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Abstract

The need for a retrieval based not on the attribute val-
ues but on the very data content has recently led to rise of
the metric-based similarity search. The computational com-
plexity of such a retrieval and large volumes of processed
data call for distributed processing which allows to achieve
scalability. In this paper, we propose M-Chord, a dis-
tributed data structure for metric-based similarity search.
The structure takes advantage of the idea of a vector index
method iDistance in order to transform the issue of simi-
larity searching into the problem of interval search in one
dimension. The proposed peer-to-peer organization, based
on the Chord protocol, distributes the storage space and
parallelizes the execution of similarity queries. Promising
features of the structure are validated by experiments on the
prototype implementation and two real-life datasets.

1. Introduction

The field of similarity data retrieval has recently made a
rapid progress. Generally, the objective of this search mech-
anism is to retrieve all indexed data that are  similar with
a given query object  a digital image, a text document, etc.

One way towards the similarity search is adapting the
traditional attribute-based retrieval which usually leads to
complex queries in multi-dimensional vector spaces. The
standard index structures that are able to process such
queries, e.g. kd-tree or quadtree, seem to become ineffi-
cient for high number of dimensions that are common for
current data. Furthermore, data types that do not use the
Euclidian distance to measure similarity (e.g., digital im-
ages compared by the Earth Moover’s Distance) and some
special data types (e.g., texts or DNA sequences) cannot be
indexed efficiently by vector-based data structures at all.

These research challenges have led to the development
of the area of metric-based similarity search. This approach
considers the data space as a metric space  dataset together
with a distance function applicable to every pair of objects.
The queries in this model are defined by a sample query ob-

ject and a constraint on the required proximity to the query
object. Many principles and index structures have been pro-
posed in this field, summarized in several comprehensive
surveys [14, 21].

In real-life applications, the distance function is typically
expensive to compute. Unfortunately, even with sophisti-
cated index structures [9, 10] the similarity search is expen-
sive and the increase of the costs is linear with respect to the
size of the dataset indexed. Since the volumes of managed
data become still larger, there is an evident need for dis-
tributed processing that brings two benefits  distribution
of the storage and parallelization of the time-consuming
query execution. Most of the recent effort in the field of
distributed data structures has focused on the vector-based
approach [20, 8, 12, 2, 6, 1]. As far as we know, the only
metric-based distributed structure published are the GHT
index [4, 3] and, very recently, MCAN [11].

In this paper, we introduce a new distributed data struc-
ture called M-Chord. It maps the metric space into one-
dimensional domain using a generalized and adapted vari-
ant of iDistance [15]  a vector index method for nearest-
neighbors search. In this way, M-Chord reduces the issue
of similarity search to the interval search problem. The data
is divided among the nodes of the structure and the Peer-to-
Peer protocol Chord [17] is utilized for intra-system naviga-
tion. Finally, the similarity search algorithms are designed
for the proposed architecture.

The paper is organized as follows. Section 2 reminds the
theoretical background of the metric-based searching and
describes the iDistance and Chord techniques. In Section 3,
we provide both the ideas behind and the architecture of the
proposed structure. Section 4 presents results of the perfor-
mance trials and the paper concludes with related work and
a future work outline in Sections 5 and 6.

2. Preliminaries

In this section, we shortly remind basic concepts of the
similarity searching and indexing in metric spaces and then
mention two techniques important for this work  the iDis-
tance and the Chord.
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Mathematically, metric space is a pair ,
where is the domain of objects and is the total distance
function satisfying the following condi-
tions for all objects :

(non-negativity)
iff (identity)

(symmetry)
(triangle inequality)

Let us define two types of similarity queries [21] we that
focus on. Let be a finite set of indexed objects.
Definition 1: Given an object and a maximal search
radius , range query selects a set of in-
dexed objects: .

Definition 2: Given an object and an integer ,
-nearest neighbors query retrieves a set

.

