have already observed above, we have

x1∨ (x1∧ x2) = x1 = x1∧ (x1∨ x2).
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However, it can be shown that, from among all the possible set functions that disjunctively generate a
given weighted lattice polynomial function, only one is nondecreasing. Similarly, from among all the
possible set functions that conjunctively generate a given weighted lattice polynomial function, only
one is nonincreasing. These particular set functions are given by

α(S) = p(eS) and β(S) = p(e[n]\S),

where, for any S ⊆ [n], eS denotes the characteristic vector of S in {a,b}n, i.e., the n-dimensional
vector whose ith component is a, if i∈ S, and b, otherwise. Thus, an n-ary weighted lattice polynomial
function can always be written as

p(x) =
_

S⊆[n]

[
p(eS)∧

^
i∈S

xi

]
=
^

S⊆[n]

[
p(e[n]\S)∨

_
i∈S

xi

]
.

The best known instances of weighted lattice polynomial functions are given by the discrete
Sugeno integrals, which consist of a nonlinear discrete integration with respect to a fuzzy measure.

Definition 3. An L-valued fuzzy measure on [n] is a nondecreasing set function µ : 2[n] → L such that
µ(∅) = a and µ([n]) = b.

The Sugeno integrals can be presented in various equivalent forms. The next definition introduce
them in one of their simplest forms (see [12]).

Definition 4. Let µ be an L-valued fuzzy measure on [n]. The Sugeno integral of a function x : [n]→ L
with respect to µ is defined by

Sµ(x) :=
_

S⊆[n]

[
µ(S)∧

^
i∈S

xi

]
.

Thus, any function f : Ln → L is an n-ary Sugeno integral if and only if it is a weighted lattice
polynomial function fulfilling f (e∅) = a and f (e[n]) = b.

3 Cumulative distribution functions and moments

Consider n independent random variables X1, . . . ,Xn, Xi (i ∈ [n]) having c.d.f. Fi(x), and set Yp :=
p(X1, . . . ,Xn), where p : Ln → L is any weighted lattice polynomial function. Let H : R → {0,1} be
the Heaviside step function defined by H(x) = 1, if x > 0, and 0, otherwise. For any c ∈ R, we also
define the function Hc(x) = H(x− c).

The c.d.f. of Yp is given in the next theorem.

Theorem 1. Let p : Ln → L be a weighted lattice polynomial function. Then, the c.d.f. of Yp is given
by

Fp(y) = 1− ∑
S⊆[n]

[
1−Hp(eS)(y)

]
∏

i∈[n]\S
Fi(y) ∏

i∈S
[1−Fi(y)].

As a corollary, we retrieve the c.d.f. of any lattice polynomial function; see [7].

Corollary 1. Let p : Ln → L be a lattice polynomial function. Then, the c.d.f. of Yp is given by

Fp(y) = 1− ∑
S⊆[n]

p(eS)=b

∏
i∈[n]\S

Fi(y) ∏
i∈S

[1−Fi(y)].
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Let us now consider the expected value E[g(Yp)], where g : R → R is any measurable function.
From its expression we can compute the expected value and the moments of Yp.

By definition, we simply have

E[g(Yp)] =
Z

∞

−∞

g(y)dFp(y).

Using integration by parts, we can derive an alternative expression of E[g(Yp)]. We then have the
following result.

Theorem 2. Let p : Ln → L by any weighted lattice polynomial function. For any measurable function
g : R→ R such that

lim
y→∞

g(y)[1−Fi(y)] = 0 (i ∈ [n]),

then

E[g(Yp)] = lim
y→−∞

g(y)+ ∑
S⊆[n]

Z p(eS)

−∞
∏

i∈[n]\S
Fi(y) ∏

i∈S
[1−Fi(y)]dg(y).

4 The case of uniformly distributed variables on the unit interval

We now examine the case where the random variables X1, . . . ,Xn are uniformly distributed on [0,1].
We also assume L = [0,1].

Recall that the incomplete Beta function is defined, for any u,v > 0, by

Bz(u,v) :=
Z z

0
tu−1(1− t)v−1 dt (z ∈ R),

and the Beta function is defined, for any u,v > 0, by B(u,v) := B1(u,v).
According to Theorem 2, for any weighted lattice polynomial function p : [0,1]n → [0,1] and any

measurable function g : [0,1]→ R, we have

E[g(Yp)] = g(0)+ ∑
S⊆[n]

Z p(eS)

0
yn−|S|(1− y)|S| dg(y).

Let us now examine the case of the Sugeno integrals. As these integrals are usually considered
over the domain [0,1]n, we naturally calculate their expected values when their input variables are uni-
formly distributed over [0,1]n. Since any Sugeno integral is a particular weighted lattice polynomial,
its expected value then writes

Z
[0,1]n

Sµ(x)dx = ∑
S⊆[n]

Bµ(S)(n−|S|+1, |S|+1).

Surprisingly, this expression is very close to that of the expected value of the Choquet integral
with respect to the same fuzzy measure.

Let us recall the definition of the Choquet integrals (see [3]). Just as for the Sugeno integrals,
the Choquet integrals can be expressed in various equivalent forms. We present them in one of their
simplest forms; see e.g. [9].
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Definition 5. Let µ be an [0,1]-valued fuzzy measure on [n]. The Choquet integral of a function x :
[n]→ [0,1] with respect to µ is defined by

Cµ(x) := ∑
S⊆[n]

µ(S)
[

∑
T⊇S

(−1)|T |−|S|
^
i∈T

xi

]
.

For comparison purposes, the expected value of Cµ is given by (see e.g. [10])
Z

[0,1]n
Cµ(x)dx = ∑

S⊆[n]
µ(S)B(n−|S|+1, |S|+1).

5 Application to reliability theory

In this final section we show how the results derived here can be applied to the reliability analysis of
certain coherent systems. For a reference on reliability theory, see e.g. [1].

Consider a system made up of n independent components, each component Ci (i ∈ [n]) having a
lifetime Xi and a reliability ri(t) := Pr[Xi > t] at time t > 0. Additional components, with constant
lifetimes, may also be considered.

We assume that, when components are connected in series, the lifetime of the subsystem they
form is simply given by the minimum of the component lifetimes. Likewise, for a parallel connection,
the subsystem lifetime is the maximum of the component lifetimes.

It follows immediately that, for a system mixing series and parallel connections, the system life-
time is given by a weighted lattice polynomial function

Yp = p(X1, . . . ,Xn)

of the component lifetimes. We then have explicit formulas for the c.d.f., the expected value, and the
moments of the system lifetime.

For example, the system reliability at time t > 0 is given by

Rp(t) := Pr[Yp > t] = ∑
S⊆[n]

[
1−Hp(eS)(y)

]
∏
i∈S

ri(t) ∏
i∈[n]\S

[1− ri(t)].

Moreover, for any measurable function g : [0,∞] → R such that

lim
t→∞

g(t)ri(t) = 0 (i ∈ [n]),

we have, by Theorem 2,

E[g(Yp)] = g(0)+
Z

∞

0
Rp(t)dg(t).

Example 1. If ri(t) = e−λit (i ∈ [n]), we can show that

E[Yp] = p(e∅)+ ∑
S⊆[n]
S 6=∅

∑
T⊆S

(−1)|S|−|T |
1− e−λ(S) p(eT )

λ(S)
,

where λ(S) := ∑i∈S λi.
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Decision Making When One is Facing Doubt Regarding the
Consequences of Their Actions

Benoı̂t Menoni

CREST-LFA & EUREQua
F-92245 Malakoff Cedex, France

menoni@ensae.fr

Since the seminal analysis of decision making under risk carried out by von Neumann and Mor-
genstern[12] and the pioneering study of decision making under uncertainty fulfilled by Savage[10],
various contributions have lead decision making theorists to develop a wide range of models that al-
low them either to advice people when the latter face a choice or to explain why they picked out a
given alternative. The so-called expected utility approach is dominantly used by economists when they
study decision making. It specifies that the decision maker (DM), when they want to value an action,
uses some probability distribution over the contingencies they are dealing with and a utility function
that converts the various consequences into monetary payoffs; the evaluation of an action is nothing
but the expected value of the utility of its consequences with respect to that probability distribution.
In order to deal with some inconsistencies pointed out, among others, by Allais[1], Ellsberg[5] and
Mossin[9], several contributions have been later developed. Schmeidler[11] shows that a DM whose
preferences conform to the axioms he considers evaluates their actions in a expected-utility fashion,
using a capacity instead of a probability distribution. Gilboa and Schmeidler[6] consider a situation
such that the DM have in mind a list of possible scenarios; each of them corresponds to a probability
distribution on the set of the states of the world. Thus, facing a random variable, the DM can compute
as many expected values as scenarios. The authors provide a rationale for them to evaluate the ran-
dom variable as the smallest of its expected values. Ghirardato[7] extends the framework studied by
Savage[10] to situations where the DM does not know precisely the consequences of their actions in
a given state of the world and is merely able to make out a list of potential consequences. They know
the consequence will lay somewhere in the list but cannot specify which one of those will eventu-
ally occur. The author shows that the axioms studied by Savage[10] plus two additional ones that are
specific to his setting lead the DM to evaluate their actions again through a Choquet integral. Lastly,
Jaffray and Jeleva[8] study situations where the implications of a given action are completely known
and understood – analyzed in their terminology – on an particular event and more vague and imprecise
on the complement of that event. The authors show that if the DM’s preferences obey some rules then
the valuation attributed to a given action should only depend on the analyzed event itself, the expected
value of the utility of the consequences provided by the action on the analyzed event and the worst
and the best consequences of the action on the non analyzed event.

