
DEPARTMENT OF COMPUTER
SCIENCE AND ENGINEERING

XML-based Temporal Models
by Khadija Ali and Jaroslav Pokorný

Research Report DC-2006-02

Czech Technical University
in Prague

Czech Republic
www: http://cs.felk.cvut.cz

Department of Computer Science and Engineering
Faculty of Electrical Engineering

Czech Technical University in Prague

XML-based Temporal Models

Research Report DC-2006-02

by Khadija Ali and Jaroslav Pokorný

June 2006

Contact address:

Department of Computer Science
and Engineering
Faculty of Electrical Engineering
Czech Technical University in Prague
Karlovo nám. 13
CZ – 121 35 Praha 2
Czech Republic

Phone: (+420) 224 357 470
Fax: (+420) 224 923 325
e-mail: office@cs.felk.cvut.cz
www: http://cs.felk.cvut.cz

Dean’s Office:

Faculty of Electrical Engineering
Czech Technical University in Prague
Technická 2
CZ – 166 27 Praha 6
Czech Republic

Phone: (+420) 224 352 016
Fax: (+420) 224 310 784
www: http://www.fel.cvut.cz

The research of J. Pokorný was in part supported by grant 1ET100300419 “Intelli-
gent Models, Algorithms, Methods and Tools for the Semantic Web Realisation” of
the Information Society Program -Thematic Program II of the National Research
Program of the Czech Republic.

XML-based Temporal Models
by Khadija Ali and Jaroslav Pokorný
Published by Department of Computer Science and Engineering

Czech Technical University in Prague
Karlovo náměstí 13, 121 35 Praha 2, Czech Republic
E-mail: office@cs.felk.cvut.cz Phone: (+420) 224 357 470

Printed by Nakladatelství ČVUT, Thákurova 1, 160 41 Praha 6, Czech Republic

c© Czech Technical University in Prague, Czech Republic, 2006

Abstract
Much research work has recently focused on the problem of representing historical

information in XML. This report describes a number of temporal XML data models
and provides their comparison according to the following properties: time dimension
(valid time, transaction time), support of temporal elements and attributes, querying
possibilities, association to XML Schema/DTD, and influence on XML syntax.

Keywords
XML, temporal XML data model, bitemporal XML data model, XQuery, versioning
XML documents, transaction time, valid time

Contents

1 Introduction 1

2 XBIT- an XML-based Bitemporal Data Model 3
2.1 Data Modelling . 3
2.2 Bitemporal Queries with XQuery . 6
2.3 The Modifications . 6

3 An XML-based Model for Versioned Documents 8
3.1 Data Modeling . 8
3.2 Data Modification . 9
3.3 DTD of the V-document . 10
3.4 Queries with XQuery . 10

4 An XML-based Temporal Data Model for the Management of Ver-
sioned Normative Texts 12
4.1 Modelling Time and Norms . 12
4.2 Data Manipulation . 13

5 A Valid Time XPath Data Model 16
5.1 The XPath Data Model . 16
5.2 Adding Valid Time to XPath . 17
5.3 Querying Valid Time . 19

6 Diff-based Approach 21
6.1 Data Modeling . 21

7 XML-based Model for Archiving Data 23
7.1 Data Modeling . 23
7.2 Versions Merging . 25
7.3 Querying . 29

8 A Multidimensional XML Model (MXML) 30
8.1 Data Modelling . 30
8.2 Data Modification . 33

9 Summary of XML-based Temporal Data Models 36

Chapter 1

Introduction

Recently, the amount of data available in XML [12] has been rapidly increasing. In
context of databases, XML is also a new database model serving a powerful tool for
approaching semistructured data. Similarly to relational or object-relational models
in the past, database practice with XML started to change also towards using time
in some applications.

Much research work has recently focused on adding temporal features to XML,
i.e. to take into account change, versioning, evolution and also explicit temporal
aspects like, e.g., the problem of representing historical information in XML. Based
on similar approaches well-known from the field of temporal relational databases [8],
many their ideas have been transformed into the world of hierarchical structures of
XML documents. In [6] a new <valid> mark-up tag for XML/HTML document
is proposed to support valid time on the web, thus temporal visualization can be
implemented on web browsers with XSL. In [5] a dimension-based model is proposed
to represent changes in XML documents. The model is capable to represent changes
not only in an XML document but to the changes corresponding XML schema as well,
however how to support queries is not discussed. There are several other temporal
dimensions that have been also mentioned in the literature in relation to XML. In [7]
a publication time and efficiency time in the context of legal documents are proposed.
In [4] the XPath data model is extended to support transaction time. In [11] the
XPath data model and query language is extended to include valid time. The XPath
is extended with an axis to access valid time of nodes. In [3] an archiving technique
for data is presented, in which elements can be uniquely identified and retrieved by
their logical keys. The elements have timestamps only if they are different from the
parent node; however support for queries is not discussed. In [9] an approach of
representing XML document versions is proposed by adding two extra attributes,
namely vstart and vend, representing the time interval for which an element version
is valid. The model can also support powerful temporal queries expressed in XQuery
without requiring the introduction of new constructs in the language.