The iDistance [15] is an index method for similarity
search in vector spaces. It partitions the data space into
clusters and selects a reference point for each cluster ,

. Every data object is assigned a one-dimensional
iDistance key according to the distance to its cluster’s ref-
erence object. Having a constant to separate individual
clusters, the iDistance key for an object is

(1)

Expecting that is large enough, all objects in cluster are
mapped to the interval  see Figure 1(a)
for the mapping visualization. The data is then stored in a
B -tree according to the iDistance keys.
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Figure 1. The principles of iDistance

Although the iDistance is primarily proposed as a
search method, the algorithm for queries is
quite straightforward. It searches separately those clusters
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Figure 2. The Chord structure

that possibly contain objects from the query range  these
are all clusters that satisfy

max-dist

where max-dist is the maximum distance between and
objects in cluster . Figure 1(b) shows the clusters influ-
enced by the query ( , ) and specifies more precisely
the space areas to be searched. Such an area within cluster

corresponds to the iDistance interval

(2)

So, several iDistance intervals are determined, distance
is evaluated for all objects from these intervals

and the query answer set is created as
.

The iDistance algorithm is based on repeti-
tive range queries with growing radius. Such a policy is not
very convenient for distributed environment and we propose
a different one (see below).

The Chord [17] is a P2P protocol providing the function-
ality of a Distributed Hash Table  an efficient localization
of the node that stores the data item corresponding to a given
search key. It is a message driven dynamic structure that is
able to adapt as nodes (cooperating computers) join or leave
the system.

Using consistent hashing, the protocol uniformly maps
the domain of search keys into the Chord domain of keys

. Every Chord node is assigned a key from
the same domain . The identifiers are ordered
in an identifier circle modulo , . Node

is  responsible for all keys from interval
(mod )  see Figure 2 for visualization.
Notation: For every key , let us denote
the node responsible for key .

Every node stores addresses of its predecessor and suc-
cessor on the identifier circle and, furthermore, it maintains
a routing table called the finger table with addresses of up



to other nodes [17]. Due to the uniformity of the Chord
domain distribution, the protocol preserves, with high prob-
ability, that:

in an -node system, the node responsible for a given
key is located via number of messages to
other nodes (number of hops);

the storage load of the nodes is balanced.

3. M-Chord

In this section, we describe basic ideas and architecture
of M-Chord  the proposed distributed data structure for
similarity searching in general metric spaces. The M-Chord
approach can be summarized as follows:

generalize the idea of iDistance to metric spaces and
map the dataset to a domain of keys;

divide the domain into intervals and let every
node store data with keys from one interval;

use the Chord routing mechanism for navigation;

design the and search algorithms;

provide an additional filtering mechanism to reduce the
computational cost of the query processing.

The rest of this section analyzes this approach in detail.

The iDistance algorithm partitions the data space and se-
lects a reference point in every partition. This approach is
applicable in vector spaces where the coordinate system can
be used for partitioning and the reference points may be se-
lected from the whole domain. In a general metric space
(without any knowledge about the specific dataset), the only
way to specify reference objects is by choosing them from
a given set of objects and only then the space can be par-
titioned  with respect to these objects.

In order to generalize iDistance to metric spaces, we first
choose a set of pivots from an a priori
given sample dataset . Then, the Voronoi-like par-
titioning [21] is used to divide the set of indexed objects
into clusters :

This modification has no impact on iDistance functionality.
While partitioning the data space, the distances

are computed for every object
. These values can be stored together with the object and

can be used at query time for further filtering. The triangle

inequality property of function implies the standard fil-
tering criterion for query [21]: Every object

may be excluded without evaluating if

(3)

This criterion is applied to reduce number of distance com-
putations at query-time.

Pivot selection Let us discuss the way in which the piv-
ots are selected. The proposed selection algorithm is gen-
eral and applicable to any metric dataset. Exploiting some
additional knowledge about the particular dataset, various
data-tailored methods can be developed.

Because the pivots are used for filtering, their selection
influences the performance of the search algorithm. So, the
main objective of the pivoting technique is to increase the
efficiency of the filtering criterion (3). We follow the ap-
proach described by Ch·avez et al. [7] which corresponds
with our requirements.

First, let us deduce a formula for comparing the  quality 
of two sets of pivots. For query and a set of
pivots , let us denote

The filtering condition (3) may be reformulated as

(4)

and the efficiency of the filtering grows with the growing
probability of (4). One way to increase this probability is to
find a set of pivots that maximizes the mean of distribution
of , . Let us denote the mean value .
So, we say that is a better set of pivots than

when:

(5)

The value of can be estimated on a sample set
. Having the comparison criterion (5), several actual tech-

niques for pivot selection can be defined. The proposed sys-
tem adopts the incremental selection technique [7].