Most of these contributions consist in a relaxing of the properties imposed to the preference rela-
tion among acts the DM is endowed with. Besides, all of them consider actions – acts in Savage[10]’s
terminology – as mappings from S , the set of states of the world, to some set X that can be the set
of consequences C itself or some other set derived from the latter such as the power set of C or the
set of all simple probability distributions on set of C . We address two comments to such a formalism.
Firstly, it is possible that the DM understands the course of action they have to implement to realize
a given action yet they cannot specify the outcome that will result from their action. For example, the
DM may understands what they have to do if they want to invest some of their money in company
A. A much more difficult task for them is to know what will be the precise value of their portfolio
fourteen months from now. Secondly, it is possible that the DM thinks that the list of states of the
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world they have in mind is somewhat coarse. However, for lack of time, of ressource, of intellectual
abilities, they cannot refine these contingencies. In the previous example, the DM may have in mind a
few economic indicators that can determine the value of their portfolio yet will it be enough for them
to make accurate anticipations? These two remarks may prevent one from modeling the actions as acts
à la Savage[10]. Indeed, this requires to assign to any action in any state of the world a unique con-
sequence. Furthermore, attributing a list of consequences as suggested by Ghirardato[7] means that
none of the consequences considered as possible plays a particular role, that they are all on an equal
footing. However, even if the quality of the information acquired by the DM is low, it can nonetheless
helps the latter to sort the elements of the list. The aim of the paper is to take into account those two
remarks; it suggests to consider an act as a mapping from S , the set of the states of the world, to ∆, the
set of the possibility distributions over the set of outcomes C with the following interpretation : given
(1) their knowledge, their understanding of the implications of a given action and (2) the occurrence
of a given state of the world, the DM attributes to each outcome a degree of possibility that varies from
total impossibility to total possibility. In other words, an act is supposed to induce, in any state of the
world s∈ S , a ranking over the various outcomes c∈ C . In a way, this amounts to give an ordinal struc-
ture to Ghirardato[7]’s lists. Anscombe and Aumann[2] suggest this idea yet these authors require the
consequence of an act, in any state of the world, to be a probability distribution – a lottery ticket in
their terminology – over C . Dealing with possibility distributions rather than probability distributions
is, to our mind, less demanding for it does not require the weight attributed to every consequence to
be a real number lying between 0 and 1 nor the sum of those weights to be equal to 1. Moreover
possibility seems to describe human reasoning better than probability. The axioms used in the paper
are closed to the ones developed by Dubois et al.[3] and Dubois et al.[4]; they allow us to derive from
preferences over acts a valuation of the induced possibility distributions in an expected-utility fashion.
We then show how to aggregate these state-wise evaluations in a consistent way; this constitutes the
main result of the paper.
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This abstract gives basic properties of inclusion-exclusion families, or interadditive families, with re-
spect to set functions over a nonempty finite set X ; for example, the collection of all possible inclusion-
exclusion families with respect to set functions over X is isomorphic to the free bounded distributive
lattice generated by X .

Throughout the abstract, X is assumed to be a nonempty finite set.

1 Families of sets

This section gives a summary of existing results on a lattice structure of families of subsets equipped
with a certain partial order (e.g., [1], [2]).

Definition 1. 1. A family A of sets is called an antichain if {A,A′} ⊆ A and A ⊆ A′ together imply
A = A′.

2. A family H of sets is said to be hereditary if H ′ ⊆ H ∈H implies H ′ ∈H .
Let A(X) def= {A ⊆ 2X | A is an antichain} and H(X) def= {H ⊆ 2X |H is hereditary}.

Definition 2. For S ⊆ 2X , we define MaxS ∈ A(X) and HerS ∈H(X) by

MaxS def= {A | A is maximal in S with respect to set inclusion ⊆},

HerS def= {H | H ⊆ S for some S ∈ S}.

Definition 3. For S , T ⊆ 2X .

S v T def⇐⇒ S ⊆ HerT , S ≡ T def⇐⇒ S v T and T v S .

Proposition 1. Let S , T ⊆ 2X .

1. S ≡MaxS ≡ HerS .

2. S ≡ T ⇐⇒ MaxS = MaxT ⇐⇒ HerS = HerT .

Obviously, v is a preorder on 2(2X ), i.e., it is reflexive and transitive, and ≡ is an equivalence
relation on 2(2X ). We denote by [S ] the equivalence class of S ∈ 2(2X ) with respect to ≡. Let v≡ be the
partial order on the quotient 2(2X )/≡ induced by v, i.e.,

[S ]v≡ [T ] def⇐⇒ S v T for S , T ⊆ 2X .

? This work is partially supported by a grant for the 21st Century COE Program “Creation of Agent-Based Social Systems
Sciences” from the Ministry of Education, Culture, Sports, Science and Technology, Japan.
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Let L(X) be the set of lattice polynomials of elements of X defined by

L(X) def=

{_
S∈S

^
x∈S

x

∣∣∣∣∣ S ∈ 2(2X )

}
,

where
W

/0 = 0 and
V

/0 = 1. Then (L(X),∧,∨,0,1) is the free bounded distributive lattice (L(X),∧,∨,0,1)
generated by X , where a bounded lattice is a lattice with the greatest element 1 and the least element
0.

Proposition 2. Each of (2(2X )/≡,v≡), (A(X),v), (H(X),v) is isomorphic to the free bounded dis-
tributive lattice (L(X),∧,∨,0,1) generated by X. Especially, (H(X),v) is the lattice (H(X),∩,∪, /0,2X)
of sets. The isomorphism ϕ : L(X)→ 2(2X )/≡ is given as

ϕ

(_
S∈S

^
x∈S

x

)
= [{X \S | S ∈ S}]. (1)

2 Set functions and the Choquet integral

The contents of this section are a few modification of existing results (e.g., [3]).

Definition 4. A function µ : 2X → R is called a set function (with intercept) over X. A set function µ
is said to be without intercept if µ( /0) = 0. The essential part of a set function µ is the set function µ /0

defined by µ /0(E) = µ(E)−µ( /0) for E ⊆ X. A set function µ is said to be modular if µ(E ∪F)+µ(E ∩
F) = µ(E)+µ(F) for every pair E and F of subsets of X. A modular set function without intercept is
said to be additive. Let

SF(X) def= {µ | µ is a set function over X}, SF /0(X) def= {µ ∈ SF(X) | µ( /0) = 0}.

Hereinafter µ is assumed to be a set function over X , i.e., µ ∈ SF(X).

Definition 5. (cf. [4]) The Choquet integral (C)
R

f (x)dµ(x) of a function f : X → R with respect to
µ is defined by

(C)
Z

f dµ def= µ( /0)+
|X |

∑
i=1

[ f (xi)− f (xi−1)] [µ(Ai)−µ( /0)],

where x1, x2, . . . , x|X | is a permutation of the elements of X satisfying the condition f (x1) ≤ f (x2) ≤
·· · ≤ f (x|X |), f (x0)

def= 0, and Ai
def= {xi,xi+1, . . . ,x|X |} (i = 1,2, . . . , |X |).

Obviously it holds that

(C)
Z

f dµ = µ( /0)+(C)
Z

f dµ /0.

There are two distinct definitions of the Choquet integral over E ⊆ X :

(C)
Z

E
f dµ def= (C)

Z
( f � E)d(µ � 2E), (C)

Z
E

f dµ def= (C)
Z

f ·1E dµ,

where 1E is the indicator of E. In this abstract, however, we may adopt whichever one.
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Definition 6. The Möbius transform µM of µ is a set function over X defined by

µM(E) def= ∑
F⊆E

(−1)|E\F |µ(F).

By definition, µM( /0) = µ( /0). In addition, (µ /0)M(E) = µM(E) for every E ∈ 2X \{ /0}.

Definition 7. A subset F of X is called a focus, or a focal element, of µ if µM(F) 6= 0. The family of
foci of µ is denoted by F (µ); that is, F (µ) def= {F ⊆ X | µM(F) 6= 0}.

Obviously F (µ /0) = F (µ)\{ /0}.