The report is organized as follows. In Chapter 2 we describe an XML-based bitem-
poral data model (XBIT). This general technique is applied in an XML-based model
for versioned documents in Chapter 3. In Chapter 4 we describe a temporal XML data
model which is able to manage the dynamics of norms in time. We introduce a valid-
time XPath data model in Chapter 5. The model adds valid time support to XPath.

1

2 XML-based Temporal Models: Introduction

In Chapter 6 we present a brief overview of the Diff-based approach for archiving
data, which will be compared with a key-based approach in Chapter 7. A dimension-
based model is introduced in Chapter 8. Finally, in Chapter 9 we summarize all
the mentioned models. We briefly analyze their characteristics and subsequently we
express our point of view.

Chapter 2

XBIT- an XML-based Bitemporal
Data Model

The used technique is general and can be applied to historical representation of rela-
tional data (as it will be shown in the next subsections), and versions management
in archives (as it will be shown in chapter 3. The approach is based on temporally-
grouped data model1, which is compatible perfectly with the hierarchical structure of
XML documents. Temporal XML document is represented by adding two extra at-
tributes, namely vstart and vend, representing the time interval for which an element
is valid. The model can also support powerful temporal queries expressed in XQuery
without requiring the introduction of new constructs in the language [10].

2.1 Data Modelling

Consider Figure 2.1, which shows a bitemporal history of employees, as it would be
viewed in a traditional relational representation, where each tuple is time stamped
with a valid time interval, and a transaction time interval. The valid time end can
be set to now, while the transaction time end can be set to UC (until changed). This
table representation of employee entities is temporally-ungrouped. It has several
drawbacks:

1. Redundant information is preserved between tuples.
2. Temporal queries need to coalesce frequently tuples, which is the source of

complications in temporal query languages.

These problems can be overcome using a temporally grouped representation, as shown
in Figure 2.2. For instance, the last square of the last column in Figure 2.2 says that
Bob’s salary is 85000 from “2000-01-01” till now. This fact is recorded in the system
in “1999-09-01”. In temporally grouped representation the time stamped history of
each attribute is grouped under the attribute. XBIT supports a temporally grouped

1In [8] the relational data models are classified as two main categories: temporally- ungrouped
models and temporally grouped data models. Temporally grouped data model can be expressed by
relations in non-first-normal-form model or attribute time stamping, in which the domain of each
attribute is extended to include the temporal dimension.

3

4 XML-based Temporal Models: XBIT- an XML-based Bitemporal Data Model

Figure 2.1: Bitemporal history of Employees.

Figure 2.2: Temporally grouped bitemporal history of employees.

representation by coalescing attributes’s histories on both transaction and valid time.
For bitemporal histories, coalescing is done when two tuples are value-equivalent (the
values of their corresponding relational attributes are the same. For instance, the first
and second tuple in Figure 2.1 are value-equivalent. In both tuples the attributes:
name, title, dept, and salary have the values: Bob, Sr-Engineer, RD, and 70000
respectively) and

1. their valid time intervals are the same and the transaction time intervals meet
or overlap,

2. or the transaction time intervals are the same and the valid time intervals meet
or overlap.

Dept. of Computer Science & Eng., Czech Technical University in Prague 5

This operation is repeated until no tuples satisfy these conditions. For example, in
Figure 2.1, to group the history of titles with values “Sr-Engineer” in the three tuples,
i.e., (title, valid-time, transaction-time), the last two transaction time intervals are
the same, and the last two valid time intervals meet, so they are coalesced as (Sr-
Engineer, 1998-01-01: now, 1999-09-01: UC). This one again has the same valid time
intervals as the previous one: (Sr-Engineer, 1998-01-01: now, 1997-09-01:1999-08-31).
Thus they are coalesced finally as (Sr-Engineer, 1998-01-01: now, 1997-09-01: UC)
as shown in the second column of Figure 2.2. The bitemporal history of employees is
represented in XBIT as an XML document (BH-document), as shown in Figure 2.3,
where:

1. Each employee entity is represented as an employee element in the BH-document.
2. Table attributes are represented as employee element’s child elements.
3. Each element in the BH-document is assigned two pairs of attributes; tstart and

tend to represent the inclusive transaction time interval (tend can be to uc (until
changed)), vstart and vend represent the inclusive valid time interval (vend can
be set to now) to denote the ever-increasing current date.