If the dataset to be indexed is known a priori, the
pivot selection can be tailored directly for it. Otherwise, we
try to maximize the filtering efficiency on the whole domain

. This is possible when designing a specific real-life ap-
plication with a specific domain . If the distribution of the
sample strongly differed from the distribution of , the
pivot filtering efficiency would be damaged.

M-Chord domain Having the pivots selected and the data
space partitioned, we can use iDistance to map the dataset
into a one-dimensional domain and join this domain with



the Chord protocol. Since the Chord presumes a key space
of size , the range of the iDistance domain is  normal-
ized by an order-preserving function to a interval.
The iDistance formula (1) for an object ,
becomes an M-Chord key-assignment formula:

(6)

The transformation has another important purpose. In our
approach, every node takes over responsibility for a sub-
interval of the M-Chord domain. Such a partitioning should
follow the domain distribution to preserve balanced load of
the nodes. Further, the Chord protocol guarantees its effi-
ciency while nodes are distributed uniformly on the domain
circle. Therefore, the ideal transformation would map the
original domain on the interval uniformly.

Generally, the task is to find an order-preserving uniform
transformation (knowing the distribu-
tion of on a set ). This is a very well studied topic
and can be solved, for instance, by a piecewise-linear trans-
formation [13]. This method fixes the -values in several
selected points and the overall transformation is the linear
interpolation of these values.

The described construction works flawlessly only when
distribution of the set copies distribution of the indexed
data . It is impossible to reach this criterion fully in a
real-life application. But note that the imperfection of the
M-Chord domain uniformity can only slightly degrade the
distribution of the keys assigned to nodes and, thus, the rout-
ing efficiency (hop count). The storage load balance of the
nodes is addressed in other way (see Section 3.2) and is not
influenced by the domain distribution.

The M-Chord system constitutes a logical overlay over
any network of directly addressable nodes. The structure
consists of autonomous nodes that store data, can insert ob-
jects into the system, and retrieve them by executing simi-
larity queries. The nodes communicate via messages.

The logical topology of the network corresponds to the
structure of Chord. As explained above, the data objects are
assigned keys from the M-Chord domain according to (6).
The nodes are assigned keys from the same domain
in order to divide the data among the nodes. So, every node

contains:

Chord routing information  key , links to predeces-
sor and successor nodes and the finger table;

B -tree storage for the (mod ) interval.

Initialization phase The initialization proceeds on the
first node started and the determined settings are then used

in all nodes of the system. The initialization algorithm has
the following parameters:

sample set ;

number of pivots .

First, the pivots are selected from us-
ing the algorithm described in Section 3.1. Then, the iDis-
tance formula (1) is applied to determine the distribution
of function on and this information is used to find
the transformation . Both, the pivots and the function ,
are necessary for evaluation of the key-assignment
function (6).

When other than first node joins the system, it receives
this configuration from an already running node  we pre-
sume that the joining node learns about an existing node
through some external mechanism.

Nodes activation The first node of the system is automat-
ically assigned key and covers the whole M-Chord
domain . Other nodes are not assigned M-Chord
keys on the startup  they become non-active nodes at first.
There are several ways to maintain the pool of non-active
nodes, e.g., separated distributed peer-to-peer layer, central
(replicated) register, broadcast messages in LAN, etc. The
choice of a suitable solution is left to a specific implemen-
tation environment.

If there is an available non-active node then any ac-
tive node can invoke a split request. Generally, every node
may define its own criteria forcing split  these could be
reaching a storage capacity limit, heavy computational load
(either because of frequent M-Chord claims, demands of
other processes, or weak technical parameters), etc. The
splitting of node , responsible for interval ,
proceeds as follows:

determine a key : and as-
sign it to a non-active node ;

move data from the interval to and
follow the standard Chord join mechanism for .

Note that, due to the separation constant in the
formula (6), values , form the bound-
aries of particular clusters within the domain. If the
interval covers more than one cluster ( clus-
ters, ) then is selected as a cluster boundary so
that interval covers clusters. If interval

covers only one cluster (or its part) then
is set in order to split the storage of equally.