Definition 8. µ is said to be k-modular if k = max{|F | | F ∈ F (µ)}, where max /0
def= 0. A k-modular

set function without intercept is said to be k-additive.

The following proposition includes the definition of null set.

Proposition 3. Let N ⊆ X. The following conditions are equivalent to each other.

(a) N is a null set with respect to µ.
(b) µ(E \N) = µ(E) whenever E ⊆ X.
(c) N ⊆ X \

S
F (µ).

(d) For every f : X → R,

(C)
Z

X
f dµ = (C)

Z
X\N

f dµ.

X \
S

F (µ) is the greatest null set. If N is a null set, then µ(N) = µ( /0). The family of null sets with
respect to µ /0 coincides with the family of null sets with respect to µ.

3 Inclusion-exclusion families

The contents of this section are a few modification of existing results (e.g., [3]).
The following theorem includes the definition of inclusion-exclusion family.

Theorem 1. Let µ be a set function over X and S a family of subsets of X. The following conditions
are equivalent to each other.

(a) S is an inclusion-exclusion family, or an interadditive family, with respect to µ.
(b) For every E ⊆ X

µ(E) = ∑
T ⊆S , T 6= /0

(−1)|T |+1µ
(\

T ∩E
)

. (2)

(c) Eq. (2) holds for every E ∈ 2X \HerS .
(d) F (µ)v S , or equivalently µM(E) = 0 for every E ∈ 2X \HerS .
(e) There exists a collection {µS}S∈S of set functions, each µS of which is defined on 2S, such that for
every E ⊆ X

µ(E) = ∑
S∈S

µS(E ∩S).

(f) There exists a collection {µS}S∈S of set functions, each µS of which is defined on 2S, such that for
every function f : X → R

(C)
Z

X
f dµ = ∑

S∈S
(C)
Z

S
f dµS.
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By the theorem above, F (µ) itself is an inclusion-exclusion family and one of the least ones
with respect to v. Hence MaxF (µ) is the least antichain inclusion-exclusion family and HerF (µ) is
the least hereditary inclusion-exclusion family. A family S of subsets of X is an inclusion-exclusion
family with respect to µ /0 iff S ∪{ /0} is an inclusion-exclusion family with respect to µ.

Proposition 4. Let S be an inclusion-exclusion family.

1. X \
S

S is a null set.
2. If N is a null set, then {S\N | S ∈ S} also is an inclusion-exclusion family.

Proposition 5. Let k be a nonnegative integer less than or equal to |X |. µ is at most k-modular iff
(X

k

)
is an inclusion-exclusion family.

If we consider only set functions without intercept, since there is no µ ∈ SF /0(X) such that F (µ) =
{ /0}, we may exclude { /0} from consideration. Then the collection of all possible inclusion-exclusion
families with respect to set functions without intercept over X is isomorphic to the free upper-bounded
distributive lattice generated by X , where an upper-bounded lattice is a lattice with the greatest element
1. Since /0 6∈ F (µ) for all µ ∈ SF /0(X) and S \ { /0} ≡ S for all S ⊆ 2X except S = { /0}, instead of
excluding { /0} from the collection of families of subsets, we can exclude /0 from families of subsets. Let
A\ /0(X) def= {A \{ /0} |A ∈A(X)} and H\ /0(X) def= {H \{ /0} |H ∈H(X)}. Note that 2(2X\{ /0}) = {F (µ) |
µ∈ SF /0(X)}, A\ /0(X) = {MaxF (µ) | µ∈ SF /0(X)}= A(X)\{{ /0}}, and H\ /0(X) = {(HerF (µ))\{ /0} |
µ ∈ SF /0(X)}. In addition, a set function without intercept with an inclusion-exclusion family S is
determined by its values on (HerS)\{ /0}.

Proposition 6. Each of ((2(2X ) \ {{ /0}})/ ≡,v≡), (2(2X\{ /0})/ ≡,v≡), (A\ /0(X),v),
(H(X)\{{ /0}},v), (H\ /0(X),v) is isomorphic to the free upper-bounded distributive lattice (L(X)\
{0},∧,∨,1) generated by X. Especially, (H\ /0(X),v) is the lattice
(H\ /0(X),∪,∩,2X \ { /0}) of sets. The isomorphism ϕ : L(X)\{0} → (2(2X ) \ {{ /0}})/ ≡ is given by
Eq. (1) provided that [{ /0}] is identified with [ /0].
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1 Introduction

In modeling decision under uncertainty an important tool is the Choquet integral, see [6, 8–10, 12].
Then an universal set X is a space, its elements are state of nature and functions from X to R are
prospects. The preference relation � is defined on the set of prospects and we say that a utility func-
tional L represents a preference relation if and only if L( f )≤ L(g) for all pairs of prospects f ,g such
that f � g. Schmeidler [16] showed that preference can be represented by Choquet integral model,
so called Choquet expected utility model (cumulative utility). Choquet expected utility model is not
an appropriate tool when the gain and loss must be considered in the same time. In the field of de-
cision theory the cumulative prospect theory (CPT), introduced by Tversky and Kahneman [15], see
[3], combines cumulative utility and a generalization of expected utility, so called sign dependent ex-
pected utility, related to bipolar scale, see [14]. CPT holds if there exist two fuzzy measures, m+ and
m−, which ensure that the utility functional L, model for preference representation, can be represented
by the difference of two Choquet integrals, i.e.,

L( f ) = (C)
Z

f + dm+− (C)
Z

f− dm−, (1)

where f + = f ∨ 0 and f− = (− f )∨ 0. Narukawa et al. proved in [11] that comonotone-additive
and monotone functional can be represented as a difference of two Choquet integrals and gave the
conditions for which it can be represented by one Choquet integral.

In the first part of the paper we consider the analogous situation for the Sugeno integral, based on
[13]. An extension of the Sugeno integral in the spirit of the symmetric extension of Choquet integral
proposed by M. Grabisch in [4] is useful as a framework for cumulative prospect theory in an ordinal
context. In this paper we consider representation by two Sugeno integrals of the functional L defined
on the class of functions f : X → [−1,1] on a finite set X . In the case of infinitely countable set X
we obtain as a consequence of results on general fuzzy rank and sign dependent functionals that the
symmetric Sugeno integral is comonotone-6-additive functional on the class of functions with finite
support.

Starting from the needs of cumulative prospect theory and motivated by (1) in the second part of
this paper we present some difference representations of asymmetric Choquet integral w.r.t a signed
fuzzy measures.

2 Comonotone-6-additive functional and its representation

The motivation for the paper [13] is based mainly on the axiomatic characterization of the preference
relation � such that it is CPT, stated in [10], and our approach may be viewed as adequate base for an
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axiomatization for the preference representation in qualitative decision making. Let f : X → [−1,1]
be a function on X with finite support. Consider the class of functions with finite support denoted by
K1(X):

K1(X) = { f | f : X → [−1,1], card(supp( f )) < ∞},

where the support is given by supp( f ) = {x | f (x) 6= 0}. K +
1 (X) and K −

1 (X) denote the class of
non-negative and non-positive functions with finite support, respectively.

The symmetric maximum 6 : [−1,1]2 → [−1,1], originally introduced in [5], is defined by

a6b =


−(|a|∨ |b|) , b 6=−a and |a|∨ |b|=−a or =−b,

0 , b =−a,
|a|∨ |b| , otherwise.

The symmetric minimum 7 : [−1,1]2 → [−1,1], introduced in [5], is defined by

a7b =
{
−(|a|∧ |b|) , signa 6= signb,

|a|∧ |b| , otherwise.

We refer the reader to [5] for a detailed study of the properties of the introduced rules. Let m :
A → [0,1] be a fuzzy measure on the measurable space (X ,A). The symmetric Sugeno integral of
f ∈K1(X) with respect to µ is defined by ([4]):

©S
Z

f dm =
(
(S)

Z
f + dm

)
6

(
− (S)

Z
f− dm

)
,

where f + = f ∨0 and f− = (− f )∨0 =−( f ∧0). In order to examine the 6-additivity of the symmet-
ric Sugeno integral, it is useful to consider the concept of comonotone functions. Note that any func-
tion f : X → [−1,1] can be represented by symmetric maximum of two comonotone functions f + ≥ 0
and − f− ≤ 0, i.e., f = f +6(− f−). It is well known fact that the Sugeno integral of a non-negative
function f is independent with respect to its comonotone maxitive representation, see [2]. This fact
ensures that the symmetric Sugeno integral of function f ∈ K1(X) is independent with respect to its
comonotone 6-additive representation. Now we extend the notion of the symmetric Sugeno integral.

Definition 1. A functional L : K1(X)→ [−1,1] is a fuzzy rank and sign dependent functional (f.r.s.d.)
on K1(X) if there exist two fuzzy measures m+ and m− such that for all f ∈K1(X)

L( f ) =
(
(S)

Z
f + dm+

)
6

(
− (S)

Z
f− dm−

)
.