4. There is a time covering constraint that the time interval of a parent node
always covers that of its child nodes.

5. Although valid time and transaction time are generally independent, for the
sake of illustration, it is assumed that employee’s promotions are scheduled and
entered in the database four months before they occur.

Figure 2.3: XML representation of the bitemporal history of employees (BH-
document).

6 XML-based Temporal Models: XBIT- an XML-based Bitemporal Data Model

2.2 Bitemporal Queries with XQuery

The XBIT supports powerful temporal queries, expressed in XQuery without intro-
ducing new constructs in the language.

Considering the previous example (BH-document):

• It is possible to retrieve the history of any element (for instance salary’s history
of a specific employee).

• Snapshot queries for instance the salaries in a specific valid time and transaction
time. The following query retrieves the average salary on 1999-05-01, according
to what was known on that time.

Here tstart(), tend(), vstart(), and vend() are user-defined functions that get the
starting date and ending date of an element ’s transaction-time and valid-time,
respectively.

• The query may take a transaction time snapshot and valid time slicing of any
element, for instance to retrieve employees whose salaries (according to our cur-
rent information) did not change between 1999-01-01 and 2000-01-01:

2.3 The Modifications

Modification in XBIT can be seen as the combination of modification on valid time
and transaction time history. XBIT will automatically coalesce on both valid time
and transaction time. XBIT modifications can be classified as of three types: insert,
delete, and update.

Insert

The added element and its child elements are time stamped with valid time interval
as (vstart, now) and a transaction time interval as (current date, UC).

Delete

When an element is removed at time, the value of vend is changed to time−1. The
deletions with a valid time on a node are propagated downward to its children to
satisfy the covering constraint. The ending transaction time tend of the deleted
element and it is current children changed to current date.

Dept. of Computer Science & Eng., Czech Technical University in Prague 7

Update

Update can be seen as a delete followed by an insert. The updates can be on values
or valid time, for value update, propagation is not needed; for valid time update, it
is needed to downward update the nodes’s children’s valid time.

Chapter 3

An XML-based Model for
Versioned Documents

An efficient technique for managing multiversion document histories is used by storing
the successive versions of a document in an incremental fashion, and supporting
powerful temporal queries on such documents expressed in XQuery without requiring
the introduction of new constructs in the language. XML document is represented
by adding two extra attributes, namely vstart and vend representing the time interval
for which this elements version is valid [9].

3.1 Data Modeling

The successive versions of a document are represented as an XML document called
a V-Document. Figure 3.1 shows a sample of versioned XML document, while Fig-
ure 3.2 shows the XML representation of this document. In a V-Document the fol-
lowing conditions hold:

1. Each element is assigned two attributes vstart and vend which represent the
valid versions intervals (inclusively) of the element. In general, vstart and vend
can be versions numbers or timestamps.

2. vstart represents the initial version when the element is first added to the XML
document, vend represents the last version in which such an element is valid.
After the vend version, the element is either removed or changed.

3. The value of vend can be set to now to denote the ever increasing current version
number.

4. Elements containing attributes are represented by a sub-element denoted by
a special flag attribute isAt. For instance if the employee element contains the
attribute empn then this is represented as:
<empno isAtt="yes" vstart="1999-01-01" vend="now"> e1 </empno>

5. The version interval of an element always contains those of its descendents

8

Dept. of Computer Science & Eng., Czech Technical University in Prague 9

Figure 3.1: Sample versioned XML Documents.

Figure 3.2: XML representation of versioned document (V-document).

3.2 Data Modification

Three primitive change operations are considered, delete, insert, and update. The
following is the effect of performing each operation:

10 XML-based Temporal Models: An XML-based Model for Versioned Documents

Update

When an element is updated

1. a new element with the same name will be appended immediately after the
original one; the attributes vstart and vend of this new element are set to the
current version number and the special symbol “now, respectively.

2. the vend attribute of the old element is set to the last version before it was
changed.

Insert

When a new element is inserted, this element is inserted into the corresponding posi-
tion in the V-document; the vstart attribute is set to the current version number and
vend is set to now.