Insert Any node can initiate insert operation for an
object . First, node applies Formula 6 to cal-
culate key. Values are



obtained as a by-product and are carried along with from
now on.

If is non-active then the request is forwarded to
the node known from the startup. If is active then
the Chord protocol is followed to forward the request to

(node responsible for ). This
node stores into the B -tree storage according to the

key. See an example in Figure 3(a).
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Figure 3. The insert (a) and range search (b)

The query algorithm is usually the base
algorithm for more sophisticated similarity queries. The
M-Chord structure has been designed in such a way that
the algorithm may follow the iDistance pruning
idea. The node that initiates the query, , executes the
RANGESEARCH( ) algorithm with the following schema:

for each cluster , determine interval of
keys to be scanned:

send an INTERVALSEARCH( )
request to node responsible for the  midpoint of
interval : ;

wait for all responses and create the final answer set.

The INTERVALSEARCH( ) algorithm, executed on
the nodes, , has the following schema:

if is not responsible for the whole interval ,
forward the INTERVALSEARCH( ) request to the
predecessor and/or successor;

examine the locally stored objects and create the local
answer set ;
use the precomputed values and the filtering
formula (3) while evaluating ;

return to node and eventually notify to wait
for responses from the predecessor and/or successor
nodes.

Figure 3(b) shows an example of a query flow
through the system. Both the algorithm description and the
picture simplify the query forwarding to nodes  the
Chord protocol must be employed to reach these nodes. So,

queries are spread simultaneously from node follow-
ing the Chord protocol. According to this protocol, a lot of
these messages  travel partially along the same path. In
order to decrease flooding of the network, the requests are
sent as one message along the common path parts.

As described in Section 2.2, the iDistance search algo-
rithm may exclude cluster from the search if

max-dist , where max-dist is the radius of . This
is not possible in the distributed algorithm because values
max-dist are not known to all nodes. Thus, some (most
of them) interval search requests return immediately after
reaching node because there is nothing to be searched
within the interval. This issue and its possible solutions
are candidates for future studies.

The iDistance approach to query processing  a
sequence of queries with growing radius  
does not seem to be suitable for distributed environment
because multiple iterations would result in an un-
pleasant number of successive message transmissions in-
creasing the overall response time. Our approach, similar
to the approach adopted, e.g., in GHT [4], has two phases:

1. Employ a low-cost heuristic to find objects that are
 near . Measure the distance to the nearest
object found. Value is an upper bound of the dis-
tance to the actual nearest neighbor of .

2. Run the query and return the nearest
objects from the query result (skip the space searched
during the first phase).

In the first phase, node searches the cluster
into which belongs:

localize the B -tree leaf covering key ;

walk through the B -tree leaves alternately left and
right, add the first objects to the answer set , and
initialize the value;

continue walking left and right examining objects
while keys

if then remove the object from ,
add into , and update  interval shrinks;

finish searching when either the whole interval or
the cluster in has been searched.



Note that the described algorithm presumes that at least
objects are stored in cluster on node . If

so, the second phase is applied otherwise we adopt the op-
timistic strategy by iterating over the following steps:

run a range query with radius  distance to the far-
thest object found so far;

if objects are found, increment by and
search again skipping the space already searched.

Finish searching when objects are found.

4. Performance evaluation

In this section, we present and analyze results of exper-
iments conducted on the prototype implementation of M-
Chord. The experiments focus mainly on the system per-
formance for and queries processing and on
various aspects of scalability of the system.

The experiments have been performed on up to 300
workstation nodes connected by a high-speed local-area
network. The nodes communicate via TCP protocol. The
following real-life datasets have been selected to conduct
the experiments on:

VEC 45-dimensional vectors of color image features com-
pared by a quadratic-form distance function [21]. Dis-
tribution of the distances between pairs of objects is
practically normal and such a high-dimensional space
is extremely sparse.

TTL titles and subtitles of books and periodicals from sev-
eral academic libraries. The edit distance function [16]
on the level of individual characters is used to compare
these strings of lengths from 3 to 200 characters. The
distance distribution of this dataset is skewed.