Note that in the case when m+ = m− the fuzzy rank and sign dependent functional (f.r.s.d. functional
for short) is exactly the symmetric Sugeno integral. If a f.r.s.d. functional L is the symmetric Sugeno
integral then we have L(− f ) =−L( f ).

Let L : K1(X)→ [−1,1], be a functional on K1(X): (i) L is comonotone-6-additive iff L( f6g) =
L( f )6L(g) for all comonotone functions f , g ∈ K1(X); (ii) L is monotone iff f ≤ g ⇒ L( f ) ≤
L(g) for all functions f , g ∈ K1(X); (iii) L is positive 7-homogeneous iff L(a7 f ) = a7L( f ) for all
f ∈K1(X) and a∈ [0,1]; (iv) L is weak 7-homogeneous iff L(a71A)= a7L(1A) andL(a7(−1A))=
a7L(−1A) for all a∈ [0,1] and A⊆ X . Weak 7-homogeneity does not imply positive 7-homogeneity
in general. In the case of finite set X and K1(X) class of functions f : X → [−1,1] we have the next
result.
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Theorem 1. Let X be a finite set. If L : K1(X) → [−1,1] is a comonotone-6-additive, weak 7-
homogeneous and monotone functional on K1(X), then L is a f.r.s.d functional, i.e., there exist two
fuzzy measures m+

L and m−
L such that

L( f ) =
(
(S)

Z
f + dm+

L

)
6

(
− (S)

Z
f− dm−

L

)
.

Theorem 2. Let X be an infinitely countable set. If L : K1(X)→ [−1,1] is a f.r.s.d functional such
that L( f ) 6= 0, for all f ∈ K1(X), f 6= 0, then it is a comonotone-6-additive functional on the set
K1(X).

A f.r.s.d. functional on K1(X), where X is a finite set, is not always comonotone-6-additive.

Corollary 1. Let X be an infinitely countable set. The symmetric Sugeno integral is comonotone-6-
additive functional for functions f ∈K1(X) such that ©S

R
f dm 6= 0.

3 Representation of the asymmetric Choquet integral with respect to signed fuzzy
measure

Let A be a σ-algebra of subsets of X . We consider as extension of the notion of the fuzzy measure
to set functions m : A → [−∞,∞], as signed fuzzy measure, see [12]. The chain variation | m | of
real-valued set functions m, vanishing at the empty set, and the space BV were considered in [1, 12].

We shall give a representation of a signed fuzzy measure m : A → [−∞,∞] which belongs to the
space BV . We will correspond to it a signed measure µ defined on a σ-algebra B of subsets of a set Y .
First, we will introduce an interpreter for measurable sets and a frame for representation [7], see [12].

Definition 2. A mapping H : A →B is called an interpreter if H satisfies: (i) H( /0) = /0 and H(X) =Y ;
(ii) H(E)⊂ H(F), for all E ⊂ F. A triple (Y,B,H) is called a frame of (X ,A), if H is an interpreter
from A to B .

Definition 3. Let m be a signed fuzzy measure defined on A . A quadruple (Y,B,µ,H) is called a
representation of m (or (X ,A ,m)) if H is an interpreter from A to B , µ is a signed measure on (Y,B),
and m = µ◦H.

Theorem 3. Every signed fuzzy measure m, m ∈ BV , has its representation.

We apply Theorem 3 to obtain a representation of the asymmetric Choquet integral of a measurable
function f with respect to a signed fuzzy measure m.

Theorem 4. If m is a signed fuzzy measure, m ∈ BV and f ∈M (class of all measurable functions on
X), then there exist two functions I1

f : Y → [0,∞] and I2
f : Y → [0,∞] such that the asymmetric Choquet

integral has the following difference representation

Cm( f ) =
Z

I1
f + dλ−

Z
I2

f− dλ.

Cm( f ) does not depend of the representation of m by means of Theorem 3.
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Abstract. Classical (Aristotelian) two-valued realization of Boolean algebra is based on two-element Boo-

lean algebra as its homomorphism. So, calculus and/or arithmetic for a two valued case is Boolean algebra of 
two elements.  Interpolative Boolean algebra is MV realization of finite Boolean algebra. All axioms and all 
laws of Boolean algebra are preserved in a MV case. New approach is illustrated on the generalization of pref-
erence structures.  

1   Introduction 

Classical (Aristotelian) two-valued realization of Boolean algebra is based on two-element Boolean 
algebra. So, calculus and/or arithmetic for a two-valued case is two-valued Boolean algebra.  Interpo-
lative Boolean algebra [1] is a MV realization of finite Boolean algebra and/or it is consistent gener-
alization of classical two-valued realization.  

 

2   Interpolative Boolean algebra 

Interpolative Boolean algebra has a finite number of elements which can have more than two values 
and in a general case all values from [0, 1]. Interpolative Boolean algebra has two levels: (a) Sym-
bolic or qualitative – a matter of Boolean algebra and (b) Semantic or valued – a matter of interpola-
tion. 

2.1   Symbolic Level 

A symbolic or qualitative level is value independent and, as a consequence, it is the same for all re-
alizations on a valued level: classical (two-valued) and generalized MV-case.  The main notions on 
the symbolic or qualitative level are: a finite set of elements with corresponding Boolean operators – 
atomic Boolean algebra. The finite set of elements of Boolean algebra is generated by a set of pri-
mary elements – context. No primary element can be realized as a Boolean function of the remaining 
elements from this set – context. An order relation on this level is based only on the operator of in-
clusion. A set of Boolean algebra is partially ordered on the basis of inclusion – a Boolean lattice. 
The atomic elements of Boolean algebra – Boolean lattice, are the simplest in the sense that any 
atomic element doesn’t include in itself any other element except itself and a trivial zero constant. 
Meet (conjunction, intersection) of any two atomic elements is equal to a zero constant. Any element 
of Boolean algebra can be represented by join (disjunction, union) of relevant atoms – a disjunctive 
normal form. The structure of analyzed element of Boolean algebra is a characteristic function of the 
set of its relevant atoms. Calculus of structure of Boolean algebra elements is two-valued Boolean 

 111



calculus based on the relation of inclusion.  A consequence is the principle of structural functionality.  
The principle of structural functionality is value independent and, thus, it is a fundamental principle. 
The principle of truth functionality is isomorphism of the principle of structural functionality on a 
value level only for a classical (two valued) case. 

2.2   Valued Level 

On a valued level a result from the symbolic level is concretized in the sense of value. A partial order 
from the symbolic level, based on the relation of inclusion, is mapped into corresponding Boolean 
lattice on a valued level, based on the values and relation less or equal to. Values on a valued level 
correspond to the elements of Boolean algebra from symbolic level. (In the case of: null-ary relation - 
value of truth, unary relations - intensities of property for elements of analyzed universe, binary rela-
tions intensity of relation for elements of Cartesian  product of universe,  etc.). An element from a 
symbolic level on this level has obtained a value in a way which preserves all its characteristics. For 
example, to the order, which is determined by inclusion on a symbolic level, there corresponds the 
order on a valued level, determined by relation “less or equal to”. The value of any element is equal 
to the value obtained by the superposition of values of relevant atomic elements. The value of atomic 
element is a function of the values of primary elements and a chosen operator of a generalized prod-
uct. Atomic elements have non negative values, whose sum is equal to 1. All tautologies and contra-
dictions from the symbolic level are tautologies and contradictions, respectively, on the valued level. 

3   Generalized preference structures 

Interpolative Boolean algebra as a MV algebra can be illustrated on the generalization of preference 
structures. A preference structure is the basic concept of preference modeling. Consider a set of 
alternatives A (objects, actions etc.) and suppose that a decision maker (DM) wants to judge them by 
pairwise comparison. Given two alternatives, the DM can act in one of the following three ways, [2]: 

1. DM prefers one to the other - strict preference relations (>) or (<) 
2. two alternatives are indefferent to DM- indifference relation (=) 
3. DM is unable to compare the two alternatives – incomparability relation (<>) 

For any (a, b) , we classify: 2A∈
 ( ) ( ) baba >⇔>∈,      DM prefers a to b ; 
( ) ( ) baba =⇔=∈,       a to b is indifferent to DM 
( ) ( ) baba <>⇔<>∈,  DM is unable to compare a and b. 
A preference structure on A is a triplet { ( ) ( ) ( )<>=> ,, } 
The binary relation ( ) ( ) ( )=∨>=≥  is called large preference relation of a given preference structure 

{ }.  ( ) ( ) ( )<>=> ,,
The set of all possible binary relations generated by two primary relations  (large 

preference relations) is a Boolean lattice given in the following figure: 
( ) ( ){ ≥≤=Ω , }
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( )= ( )< ( )> ( )<>

( )≤ ( )≥ ( )⇔ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
>
< ( )≥¬ ( )≤¬