Delete

When an element is removed, the vend attribute is set to the last version where the
element was valid.

3.3 DTD of the V-document

The DTD of the versioned XML document in Figure 3.1 is shown in Figure 3.3. The
DTD of V-document in Figure 3.2, can be automatically generated as it is shown
in Figure 3.4. Two new attributes vstart and vend are added to each element; an
attribute of an element will be converted as a child element.

Figure 3.3: DTD of the versioned document in Figure 3.1.

3.4 Queries with XQuery

Due to the temporally grouped features of the model, it is possible to express powerful
temporal queries. Consider the previous example shown in Figure 3.2:

1. Retrieve the version of the document on 2002-01-03.

Dept. of Computer Science & Eng., Czech Technical University in Prague 11

Figure 3.4: DTD of the V-document in Figure 3.2.

Here, snapshot ($node, $versionTS) is a recursive XQuery function that checks
the version interval of the element determined by $node and only returns the
element and its descendants where vstart ≤ versionTS ≤ vend. The couple
(vstart, vend) refers to its version interval. The value of versionTS refers to its
version timestamp.

2. Find titles that did not change for more 2 consecutive years.

Here, p730D is the duration constant of 730 days in XQuery.
3. Find chapters in which the title did not change until a new section “History”

was added.

Chapter 4

An XML-based Temporal Data
Model for the Management of
Versioned Normative Texts

There are several dimensions that have been mentioned in the literature in relation
to XML. In this model [7], four dimensions (publication, validity, efficacy, and trans-
action times) are used in the context of legal documents. They are used to represent
the evolution of norms in time and their resulting versioning. For the management
of norms, three basic operators are defined; one for the reconstruction of a consis-
tent temporal version and the other two for the management of textual and temporal
changes.

4.1 Modelling Time and Norms

The model is based on a hierarchical organization of normative texts (i.e. legal norms
can be based on a contents-section-article-paragraph hierarchy) which is particularly
suitable to XML encoding. Four temporal dimensions are used to represent correctly
the evolution of norms in time and their resulting versioning:

1. Publication time: it is the time of publication of norms in an official journal.
2. Validity time: it represents the time the norm is in force (the time the norm

actually belongs to the regulations in the real world).
3. Efficacy time: usually corresponds to the validity of norms, but sometimes the

cancelled norm continues to be applicable to a limited number of cases.
4. Transaction time: It is the time the norms is stored in the computer system.

All the above dimensions are independent. An alternative XML encoding scheme
has been developed for normative text based on an XML-schema which allows the
introduction of time stamping metadata at each level of the document structure which
is a subject to change. Figure 4.1 depicts the XML-schema for the representation of
norms in time where:

• “R” and “O” near attribute names stand for required and optional, respectively.

12

Dept. of Computer Science & Eng., Czech Technical University in Prague 13

• The meta-level of normative texts is rooted by the norm element.
• The publication date is the property of the overall document and thus it has

been modeled as an attribute associated to the outermost element.
• At each level of the contents-section-article-paragraph hierarchy it is possible to

represent different versions (by means of ver element).
• The ver element is assigned associated timestamps (the three other dimensions).
• The active norm reference an ref is the identifier of the modifying norm whose

enforcement caused the versioning.

As an example, a fragment of a multiversion XML document, is shown in Fig-
ure 4.2; the “l247/1999” law concerns the cereal importation, it has been published
on 1999/12/15, and recorded in the system on 2000-01-10, it has been valid since
2000-01-01. Paragraph 2 of chapter 1 article 1, has been modified by “LD135/2000”,
in force since 2000/6/1 (modification recorded on 2000/6/10)

4.2 Data Manipulation

The model is provided with three basic operators:

• O1(vt, et, tt) for the reconstruction of a consistent temporal version. The doc-
ument is reconstructed by selecting -at each level of the hierarchy- the text
making up the desired version (if it exists), vt, et, tt are the valid time, efficacy
time, and transaction time, respectively.

• O2(en, vts, vte, ets, ete, txt, an) for the management of textual changes. It
requires the name of the element to be substituted en, (vts, vte) and (ets, ete)
are the validity and efficacy timestamps to be assigned to the new version, (txt)
is the new text and, an is a reference to the active (i.e. the modifying) norm.

• O3(en, vt, et, vts, vte, ets, ete, an) for the modification of an element ’s
timestamps (the validity and efficacy timestamps). The new transaction time
timestamps are automatically generated by the system where the transaction
time start and transaction time end are now and undefined respectively.