Observe that neither of these datasets can be efficiently in-
dexed and searched by a standard vector data structures  
VEC uses a specific distance function and TTL does not
form a vector space at all. Both distance functions are
highly computationally intensive.

When testing the system scalability with respect to
dataset size we use the whole sets (1,000,000 objects for
VEC and 800,000 objects for TTL) otherwise the size of
the stored data is fixed to 200,000. The sample set used
in the initialization phase (Section 3.2) consists of 5,000 ob-
jects randomly chosen from the dataset. The number of piv-
ots is discussed in Section 4.3. The separation constant ,
used in Equation 6, is determined by a simple heuristic  
the double of the maximal distance between an objects in

and its farthest pivot . Because the M-Chord domain is
normalized and redistributed by the function, the value of
the constant has no serious impact. Size of the M-Chord
domain is . For simplicity and transparency, we define
only one criterion forcing nodes’ splits  reaching storage
capacity limit of 5,000 objects.

Since the technical resources used for testing were not
dedicated, our experimental environment was very fluctu-
ating  the computational load of the workstations caused
by other running processes and load of the network was un-
predictable and difficult to measure. Therefore, we do not
present the exact response times values or duration of com-
putations. Generally, the query response times on our im-
plementation were below one second for smaller radii and
about two seconds for bigger radii regardless of the dataset
size.

The CPU costs are measured as the number of evalu-
ations of the distance function . This is a standard way
for evaluation of metric-based structures  other operatio ns
(and usually I/O cost as well) are practically negligible com-
pared to the distance evaluation demands. We measure the
total cost on all participating nodes and the parallel cost  
maximal number of distance computations performed in a
sequential manner. The total costs correspond to costs on a
centralized version of the structure.

The communication costs are measured by the total num-
ber of messages (both requests and responses) and by the
maximal number of messages sent in a serial way  the max-
imal hop count. We also present the number of nodes influ-
enced by the query processing. All presented measurement
results are taken as an average over queries on fifty query
objects randomly selected from the dataset.

In the first set of experiments, we measured the influence
of the number of pivots (clusters) on the performance of
the search algorithms. For all tested numbers of pivots (1 
70) and for 200,000 stored objects, there were about sixty
active nodes in the system so the average storage load ratio
was approx. 66%.

Figure 4 shows the total number of distance computa-
tions for queries with respect to the number
of pivots . Generally, the filtering formula (3) reduces the
number of distance computations less effectively for TTL
because two strings of similar length often have similar edit
distance from any pivot.

Figure 5 shows the parallel number of distance computa-
tions for the same experiment. We can observe that the par-
allel costs do not decrease so significantly for larger radii
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because close objects are usually stored on a single node
which is searched sequentially.

Figure 6 presents the maximal hop count (a) for VEC
and the total number of messages (b) for TTL. The hop
count is bigger for small number of clusters because the in-
tervals of M-Chord domain to be visited by the query are
longer. The hop count remains stable for higher values of

. Though the INTERVALSEARCH() request is sent for ev-
ery cluster (see Section 3.3), the mentioned message pass-
ing optimization reduces the total number of messages and
it does not grow as fast as the number of clusters.
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In summary, there is an obvious trade-off between the
CPU costs and the messaging while increasing the number
of pivots. In the following experiments, we fix the number
of pivots to forty for both datasets.

In this section, we analyze the performance of the
search algorithm more deeply. First, we mon-

itor the algorithm while the query radius grows, then we
concern with the interquery parallelism of the query execu-
tion, and, finally, we study the scalability with respect to
growing dataset.

Size of the query The dotted line in Figure 7 shows the
number of retrieved objects while increasing the query ra-
dius . Observe that, e.g., radius 2,000 for VEC retrieves
about 8,000 objects on average and radius 20 for TTL
12,000 objects (6% of the whole database). Such queries
are usually not reasonable for application (strings with edit
distance 20 differ significantly) but we study the system per-
formance even in these cases.