( )<>¬ ( )>¬ ( )<¬ ( )=¬

  
Fig. 1: Symbolic level: Boolean lattice generated by primary relations:  ( ) ( ){ }≥≤=Ω ,

Atomic Interpolative relations as functions of primary relations 
 

( )( ) ( ) ( )( )( )
( )( ) ( ) ( )( )( )
( )( ) ( ) ( )( )( )
( )( ) ( ) ( )( )( ) .,,,,

,,,
,,,

,,,

Abababa
baba
baba

baba

∈≥¬∧≤¬=<>
≥∧≤¬=>
≥¬∧≤=<

≥∧≤==

 

Interpolative relations based as two atomic relations 
( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ),,,,

,,,,
bababa
bababa

=+>=≥
=+<=≤

 

 
( )( ) ( )( ) ( )( )

( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) .,,,,,

,,,,

,,,,

,,,

Ababababa
bababa

bababa

bababa

∈<>+>=≤¬
<>+<=≥¬

>+<=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
>
<

<>+==⇔

 

Interpolative relations based on three atomic relations 
( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( ) .,,,,,,

,,,,,
,,,,,
,,,,,

Abababababa
babababa
babababa
babababa

∈<>+>+<==¬
<>+>+==<¬
<>+<+==>¬
>+<+==<>¬

 

Universal Interpolative relation as function of atomic relations 
 

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) .,,,,,,,1 Ababababababa ∈<>+>+<+==  
Values (intensity) of atomic Interpolative relations as functions of intensity of primary relations 
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( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( ) ( )( )

,,
,,,,,1,

,,,,,
,,,,,

,,,,

Aba
bababababa

babababa
babababa

bababa

∈
≥⊗≤+≥−≤−=<>

≥⊗≤−≥=>
≥⊗≤−≤=<

≥⊗≤==

 

where, is an operator for generalized product [1].  ⊗
For different generalized product operators we have obtained the following results for Interpola-

tive atomic relations: 
Values (intensity) of atomic relations for min:=⊗  

( )( ) ( )( ) ( )( )( )
( )( ) ( )( ) ( )( ) ( )( )( )
( )( ) ( )( ) ( )( ) ( )( )( )
( )( ) ( )( ) ( )( ) ( )( ) ( )( )( )

.,
,,,,min,,1,

,,,,min,,
,,,,min,,

,,,,min,

Aba
bababababa

babababa
babababa

bababa

∈
≥≤+≥−≤−=<>

≥≤−≥=>
≥≤−≤=<

≥≤==

 

Values (intensity) of atomic relations for *:=⊗  
( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( ) ( )( )

.,
,,,,,1,

,,,,,
,,,,,

,,,,

Aba
bababababa

babababa
babababa

bababa

∈
≥∗≤+≥−≤−=<>

≥∗≤−≥=>
≥∗≤−≤=<

≥∗≤==

 

    Values (intensity) of atomic relations for ( )0,1max: −+=⊗ baba  
( )( ) ( )( ) ( )( )( )
( )( ) ( )( ) ( )( ) ( )( )( ),0,1,,max,,

,0,1,,max,
−≥+≤−≤=<

−≥+≤==
babababa

bababa
 

( )( ) ( )( ) ( )( ) ( )( )( )
( )( ) ( )( ) ( )( ) ( )( ) ( )( )( )

.,
0,1,,max,,1,

,0,1,,max,,

Aba
bababababa

babababa

∈
−≥+≤+≥−≤−=<>

−≥+≤−≥=>
 

All results (a. b. and c.) correspond to known results for fuzzy preference structures [3] but cru-
cially new is the fact that these results are direct generalizations of classical result, contrary to the [2]. 

The values of all other relations for all Aba ∈,  generated by two primary relations ( ) ( ){ }≥≤=Ω ,  as 
the function of intensities of primary relations can be generalized in the following way too: 

( )( ) ( )( ) ( )( ) ( )( ) ( )( )

( ) ( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( )
( )( ) ( )( ) .,,,1,

,,1,

,,,2,,,

,,,2,,1,

Abababa
baba

bababababa

bababababa

∈≤−=≤¬
≥−=≥¬

≥⊗≤−≥+≤=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
>
<

≥⊗≤+≥−≤−=⇔
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Fig. 2: Valued level: Boolean lattice of relational functions based on e( ) and e( ) 

4   Conclusions 

Interpolative Boolean algebra is a MV realization of finite Boolean algebra. All axioms and all laws 
of Boolean algebra are preserved in a MV case. Generalized preference structures as well as generali-
zation of all binary relations generated by relations “less or equal to” and “more or equal to” are ob-
tained from a classical result straightaway.  
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1 Motivation

In decision theory the evaluation of sets of criteria by some individual can be modelled by a normal-
ized, monotone set function , i.e., some function m : A → [0,1] with A ⊆ 2X for some universe X
which fulfills m( /0) = 0, m(X) = 1 and for all A,B ∈ A : A⊆ B⇒ m(A)≤ m(B). Moreover, so called
decomposable measures have been introduced in [4, 17] for the representation of the importance of a
group of criteria by generalizing the additive structure of probability measures. Such a decomposable
measure m additionally fulfils

A∩B = /0 ⇒ m(A∪B) = S(m(A),m(B)) (1)

for all A,B ∈ A and some binary function S on [0,1]. Note that for some finite X and due to the
property of decomposability it is enough to know the measure of every singleton s ∈ X in order to
compute the measure of any A ∈ A . Having in mind that X might be finite and A = 2X it is natural,
even if not compulsory, to assume that S is associative, commutative and non-decreasing in each
argument. Moreover, due to the normalization of m and its decomposability, 0 is a neutral element of
S such that S is t-conorm and m a so-called S-measure.

When representing the opinion of a group of n individuals, whose evaluations are expressed by
some Si-measures mi, a consensus function is needed which maps all these measures to another S-
measure m representing the opinion of the group. We assume that the aggregation of the group opinion
just depends on the individuals’ opinions, such that the group’s opinion can be computed by

m(A) = A(m1(A), . . . ,mn(A))

for all A∈A with A some aggregation operator. Note that the choice of an aggregation operator is rea-
sonable since its monotonicity and boundary conditions guarantee the preservation of the monotonic-
ity and normalization of the measures involved. Clearly, the admissibility of aggregation operators
depends on the decomposability of the measures being aggregated as well as of the aggregated mea-
sure itself. Note that the question of appropriate consensus functions has already been investigated
for continuous Archimedean t-conorms as well as the maximum in, e.g., [3, 5, 6]. The solutions are
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related to unary functions fulfilling a generalized Cauchy equation w.r.t. the t-conorms involved (for
more details on such functions, see, e.g., [1, 6]).

Additionally to these aspects, investigations of measures on bipolar scales for decision making
have become rather popular during the last years (see, e.g., [2, 8–13] or for earlier investigations also,
e.g., [16]). Most often the bipolar scale is assumed to be [−1,1] whereas the explicit range of the scale
is of minor importance. Most relevant is that the level of neutrality lies within this interval, usually 0
on [−1,1], and as such separates the scale into two parts — the positive and the negative one.

Note that different approaches for the treatment of evaluations on bipolar scales can be distin-
guished, depending on whether the (unipolar) positive and negative scales are kept separatly or make
up a single bipolar scale:

The simplest such setting is when the universe X can be partitioned into a positive, negative and
neutral part, i.e., X = X+ ∪X0 ∪X− and each A ⊆ X is viewed as A+ ∪A0 ∪A−. The evaluation of
a set A is done by a measure of positiveness m+ on A+ and a measure of negativeness m− on A−.
The set functions m+,m− : X → [0,1] fulfil monotonicity conditions w.r.t. set inclusion and the usual
limit conditions. A property of neutrality invariance expresses that X0 does not play any role in the
preference representation, so that the evaluation of A is expressed by the pair (m+(A+),m−(A−)) of
numbers on unipolar scales revealing its positive and negative information.

Dubois and Fargier [2] take a more qualitative view on this approach, where the chosen measure
fulfills m+ = m− and is a possibility measure, and they consider the partial order relation obtained
from the separate comparison of the positive and negative parts. Moreover, such a relation has to
fulfill additional monotonicity and limit conditions as well as neutrality invariance and unanimity.

In the second approach, normalized bi-capacities have been introduced (see [7, 8]) as functions
v : Q (X)→ [−1,1] fulfilling

(i) v( /0, /0) = 0,
(ii) A⊆ B implies that v(A,C)≤ v(B,C) and v(C,A)≥ v(C,B) for all C ∈ X \B,

(iii) v(X , /0) =−1, v( /0,X) = 1

with Q (X) = {(A,B) ∈ 2X × 2X | A ∩ B = /0} the set of all pairs of disjoint subsets of some fi-
nite universe X . Note that bi-capacities can be interpreted as evaluations of ternary alternatives on
a bipolar scale. Further note that (A+,A−) as introduced before is an element of Q (X) such that
v(A+,A−) can be interpreted as a combination of two functions v+(A+) and v−(A−) of the previous
approaches leading to a value on a bipolar scale. For example, the cumulative prospect theory of Tver-
sky and Kahneman [16] considers the difference of two measures m+,m− for such a combination, i.e.,
v(A+,A−) = m+(A+)−m−(A−). Lexicographic refinements of the proposals of Dubois and Fargier
prove to be of that form [2].

