Learning with Regularization Networks

Petra Kudová

Department of Theoretical Computer Science Institute of Computer Science Academy of Sciences of the Czech Republic

Outline

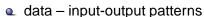
- Introduction
 - supervised learning
- Regularization Networks
 - regularization theory, RN learning algorithm
 - composite kernels
- Generalized Regularization Networks
 - RBF networks
- Flow rate prediction
- Summary and Future Work

Supervised Learning

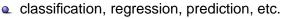
Learning

- given set of data samples
- find underlying trend, description of data

Supervised Learning



- create model representing IO mapping



Regularization Networks

Regularization Networks

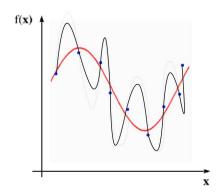
- method for supervised learning
- a family of feed-forward neural networks with one hidden layer
- derived from regularization theory
- very good theoretical background

Our Focus

- we are interested in their real applicability
- setup of explicit parameters choice of kernel function

Learning from Examples – Problem Statement

- Given: set of data samples $\{(\vec{x_i}, y_i) \in R^d \times R\}_{i=1}^N$
- Our goal: recover the unknown function or find the best estimate of it



Regularization Theory

Empirical Risk Minimization:

- find f that minimizes $H[f] = \sum_{i=1}^{N} (f(\vec{x}_i) y_i)^2$
- generally ill-posed
- choose one solution according to prior knowledge (smoothness, etc.)

Regularization Approach

• add a stabiliser $H[f] = \sum_{i=1}^{N} (f(\vec{x}_i) - y_i)^2 + \gamma \Phi[f]$

Derivation of Regularization Network

for a wide class of stabilizers the solution of

$$\min_{f \in \mathcal{H}} H[f]; \quad \text{where } H[f] = \sum_{i=1}^{N} (f(\vec{x}_i) - y_i)^2 + \gamma \Phi[f]$$

exists and is unique

- many proofs
 - Girossi, Poggio, Jones (1995) using stabilizers based on Fourier transform
 - Smale, Poggio (2003) using RKHS
 - others

- Data set: $\{(\vec{x_i}, y_i) \in R^d \times R\}_{i=1}^N$
- choose a symmetric, positive-definite kernel $K = K(\vec{x}_1, \vec{x}_2)$
- let \mathcal{H}_K be the RKHS defined by K
- ullet define the stabiliser by the norm $||\cdot||_{\mathcal{K}}$ in $\mathcal{H}_{\mathcal{K}}$

$$H[f] = \sum_{i=1}^{N} (y_i - f(\vec{x}_i))^2 + \gamma ||f||_K^2$$

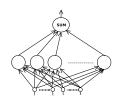
ullet minimise H[f] over $\mathcal{H}_K \longrightarrow$ solution:

$$f(\vec{x}) = \sum_{i=1}^{N} w_i K_{\vec{x}_i}(\vec{x}) \qquad (\gamma I + K) \vec{w} = \vec{y}$$

Regularization Network

Network Architecture

$$f(x) = \sum_{i=1}^{N} w_i K(\vec{x}, \vec{x}_i)$$



function K called basis or kernel function

Basic Algorithm

- 1. set the centers of kernel functions to the data points
- 2. compute the output weights by solving linear system

$$(\gamma I + K)\vec{w} = \vec{y}$$

Model Selection

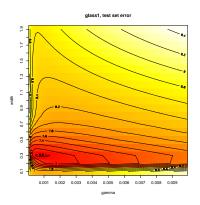
Parameters of the Basic Algorithm

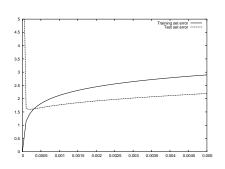
- kernel type
- kernel parameter(s) (i.e. width for Gaussian)
- \bullet regularization parameter γ

How we estimate these parameters?

- kernel type by user
- kernel parameter and regularization parameter by grid search and cross-validation
- speed-up techniques: grid refining

Choice of Regularization Parameter and Kernel

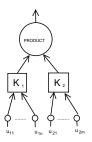


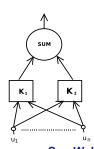


Composite kernels

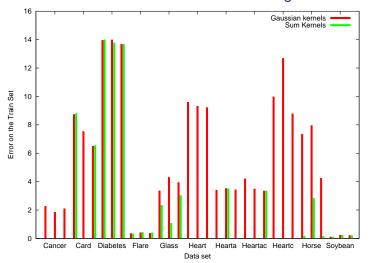
Product and Sum Kernels

- choice of kernels depands on data, attributes types
- sometime data are not homogenous
- composite kernels product and sum kernels may better reflect the character of data (joint work with T. Šámalová)
- based on Aronszajn theoretical results



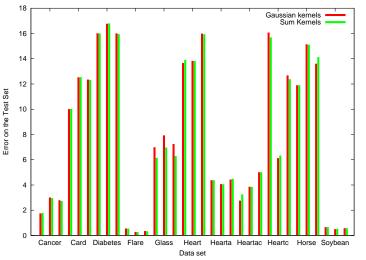


Sum versus Gaussian Kernels The error on the training set



Sum versus Gaussian Kernels

The error on the testing set



Generalized Regularization Networks

Generalized RN

- less hidden units (kernel functions) than training data points
- centers of kernels distributed using various heuristics (i.e. simple clustering)
- hidden kernel units may have additional parameters

RBF networks

- one class of generalized RN
- derived using radial stabilizers
- wide range of learning algorithms

RN versus RBF networks

Regularization Networks

RBF networks

architecture

 good theoretical background, optimal solution

learning

 solving linear systems by numerical algorithms

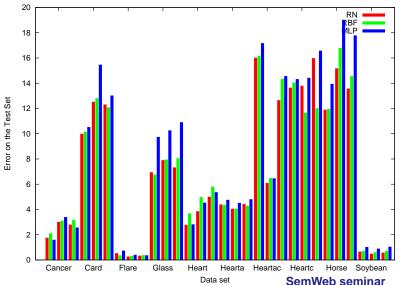
network complexity

- number of parameters depends on the training set size
- ullet parameters (γ , width)

 approximate solution (lower number of hidden units)

- algorithms for optimisation, heuristics
- does not depend on the train. set size, but units have more parameters
- parameter h

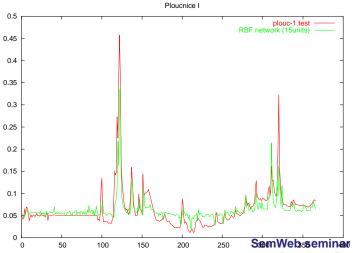
Comparison of RN and RBF on Proben1 repository



Prediction of flow rate

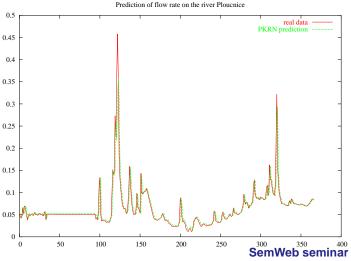
- prediction of the flow rate on the Ploučnice in North Bohemia, from origin (southwest part of the Ještěd hill) to the town Mimoň
- time series containing daily flow and rainfall values
- prediction of the current flow rate based on information from the previous one or two days
- 1000 training samples, 367 testing samples

Prediction of flow rate Prediction by RBF network



Prediction of flow rate

Prediction by Product Kernels



Summary and Future Work

Summary

- learning with RN networks
- composite kernels
- generalized regularization networks
- flow rate prediction

Work in Progress and Future Work

- composite types of kernels
- kernel functions for other data types (categorical data, etc.)

Thank you! Questions?

