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Abstract. We present an overview of our results on model theoretic
and fixpoint semantics for a relational algebra using a model of many
valued Datalog with similarity. Using our previous results on equivalence
of our model and certain variant of generalized annotated programs, we
base our querying on fuzzy aggregation operators (also called annotation
terms, combining functions, utility functions). Using of fuzzy aggregation
operators (distinct from database aggregations) enables us to reduce tun-
ing of various linguistic variables. In practice we can learn fuzzy aggrega-
tor operators by an ILP procedure for every user profile. Our approach
enables also integration of data from different sources via aggregation
and similarity. Extending domains we discuss difference between fuzzy
elements and fuzzy subsets. We also discuss an alternative, when all ex-
tensional data are stored crisp and fuzziness is in rules interpreting data,
context and in user query.
Keywords: fuzzy Datalog, preference querying, correct and complete
semantics,

Introduction.
Relational data model of E. F. Codd [3] was closely related to logic of pred-

icate calculus. Connections of model theoretic semantics and proof theoretic
(possibly also fixpoint) semantic was considered as a standard part of the devel-
opment of a formal data model (see e.g. J. D. Ullman [15]).

Necessity to extend the expressivity of data modeling languages to include
vagueness, preference, uncertainty and different forms of imperfection was stres-
sed by several authors (see [2], [4], [5], [6], [11], [13], [14], just to mention a few).
In this work we would like to present a model theoretic and fixpoint semantics for
a relational algebra introduced in [12] and discuss several aspects of the system.

Our motivation is from the work on a system developing methods and tools
for acquiring, managing, mining and presenting information in a heterogeneous
environment [10]. First pilot application we work on is in the domain of labor
market. Here we will apply our techniques of preference queries. Job offer can
mention place, required skills, salary and age “young” . Job seeking can be
interested in distance “close”, salary “high” and specifying age “about 25”. The
problem is to assign a degree of matching between job offer and the user in a way,
he gets best answers first. Moreover our system incorporates combining overall
score from score for particular attributes (see e.g. [4]). We model combining
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function by a special sort of logical connectives - fuzzy aggregation operators
(please do not confuse them with database aggregations) - which can range from
conjunctions to disjunctions, but most typically are somewhere “in the middle”,
expressing fulfillment of most of requirements wrt. some weighting of importance
of attributes.

Preference, better answer is modeled using many valued logic - the bigger
the truth value the better the answer.

Fuzzy Datalog.
We follow the model of fuzzy logic programming developed in [16] and [8] and

implement usual restrictions which make them Datalog programs. Our language
is typed [0, 1]-valued predicate logic. The only connectives are implications and
aggregations @. Aggregations have truth functions fuzzy aggregation operators
@· which are monotone in all variables and @·(0, ..., 0) = 0 and @·(1, ..., 1) = 1.
Aggregations cover all sorts of fuzzy conjunctions and disjunctions. We have no
negation here.

Declarative semantics is based on the notion of correct answer. Assume P

is a fuzzy positive Datalog program, Q is an atom of our language and θ is a
substitution and x ∈ [0, 1] is a real number. We say that θ, x is a correct answer
to query Q wrt the program P if for all models M of the program P the model
assigns to Qθ a truth value M·(Qθ) ≥ x.

Procedural semantics of fuzzy Datalog we are using here was described in [8]
and is based on the many valued modus ponens and residual conjunctors Ci to
rule implicators →i

(B.b), (H ←−i B.r)

(H.Ci(b, r))
.

The Datalog production operator is defined as follows: Assume P is a fuzzy
definite logic program and F = B[0,1] be the complete lattice of all fuzzy Her-
brand interpretations (ordered coordinate wise). Then for H ∈ F and a ground
atom H the Datalog production operator is defined as follows:

TP (H)(H) = max{sup{H•(@(B1, . . . , Bm)) : (H ←L @(B1, . . . , Bm)) is a
ground instance of a rule in the program P}, sup{c : (H.c) is a ground instance
of a fact in the program P}}.

The TP operator is continuous provided all truth functions of fuzzy aggre-
gations in body of rules are left continuous (in the sense of functions of real
numbers) in all variables.

Similarly as in the classical case fuzzy models are characterized by following:
Theorem. Assume P is a definite fuzzy logic program. A Herbrand structure

H is a model of P iff TP (H) ≤ H (hence the minimal fixpoint of TP is a minimal
Herbrand model of P ).

For corresponding fuzzy logic programming we have following
Theorem. Assume our language contains only left continuous annotations,

P is a fuzzy definite logic program, θ is a substitution and x ∈ [0, 1]. Then
(soundness) if θ, x is a computed answer to ?−Q with respect to P , then

θ, x is a correct answer

88



(approximate completeness) if θ, x is a correct answer to ? − Q with
respect to P , then for every ε > 0 there is a computed answer (y, ϑ) to ? − Q

with respect to P such that x− ε < y and ϑ = θγ (for some γ ).

Our system captures arbitrary fuzzy similarity, not only max-min (see [9])sim-
ply extending arbitrary logic program by axioms of similarity (which have form
of rules).

Fuzzy relational algebra.