Finally, bipolar capacities [12, 13] act on Q (X) but introduce a measure of positiveness and a
measure of negativeness, i.e., bipolar capacities are functions c : Q (X)→ [0,1]2 fulfilling analogous
properties as bi-capacities but revealing positive and negative information as a pair of numbers instead
of a number on a bipolar scale. All three approaches have a distinction between positive and negative
sets in common and reflect that neutrality on the input side should correspond to the neutrality level
on the output side.

Supposing now that several individuals express their evaluation of events w.r.t. some bipolar scale
the determination of a group’s opinion leads naturally again to the question of consensus, of consensus
in the bipolar case. Moreover, we will also focus on decomposability of bipolar measures, particularly
on decomposable bi-capacities as introduced in [15] and will therefore restrict our considerations in
the sequel mainly on bi-capacities. We will now briefly recall the consensus of bipolar measures in
general and the concept of decomposability in the bipolar case in order to introduce the necessary
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basics for a discussion and presentation of results for the consensus of decomposable measures in the
bipolar scale as it is intended for the presentation at the seminar.

2 Consensus of bipolar measures

As in the unipolar case we might assume that the group’s opinion on some event A∈A just depends on
the evaluations by all its members (independence of irrelevant alternatives). Further the monotonicity
of the bi-capacities involved as well as the normalization conditions and the neutral element should
be preserved. Special and appropriate aggregation operators on [−1,1], namely bipolar aggregation
operators, have already been introduced in [14].

Definition 1. An arbitrary mapping B :
S

n∈N [−1,1]n → [−1,1] is called bipolar aggregation opera-
tor if it fulfills the following properties for arbitrary n ∈ B ([14])

(i) B(x1, . . . ,xn)≤ B(y1, . . . ,yn) whenever xi ≤ yi for all i ∈ {1, . . . ,n},
(ii) B(x) = x for all x ∈ [−1,1],

(iii) B(d, . . . ,d) = d for all d ∈ {−1,0,1}.

Bipolar aggregation operators are general aggregation operators on [−1,1] and possess the additional
property that not only the boundaries of the interval are idempotent elements but also the middle
element of the bipolar scale, namely 0. As such they guarantee that the function v : Q (X)→ [−1,1]
defined by

v(A,B) = B(v1(A,B), . . . ,vn(A,B))

is again a bi-capacity for arbitrary bi-capacities vi : Q (X)→ [−1,1], with i ∈ {1, . . . ,n}, n ∈ B.
As a consequence any idempotent bipolar aggregation operator as, e.g., minimum, maximum,

arithmetic mean, or weighted means, is an appropriate candidate for aggregating bi-capacities.

3 Decomposability in the bipolar case

Turning back to unipolar measures m : A → [0,1] note that decomposability w.r.t. some t-conormis
equivalent to the fulfillment of the valuation property, i.e.

S(m(A∩B),m(A∪B)) = S(m(A),m(B)) (2)

for all A,B ∈ A , a property which takes all lattice operations on 2X into account. Based on these con-
sideration a concept for decomposability has been introduced for bi-capacities in [15]. Note that the
operation w.r.t. which the bi-capacity is decomposable has to preserve the level of neutrality namely
0 and the monotonicity conditions. Further associativity has been assumed for the operation such that
uninorms U on some interval I, i.e., symmetric, associative, non-decreasing operations on I ⊇ [−1,1]
with neutral element 0 are the appropriate candidates for describing the decomposition in case of
bi-capacities.

Definition 2. Consider some interval I⊇ [−1,1] and some uninorm U : I2 → I with neutral element 0.
A bi-capacity v : Q (X)→ [−1,1] is called decomposable if for all (A,B),(C,D)∈Q (X) the following
equation is fulfilled

U(v(A,B),v(C,D)) = U(v(A∪C,B∩D),v(A∩C,B∪D)). (3)
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Note that Eq. (3) exactly expresses the valuation property for the lattice Q (X) w.r.t. the uninorm U .
As a consequence of the definition, a U-decomposable bi-capacity
v : Q (X)→ [−1,1] can be constructed by fixing the values of v({i}, /0) and v( /0,{ j}) for all i, j ∈ X
and as such the complexity of determining v can again be reduced. Additionally conditions on U and
v are implied in order for keeping the normalization conditions of v.

As already indicated before, in the presentation, we will also present how the consensus with
U-decomposable bi-capacities can be modelled without losing the decomposability. We will further
discuss how appropriate consensus functions can be constructed depending on the uninorm involved
and will present some examples for particular uninorms.
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We present a framework for fuzzy interaction values.
Let Xm = {1,2, ...,m} be a set of players where the players belong to coalitions with gradual degrees,
so that fuzzy coalitions can be described by fuzzy subsets of Xm.
Moreover, for m,s ∈ N,s ≤ m, let V s

m be the vector space of all functions f : [0,1]m → R for which
Ds f is continuous on the diagonal
{tξXm : t ∈ [0,1]} and satisfies f (0) = 0 (here ξA is the characteristic function of A,A ⊂ Xm, so that
tξXm ≡ t(1, ...,1)≡ tm).
Together with the scalar product

( f ,g)m,s =
Z 1

0
< Ds f (tξXm) , Dsg(tξXm) > dt =

=
m

∑
i1=1

...
m

∑
is=1

Z 1

0
Di1 ...Dis f (tξXm) Di1 ...Disg(tξXm) dt ,

V s
m becomes a pre-Hilbert space.

If Ls(Rm,R) is the set of all s-linear, continuous mappings from Rm into R and if ei (or em
i , if it is

needed) denotes the i-th standard basis vector of Rm then we call any linear and continuous function

ϕ
s
m : V s

m → Ls(Rm,R) , m,s ∈ N , s ≤ m

fuzzy interaction value. The real numbers

(ϕs
m f ) (ei1 , ...,eis)

are called fuzzy interaction indices of S = {i1, ..., is}(note that repetitions of indices are allowed) and
will be interpreted as the s-dimensional power (for example multigain or multiloss) of S .
In analogy to results from the theory of semi values it can be expected that fuzzy interaction values
behave like higher dimensional differential operators of the type

ϕ
s
m f =

Z 1

0
Ds f (tξXm)g(t)dt , f ∈V s

m

where g is a nonnegative L∞(0,1) function with
R 1

0 g(t)dt = 1. Using that f ∈ V s
m and Ds f : Rm →

Ls(Rm,R) we distinguish in

(ϕs
m f )(ei1 , ...,eis) =

Z 1

0
Ds f (tm)(ei1 , ...,eis)g(t)dt =

Z 1

0
Di1 ...Dis f (tm)g(t)dt

between the “ classical case “ where all i1, ..., is are different (and form a crisp set S = {i1, ..., is} with
|S|= s) and the “ multiset case “ where the number of repetitions of at least one iσ,1≤ σ≤ s is greater
than 1.
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From now on we here restrict to the classical case and present
characterizations of the

fuzzy Shapley interaction value Sh−ϕ
s
m f =

Z 1

0
Ds f (tm)dt

fuzzy chain interaction value C−ϕ
s
m f =

Z 1

0
Ds f (tm)sts−1 dt and the

fuzzy Banzhaf interaction value B−ϕ
s
m f = Ds f (cm) =

Z 1

0
Ds f (cm)dt,

where c ∈ [0,1] is a constant and f ∈V s
M.

In each case we need 3 axioms, which we are going to describe.
To formulate these axioms we need a generalized “ dual mapping “ : To each s ∈N and β ∈ L(Rm,Rk)
we define β?s : Ls(Rk,R)→ Ls(Rm,R) by

(β?s T )(v1, ...,vs) := T (β(v1), ...,β(vs))

for all T ∈ Ls(Rk,R) and v1, ...,vs ∈ Rm.
After this more technical remark, we want to “ justify “ our axioms. Thus these axioms must be in
some respect a mirror of the structure in V s

m. If we assume that ϕs
m is linear and continuous then by the

Stone-Weierstrass theorem f ∈ ϕs
m can be uniformly approximated by polynomials in m variables in

such a manner that also the derivatives of f up to order s can be approximated by the corresponding
derivatives of the polynomials. Thus we may assume w.l.o.g. that f ∈ ϕs

m has the form f (x1, ...,xm) =
xk1

1 · · · xkm
m . We rewrite f as f (x1, ...,xm) = x1 · · · x1︸ ︷︷ ︸

k1

· · ·xm · · · xm︸ ︷︷ ︸
km

=

fk(x1, ...,x1, ...,xm, ...,xm) = ( fk ◦BP)((x1, ...,xm) where k = k1 + · · ·+ km, where fk is a symmetric
function (in all its variables) and where BP is a (k,m)-matrix which belongs to a natural partition P of
“ k players into m subsets A j,1≤ j ≤m of players with |A j|= k j,1≤ j ≤m “. The matrix BP = (bi j)
is given by

bi j =
{

1 i ∈ A j

0 i /∈ A j
1 ≤ i ≤ k,1 ≤ j ≤ m.