The solid line in Figure 7 depicts the parallel number of
distance computations. The algorithm is designed
so that the query replicas are always forwarded before the
local storage is searched and any metric distance evaluated.
Therefore, the parallel costs are upper bounded by the num-
ber of objects stored in a single peer (5,000 in our setting).
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The parallel distance computations together with the
maximal hop count (presented in Figure 8) can be consid-
ered as the characterization of the actual response time of
the query. For example, running a query for
TTL, we retrieve approx. 4,000 objects on average and the
longest branch of the query execution maximally consists
of nine forwardings of the query replicas and 4,000 distance
computations.
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Interquery parallelism In the previous experiment, we
focused on the intraquery parallelism, i.e. parallel process-
ing of a single query. The interquery parallelism refers to



the ability of the system to accept multiple queries at the
same time. In the following experiment, we executed
queries simultaneously  each from a different node. We
measured the overall parallel costs of the set of the queries
as the maximal number of distance computations performed
on a single node of the system (inter-cost ).
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Figure 9 presents the inter-cost with respect to num-
ber of simultaneous queries . The baseline of this experi-
ment (a system with zero level of interquery parallelism) is
inter-cost parallel-cost of one query (the parallel
cost of queries executed one by one).

For example, considering the VEC results for radius
1,000, inter-cost 15,000 while the parallel cost

of one-by-one execution is approx. 2,200 66,000
distance computations (Figure 7). The inter-cost for TTL
is higher because the TTL total costs are higher (Figure 4).

The following example brings another point of view on
the way in which the computations are spread over the
nodes. The sum of the total costs of thirty
queries is approx. ,000 = 1,140,000 (Figure 4
for TTL and forty pivots). The average number of dis-
tance computations on the sixty active nodes is, therefore,
1,140,000 = 19,000. The maximal number of compu-
tations per node is 40,000 (inter-cost , ) which
indicates quite balanced computational load of the nodes.

Size of the dataset The following set of experiments con-
cerns the search scalability with respect to growing
dataset size  up to 1,000,000 objects for VEC and 800,000
objects for TTL. The number of active nodes grows from
approx. thirty for 100,000 objects to approx. 300 for
1,000,000 objects so the average storage load of 66% re-
mains stable. Figure 10 shows the percentage number of
nodes actively visited by the search algorithm. This value
decreases with growing data size because the indexed space
becomes more dense and, therefore, nodes cover smaller
regions of the data space . During the query execution,
some nodes of the structure are used only for routing and
these are not considered actively visited.

Figure 11 shows the parallel number of distance com-
putations  the main factor influencing the query response
time. Observe that it remains quite stable with the upper
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Figure 11. Size of the dataset  parallel costs

bound of the size of the data stored by individual nodes
(5,000 in our setting). The visible fluctuations are caused
by the nodes’ splitting.

The storage capacity limit for individual nodes is one of
the parameters that can be utilized for tuning of the system
performance. By decreasing this limit, the parallel number
of distance computations can be lowered if there is sufficient
number of available nodes to spread the data over.

The price to be paid is the increase of the number of
messages. Figure 12 shows the maximal hop count while
increasing the dataset size. The value slowly grows be-
cause, while size of the particular clusters grows, the se-
quential walk within the cluster interval gets longer. This
is a weak point of the M-Chord approach but, at the mo-
ment, we are implementing an improved message passing
algorithm which should make the hop count stable without
increasing the total number of messages sent.
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Figure 12. Size of the dataset  hop count

The next set of experiments concerns with the perfor-
mance of the algorithm. The heart of the
algorithm is running a query for determined



in the initial phase. In the ideal case, the algorithm would
estimate accurately the distance to the nearest neigh-
bor of and run . Let us denote such a query
as the query corresponding to the query.

Basically, there are three factors increasing the costs of a
compared to its corresponding query:

costs of the initial phase,

the determined radius may be larger than ,

multiple iterations could be necessary if less
then objects are retrieved in the first phase.

Figure 13 shows results of the experiment that compares
the parallel costs of a query and of its corre-
sponding (for growing ). The costs are ob-
tained as the sum of the parallel number of distance compu-
tations of the consecutive phases of the algorithm.
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In most of the test cases, the initial phase has explored
a significant part of a single node storage. The determined
radius has usually been very close to and the answer set
retrieved by the first phase was only slightly  corrected in
the second phase (the first phase result can be treated as the
approximation of the precise answer). But the high costs of
the initial phase influence negatively the parallel costs for

which can be observed in Figure 13.
There is a natural trade-off between the first phase cost

and the demands of the second phase. Finding a suitable
compromise is a matter of further testing and tuning of the
system for a specific application.