Fuzzy relational algebra was developed in [12]. The main point we would like
to stress here is our join parameterized by a fuzzy aggregation operator. It is
defined wrt crisp equality and a fuzzy aggregation operator which tells us how to
calculate the truth value degree of a tuple in the join. Assume we have relations
R1, ..., Rn which evaluate predicates r1, ..., rn. Moreover assume that first k-
attributes in each Ri are the same and (b1, . . . , bk, bi

k+1, . . . , b
i
mi

, βi) ∈ Ri then

(b1, . . . , bk, b1
k+1, . . . , b

1
m1

, . . . , bn
k+1, . . . , b

n
mn

, @·(β1, . . . , βn)) is in the relation �@

(R1, ..., Rn), that is the truth value attributes in our join do not behave as in
classical join, they disappear, forwarding the respective truth values to the new
aggregated truth value

Besides this, our algebra contains also selection σTruthV ≥t(r), similarity clo-
sure SYMsr

A
,A(R), classical projectionΠX1,...,Xh

(R) and max-union.

Theorem. Every query over the fuzzy knowledge base represented by a fuzzy
positive Datalog program (possibly with recursion, without negation) extended
by rules describing the equational theory of predicate calculus and properties
of fuzzy similarities can be arbitrarily exactly evaluated by iterating described
operations of fuzzy relational algebra.

Learning the fuzzy aggregation operator.

An advantage of our approach is that we can learn the aggregation func-
tion from user’s classification by a fuzzy ILP system developed in [17]. We use
equivalence ([8]) of our programs to GAP ([7]) and inducing annotation terms.

We assume a set of job offers J with database attributes ([[10]]). Assume
a user classifies (a representative sample of) job offers by C : J −→ [0, 1]. We
translate this to multiple classical ILP task using α-cuts and special monotonicity
axioms

C

α cut

��

@

Cα ∪M
ILP �� @α

glue

��

Background knowledge has to be extended by monotonicity axioms M. For
each predicate touched by user preference and fuzziness, we add e.g.

near(h, x)← near(h, y) for all x ≤ y.

Then classical ILP learning takes into account ”better” examples and does
not violate ordering of classification.
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Some problems and future research directions.

Fuzzy tuples versus fuzzy attributes. Some fuzzy data approaches differ
in the way assigning fuzzy truth value to the whole tuple or to each attribute
value. In our approach we assign fuzzy truth value to the whole tuple. In our
opinion it covers the fuzzy attribute case in the following sense. Many n+1-ary
relations p(A0, . . . , An) from practical applications can be decomposed into n-
many binary relations pi(A0, Ai). Here A0 plays the role of a resource URI and
Ai is the property, which in instances corresponds to property value (this corre-
sponds to modeling sufficiency of the RDF data model used in the semantic web,
[18]). Moreover in our applications we do not store any fuzzy data. Even values
like “close” and “young” are stored as terms (ASCI strings) and only in the time
of query evaluation (or query preprocessing) we interpret them and depending
on the context and users understanding a fuzzy interpretation is assigned.

Uniform fuzzy small, medium, large and special indexing for effi-
cient search. In many approaches to fuzzy data management we can see various
implementations of linguistic variables (like young) and hedges (like very young).
In our approach, in each domain with some natural ordering, we use only one
universal fuzzy linguistic variable for small, large. Those attain value 1 only at
max or min element of the domain. Reason is, that every original rule system
can be rewritten using universal fuzzy sets and a new fuzzy aggregation opera-
tor. Roughly speaking, the aggregation operator can compensate all differences
between users different intentions (unique for users with same profile). Further
consideration are devoted to implementation of “medium”. A special indexing
structure B+

d tree is constructed to traverse along the ordering induced by fuzzy
sets on domains and to find best (top-k) answers.

Extending domains by fuzzy elements and sets and selection con-
ditions. Another problem occurring in fuzzy data modeling is extensions of
domain by fuzzy values. We have made some initial acquaintance with using
different models for fuzzy elements of domains (like “about 25” to be compared
with other domain values) and fuzzy subsets for range queries (like “young”).
We think, that calculating degree of “about 25 ∈ young” is more appropriate
than degree of “about 25 = young”. Moreover pure set theoretic semantics of
handling those values is not satisfactory for application. In some case we have
to use approach form metric spaces (measuring distance between sets), measure
theory and other Information Retrieval measures. We mention many possible
definitions of fuzzy less (greater) or equal.

Future research directions. In future we plan practical experiments on
a system developed at our department. In [1] authors describe a system which
implements integration between a heterogeneous set of databases. One of key
attribute of their solution is conflict resolution. In future we would like to ex-
periment with some fuzzy similarities learned to fit requirements.

In [10] some initial experiments with real data were done and tests with fuzzy
ILP and variants of heuristics arising from Fagin’s threshold algorithm ([4]). We
would like to use this to push forward the model of fuzzy data and query model.
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Conclusion. In this paper we have reviewed some of our former models
giving a model theoretic and fixpoint semantics for fuzzy Datalog programs
with similarity and discussed some related issues and future work.
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References
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9. J. Medina, M. Ojeda-Aciego, P. Vojtáš, Similarity-Based Unification: A Multi-
Adjoint Approach, Fuzzy Sets and Systems, 146, 43-62 (2004)
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