Now, the symmetry axiom says that the fuzzy interaction index of the crisp set S = {i1, ..., is} ⊂ Xm is
independent upon the order of the players within S, ore more exactly : To each permutation π : Xm →
Xm we associate the linear map απ : Rm → Rm, represented by the matrix Aπ = (δπ−1(i), j)) ,
1 ≤ i, j ≤ m. The symmetry axiom requires that

ϕ
s
m( f ◦απ) = α

?s
π (ϕs

m ◦ f ) (1)

for each symmetric f ∈ V s
m , s ≤ m (which means - using the above remark - that f (x1, ...,xm) =

x1 · · · xm).
Concerning the partition axiom, we associate to each partition P = {A1, ...,Am} of subsets of players
of a set Xk of k players a linear mapping βP given by the above matrix BP. Then the partition axiom
states that

ϕ
s
m( f ◦βP) = β

?s
P (ϕs

k ◦ f ) (2)

for all f ∈V s
k , s ≤ m ≤ k. This means that for all j1, ..., js ∈ {1, ...,m}

ϕ
s
m( f ◦βP)(em

j1 , ...,e
m
jm) = ∑

i1∈A j1

... ∑
is∈A js

(ϕs
k ◦ f )(ek

i1 , ...,e
k
is)
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and gives the natural connection of s-dimensional powers in games of different sizes (if f ∈ V s
k then

f ◦βP ∈V s
m).

The third axiom is an efficiency axiom for all three fuzzy interaction indices. We here treat only the
case of the fuzzy Shapley interaction indices. Let S = {i1, ...is} be a fixed crisp set of players in Xm.
We consider the coalition S\{is} and the opposite coalition Xm \ (S\{is}). Then the efficiency axiom
requires

∑
jk∈Xm\(S\{is})

(ϕs
m f )(ei1 , ...,eis−1 , jk) = f (1m), (3)

that is, the sum of the shares of players from Xm \ (S\{is}) which they are willing to invest for partic-
ipation in S is the value of the grand coalition.
In the two other cases we have also very simple expressions for the efficiency axiom, and we can
prove the following result.

Theorem. Let S = {i1, ..., is} be a crisp set with |S| = s , let m ∈ N,s ≤ m, and let (ϕs
m) be a se-

quence of linear and continuous fuzzy interaction values. Then Sh−ϕs
m(i1, ..., is) (and analogously,

C−ϕs
m(i1, ..., is) and B−ϕs

m(i1, ..., is)) is the only sequence satisfying the axioms of symmetry, parti-
tion and efficiency.

Let us add some remarks.

(1) The 3 results differ only in the different form of the efficiency axiom, but the proofs are nearly the
same. Moreover the proofs are not long.

(2) If we add one more (complicated) axiom (which corresponds to the multiset case) then we can
even give characterizations of the three different fuzzy interaction values (and not only of the fuzzy
interaction indices).

(3) In the special case of the multilinear extension fv ∈V s
m of a game

v : 2Xm → R,v( /0) = 0, which is given by the two expressions

fv(x) = fv(x1, ...,xn) = ∑
T⊂Xm

av(T )∏
i∈T

xi = ∑
T⊂Xm

v(T )∏
i∈T

xi ∏
i/∈T

(1− xi) (4)

(here av(T ) = ∑L⊂T (−1)|T |−|L|v(L) , T ⊂ Xm is the Möbius transform of v),
we get - if S = {i1, ..., is} is a crisp set -

Di1 ...Dis fv(x) = ∑
T⊃S

av(T ) ∏
i∈T\S

xi = ∑
T⊂Xm\S

δSv(T ∪S) ∏
j∈T

x j ∏
j/∈T∪S

(1− x j)

and thus

(ϕs
m fv) (ei1 , ...,eis) = ∑

T⊃S
av(T )

Z 1

0
xt−sg(x)dx︸ ︷︷ ︸

βs
t

= (5)

= ∑
T⊂Xm\S

δSv(T ∪S)
Z 1

0
xt(1− x)m−(t+s)g(x)dx︸ ︷︷ ︸

ps
t (m)

, (6)
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where δSv is the usual |S|-th derivative of v, that is
δSv(T ∪ S) = ∑L⊂S(−1)|S|−|L|v(L∪ T ). Thus we have two possibilities to characterize the usual in-
teraction indices by using the “βs

t -version” or the “ps
t (m)-version”. The “βs

t -version” seems to have
advantages, at first, βs

t is not dependent upon m (in comparison with ps
t (m)), and secondly, using the

usual basis representation

v = ∑
T⊂Xm

av(T )vT (7)

(where vT (A) = 1 if T ⊂ A and vT (A) = 0 otherwise) (5) goes over into

(ϕs
m fv) (ei1 , ...,eis) = ∑

T⊃S
av(T )(ϕs

m fvT ) (ei1 , ...,eis). (8)

Thus axioms for fuzzy interaction indices can be used as axioms for interaction indices. Note that
because of the first representation of fv in (4), fvT = ∏i∈T xi is symmetric and thus the partition axiom
gives no additional information and must be replaced by another axiom. In this way we can give new
characterizations for the Shapley interaction index, the chain interaction index, and the (generalized)
Banzhaf interaction index (including a characterization of the Möbius transform and the co-Möbius
transform by putting c = 0 and c = 1, respectively in the fuzzy Banzhaf interaction value).

(4) Using the considerations in (3) it is possible to compare the existing different characterizations for
interaction indices.

(5) It seems that the above results can be generalized to fuzzy Aumann-Shapley values on more gen-
eral spaces (in the sense of the results, given in the book “Triangular norm-based measures and Games
with Fuzzy Coalitions” of Butnariu and Klement).
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The practical motivations for the introduction of uninorms were the applications from multicriteria 
decision making, where the aggregation is one of the key issues. Some alternatives are evaluated 
from several points of view. Each evaluation is a number from the unit interval. If the level of the 
satisfaction is e∈]0,1[, than if all criteria are satisfied to at least e-extent then we would like to assign 
a high aggregated value to this alternative. The opposite of that is if all evaluations are below e then 
we would like to assign a low aggregated value to this alternative. But if there are evaluations below 
and above e, an aggregated value ought to be assigned somewhere in between. Such situations can be 
modeled by uninorms [1] and distance-based operators [12]. 

The structure and the representation of uninorms and the mathematical background of uninorm-
based fuzzy applications where studied extensively in many sources [2], [3]. Applying the uninorm 
operators and distance-based operators with the changeable parameter e in fuzzy approximate 
reasoning systems is born in mind that the underlying notions of soft-computing systems are 
flexibility and the human mind. The choice of the fuzzy environment must support the efficiency of 
the system, it must comply to the real world. This is more important than trying to fit the real world 
into the inflexible models. [4], [5], [6].  

Furthermore, the applications of the tree-structure, the hierarchical fuzzy control systems in 
decision-making in a given moment enables us to choose the most efficient system parameters, for 
example  and environment factors and by this achieve the desired state as soon as possible [7].   

Parameterized approximate reasoning with distance-based uninorms 

Generally, the fundamental of the decision making in fuzzy based real systems is the approximate 
reasoning, which is a rule-based system. Knowledge representation in a rule-based system is done by 
means of IF…THEN rules. Furthermore, approximate reasoning systems allow fuzzy inputs, fuzzy 
antecedents and fuzzy consequents. The computational rule of inference plays a curricular role in 
fuzzy control, but also in approximate reasoning [8]. This theory provides a powerful framework for 
reasoning in the face of imprecise and uncertain information between the input and the output space 
(for a fuzzy input and fuzzy output, by means of fuzzy relations) [9], [10]. 