Figure 14 gives comparison of the maximal hop count
in the same experiment. As discussed above, this value is
usually negatively influenced only by the hop-count of one
Chord lookup operation during the initial phase.

All trends observed in the experiments  impact
of the number of pivots, interquery parallelism, scalability
with respect to the dataset size  hold true for experi-
ments as well and we do not present these results for .

5. Related work

A number of distributed structures for interval queries
in attribute-based (vector) data have been proposed. These
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approaches are usually applicable and tested on data of low
dimensions, they cannot manage inherently-metric data or
data with non-standard distance measures, and they do not
support similarity queries like nearest neighbors query.

The MAAN structure [8] extends the Chord proto-
col to support multi-attribute and range queries by means
of uniform locality-preserving hashing expecting the ex-
act knowledge of distributions of the attributes’ domains.
Ganesan et al. [12] use space-filling curves and the
Chord protocol to support multi-dimensional range queries
in the SCRAP structure. The authors also propose the
MURK structure that adapts the kd-trees to support multi-
dimensional interval queries in peer-to-peer environment.
The Mercury [6] provides another protocol for routing
multi-attribute range queries. This structure builds a Chord-
like index for each attribute. The Skip Graphs [1] provide
efficient routing mechanism while preserving the locality of
data which enables an efficient support for range queries on
one dimension.

Tanin et al. [19] introduce a P2P generalization of a
quadtree index. The authors propose range and nearest
neighbor algorithms over this structure [20]. The applica-
tion of this structure is limited to spatial domain.

The pSearch approach [18] uses two information re-
trieval techniques vector space model and latent semantic
indexing to build a P2P information retrieval system for top-

similarity queries. This concept, defining similarity be-
tween a document and a query by means of their common
terms, is suitable for a specific application area only.

Banaei-Kashani and Shahabi [2] formalize the problem
of attribute-based similarity search in P2P Data Networks
and propose SWAM  a family of small-world based access
methods. This concept provides a general solution for the
range and nearest neighbors search in the vector data.

So far, the GHT [4, 3] and the MCAN [11] are the
only metric-based distributed data structures published. The
GHT is a native metric P2P structure utilizing the idea of
Generalized Hyperplane Tree for data partitioning and for
navigation. The MCAN, similarly to the M-Chord, first
transforms the metric-space searching problem and then
takes advantage of an existing solution  namely the CAN
protocol. A very detailed comparison of our approach to
these structures is provided in a separate publication [5].



6. Conclusions and future work

So far, the area of distributed data structures for met-
ric data has not been investigated sufficiently. We consider
this topic very relevant for many present-day applications
that manage large volumes of complex digital data. We
propose M-Chord, a peer-to-peer data structure for simi-
larity search in metric spaces. It maps the data space into
a one-dimensional domain by means of a generalized and
improved variant of a vector index method iDistance. The
indexed data is divided among the participating nodes and
protocol Chord defines the topology of the structure and is
used for navigation. Algorithms for the range and nearest-
neighbors similarity queries are proposed.

We have conducted experiments on a prototype M-Chord
implementation and on two real-life datasets. The presented
results focus mainly on performance of the query process-
ing and on scalability of the system from various points
of view. The query processing trials have proved a good
level of intraquery and interquery parallelism without any
hot spots. The system scales well with the size of the query
and with size of the dataset managed, assuming that enough
computational resources are available. The system perfor-
mance can be easily tuned through the nodes split policy.

The maximal hop count during the query processing
grows with the number of nodes in the system. We are im-
plementing a new Chord-based messages passing algorithm
that is expected to stabilize the hop count while the system
grows. Furthermore, our plans for future work cover imple-
mentation of the delete and update operations and support
for proper departure of nodes from the system.

Although we provide a very detailed comparison of our
approach to the most relevant structures in a separate publi-
cation [5], we plan to study the system behavior on simple
vector data and compare it with vector-based index struc-
tures, e.g., Mercury [6]. Finally, we would like to inves-
tigate deeply the influence and behavior of various load-
balancing and replication strategies.
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