The strict modus ponens in those systems, (where the rule premise is fuzzy set A and the actual 
system input is A’ are membership functions on the universe X, the rule consequence is B on the 
universe Y) is replaced with the expectation: let be B’⊃B, where B’ is a cut of B, that is the 
Generalized Modus Ponens (GMP) Usually the general rule consequence for one rule from the i-th 
rule base system is obtained by 

( ) ( ) ( )( )( )( )yBxAOPDisxAOPDis(y)B
Xx

,2,'1sup'
∈

= , YyXx ∈∈ ,  (1)

The connections OPDis1 and OPDis2 are generally defined, and they can be some type of fuzzy 
disjunctive operators [11]. The membership function of the consequence in the i-th  rule Bi’ is 
defined by 
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Xx

i
∈

= )

( )

 (2)

where OPDis is a fuzzy disjunctive operator. Using the operator properties, from the above 
expression follows 

( ) ( )( ) ⎟
⎠

⎞
⎜
⎝

⎛=
∈

yB,xA,x'AOPDissupOPDis(y)'B ii
Xx

i ,  
(3)

Generally speaking, the consequence (rule output) is given with a fuzzy set B’(y), which is derived 
from rule consequence B(y), as a cut of the B(y). This cut,  

( ) ( )( )xAxAOPDisDOF i
Xx

i ,'sup
∈

=  (4)

 is the generalized degree of firing level of the rule, considering actual rule base input A’(x), and 
usually depends on the covering over A(x) and A’(x). Rule base output  is an aggregation of all 
rule consequences B

outB'

i’(y) from the rule base. As aggregation operator a conjunctive fuzzy operator is 
usually used. 

( ) ( ) ( ) ( ) ( ) .''''' 121 ))))y, By.,OPConS(B,OPCon(...y,OPCon(By OPCon(By B n-nout =  (5)

If in the applications a crisp FLC output  is needed, it is constructed as a crisp value calculated 
with a defuzzification method from rule base output.  

outy

It can be conclude, that in decision making approximate reasoning the (OPDis, OPCon) pair of 
operators is used.  

The operators OPDis and OPCon can be chosen from the group of distance based operators, which 
contains uninorms too [12], [18]. Considering the structure of distance based operators, namely that 
they are constructed by the min and max, it was worth trying to move away from the strictly applied 
max (disjunctive) and min (conjunctive) operator pair in approximate reasoning. Therefore, in the 
simulation systems and applications different operators from the group of distance based operators 
were applied as disjunctive and conjunctive. Moreover, the distance based operators are 
parameterized by the parameter e, therefore the program, which performs the task of decision making 
in the simulation system, has global, optional, variables (OPDis, OPCon, e), where Opdis is the 
operator applied by GMP, and the OPCon is the aggregation operator for the calculation of the .  
The neutral element of the OPDis operator is parameter e, and the neutral element of the OPCon 
operator is parameter 1-e. Details about the simulation results can be found in [13], [14]. Hence and 
because by the simulation the triple (OPDis, OPCon, e) can be chosen by even running of the 
simulation system, it enables the parameters to be set at every running of the system in order to 
achieve greater efficiency.  

outB'

In reality the other elements of the system (gains, product elements) are also system dependent and 
changeable and it can be expected that the operators used in decision making can be tuned to these 
elements for greater efficiency. It could be implemented in a fuzzy rule system which is of such type:  

IF the system elements(gains,…)   ARE … ,  
THEN the chosen triple of operators and its parameters IS (OPDis, OPCon, e) . 

The system presented above, from the input to the output will be the lower level of the hierarchical 
system, while on the upper level decisions will be made about the choice of operators in decision 
making system depending on the temporary state of other system elements, (gains, etc.).  
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Further possibilities: similarity measures based and residuum based approximate 
reasoning with distance-based operators 

In several decision making systems, for example in system control, one would intuitively expect: to 
make the powerful coincidence between fuzzy sets stronger, and the weak coincidence even weaker. 
The distance-based operators group satisfy these properties, but the covering over A(x) and A’(x) are 
not really reflected by the sup of the membership function of the mine

max(Ai(x),A’(x)), see (4), 
therefore a Degree of Coincidence (Doc) for those fuzzy sets has been initiated. This is actually the 
proportion of area under membership function of the distance-based intersection of those fuzzy sets, 
and the area under membership function of their union (using max as the fuzzy union). 

( ) ( )( ) ( ) ( )( )∫∫=
X

i
X

iei dxxAxAdxxAxADoc ',max',minmax  (6)

This definition has two advantages: it consider the width of coincidence of Ai and A’, and not only 
the ''height'', the sup, and the rule output is weighted with a measure of coincidence of Ai and A’ in 
each rule. 

Based on definition of similarity measures from [14] and [15], we can give a generalization of this 
reason. The Jackard measure for fuzzy sets:   
 . 

( ) ( )( ) ( ) ( )( )∫∫ −=
X

AiAe
X

AiAeR dxxxdxxxiDoc '
max
1'

min
5 ,max,max)( μμμμ  (7)

The modified cardinality measure for fuzzy sets: 

( ) ( )( )
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∫

−−−

=

X
AeAeAe

X
AiAe

R
dxxxx

dxxx

iDoc
,...max,max,max
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3
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1

'
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μμμ
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(8)

The rule output can be the cut of the rule consequence, see (3), in this case  

( ) ( )( ) { }65 ,)(,),(min RRsimilarityisimilarityi DocDociDocyBiDocyB ∈=′  (9)

Furthermore, in [17] for the conjunctive left-continuous idempotent uninorm   with the 
unary operator , its residual implicator , and the residuum-based approximate 

reasoning with this distance based operator is given.   

min
5.0max

( ) xxg −= 1 min
5.0max

Imp

Currently these methods are used in medical, urological diagnostical systems, moreover, there are 
environmental studies taking place with the application of the given uninorm-based approximate 
reasoning methods.  
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Košice, Slovak Republic

In this work we discuss different formal models dealing with the same task on the same data.
A user U is looking for a resource id ∈R best fitting his/her preferences. For a sample set R0 ⊆R

we have an ordinal classification CU : R0 → [0,1] of user preferences. This problem is important for
web applications [2, 1]. With the problem of finding best (top k) answers we dealt in [4, 7, 6]. Here,
the preference value structure can be an arbitrary ordinal scale (linear, partially ordered, . . .).

To learn user preferences and extend them to the whole R we use the information on resource
attribute values, typically stored in a database

D(id) = 〈aid
1 , . . . ,aid

n 〉 ∈ D1× . . .×Dn

Now the task is to learn a function AU : D1× . . .×Dn → [0,1] such that AU(D(id)) = CU(id).
In a fuzzy setting we can find fuzzy sets

f j
U : D j → [0,1]

describing user preference on values from j-th attribute domain D j and a fuzzy aggregation function

@U : [0,1]n → [0,1]

such that
@U( f 1

U(aid
1 ), . . . , f n

U(aid
n )) = CU(id)

This has been studied for generalized annotated programs in [8]. In a bayesian setting we assume
the data attribute j is a random variable over the domain D j. Each resource represents a sample from
an unknown joint distribution over D1 × . . .×Dn. We can estimate this distribution by learning a
Bayesian network.

We can try to find dependences between CU (a joint distribution) and distributions of attributes.
In [7] we tackled this problem extending results of [3] on Bayesian logic programs to many valued

case.
In this work we follow two goals. First, we compare learning of fuzzy aggregation function [8]

and induction of Bayesian network [5].
Second, we compare direct translation from GAP to BLP [7] with the composition of a translation

from GAP to classical logic programs (LP) and the translation from LP to BLP introduced by [3].
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8. P. Vojtáš, T. Horváth, S. Krajči, R. Lencses. An ILP model for a monotone graded classification problem. Kybernetika
40,3 (2004) 317-332

129



Dominance of Continuous Triangular Norms
and its Transitivity

Peter Sarkoci∗

Department of Mathematics, IAEIM

Slovak University of Technology, Bratislava, Slovakia

E-mail: peter.sarkoci@stuba.sk

The notion of dominance was originally introduced within the theory of prob-
abilistic metric spaces [5, 6]; in particular dominance becomes important when
constructing cartesian products of probabilistic metric spaces. We say that a
t-norm T1 dominates a t-norm T2 (T1 � T2 in symbols) if for all x, y, u, v ∈ [0, 1]
we have

T1(T2(x, y), T2(u, v)) ≥ T2(T1(x, u), T1(y, v)).

Thanks to associativity and commutativity any t-norm dominates itself; there-
fore dominance of t-norms is a reflexive relation. Moreover from the commuta-
tivity together with a fact that that all t-norms have common neutral element it
follows that the dominance is a refinement of a standard point-wise ordering of
t-norms – from T1 � T2 follows T1 ≥ T2. Thus dominance of t-norms is an an-
tisymmetric relation. The old open problem was whether dominance of t-norms
is a transitive relation (Problem 12.11.3 in [5, 6]). If it were true dominance
would be a partial order.

In our talk we will show that the dominance is not transitive even on contin-
uous t-norms; we will provide an infinitude of counterexamples. The simplest
one, perhaps, is this one:

(〈0, 1/2, TL〉) � (〈0, 1/2, TL〉 , 〈1/2, 1, TL〉)
(〈0, 1/2, TL〉 , 〈1/2, 1, TL〉) � TL

(〈0, 1/2, TL〉) 6� TL

In our proofs we refer to results from [1–4].
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