14 XML-based Temporal Models: An XML-based Temporal Data Model. . .

Figure 4.1: The XML schema for the representation of norms in time.

Dept. of Computer Science & Eng., Czech Technical University in Prague 15

Figure 4.2: A fragment of a multiversion XML document.

Chapter 5

A Valid Time XPath Data Model

The XPath data model and query language is extended to include valid time; the
XPath is extended with an axis to access valid time of nodes. Before describing the
valid time XPath model in [11], we refer briefly to the XPath data model.

5.1 The XPath Data Model

XPath is a language for specifying locations within an XML document. The XPath
data model is commonly assumed to be an ordered tree. The tree represents the
nesting of elements within the document, with elements corresponding to nodes, and
element content comprising the children for each node. The children for a node are
ordered based on their physical position within the document.

Definition 1: The XPath data model D for a well formed XML document X is a four-
tuple D(X) = (r, V, E, I) where,

• V is a set of nodes of the form (i, v) where v is the node identifier and i is an
ordinal number such that for all (i, v), (j, w) ∈ V , v starts before w in the text
of X if and only if i < j.

• E is a set of edges of the form (v, w) where v, w ∈ V . Edge (v, w) means that
v is a parent of w. In terms of X, it represents that w is in the immediate
content of v; since v’s children are the immediate contents of v in X. There
is an implied ordering among the edges; edge (v, y) is before the edge (v, z) if
y < z in the node ordering.

• The graph (V, E) forms a tree.
• I is the information set function which maps a node identifier to an information

set2.
• r ∈ V is a special node called the root; r is the data model root rather than the

document root. The document root is the first element node of the document.
2An information set is a collection of properties that are generated during parsing of the docu-

ment. For example, an element node has the following properties: Value (the element’s name), Type
(element), and Attributes (a set of name-value pairs, in XPath, attributes are unordered).

16

Dept. of Computer Science & Eng., Czech Technical University in Prague 17

5.2 Adding Valid Time to XPath

A node is valid at a point of time or an interval of time. But more generally, a node
could be valid at several points and (or) intervals of time.

Definition 2: The valid time of a node in an XML document is represented as a list of
time constants, [t1, t2, . . . , tn], where each ti (i = 1, . . . , n) represents a time constant
when the node is valid.

• Each time constant t = (bi, ei) is either a time interval or a time point.
• All and only the time constants when the node is valid are included in this list.
• Any two time constants do not overlap, no matter if they are time intervals or

time points, i.e., (bi, ei) ∩ (bj, ej) = ∅, for all i 6= j, 1 ≤ i, j ≤ n.
• These time constants are ordered by the valid time contained in each of them,

i.e., bi+1 ≤ ei, (i = 1, . . . , n− 1).

For example, time intervals (1,3) and (2,4) can not be ordered; neither can time
interval (1,3) and time point (2,2). Order is important in an XML document.

Definition 3: The valid time XPath data model DV T for a well-formed XML document
X is a four-tuple DV T (X) = (r, V, E, I), where

• V is a set of nodes of the form (i, v, t) where v is the node identifier, i is its
ordinal number and t is a valid time such that the following two conditions hold:

1. For all (i, v, t), (j, w, s) ∈ V , v starts before w in the text of X if and only
if i < j.

2. For all (i, v, t) ∈ V and its children (i1, v1, t1), (i2, v2, t2), . . . , (in, vn, tn) ∈
V , t1 ∪ t2 ∪ . . . tn ⊆ t.

• E, I, and r are the same as in the non-temporal XPath data model.

From definition 3, we infer that in the valid time XPath data model a list of
disjoint intervals or instants that represents the valid time is added to each node,
where:

• Every node of the tree structure of a well-formed XML document is associated
with the valid time that represents when the node is valid, no node can exist
at a valid time when its parent node is not valid.

• The valid time of any node is a superset of the union of the valid times of all its
children as well as all its descendents. The valid time of the root node should
be a superset of the union of the valid times of all nodes in the document.

• The valid time of an edge is determined by the valid time of the nodes at the
edge’s two ends (if both nodes are valid, an edge can exist). The valid time of
the edge is result of t1∩ t2, where t1 and t2 are the valid times of the edge’s two
ends.

18 XML-based Temporal Models: A Valid Time XPath Data Model

As an example, consider the XML document “bib.xml” in Figure 5.1. Figure 5.2
depicts its data model. For brevity, not all the information is included in this figure.
Each node is represented by its corresponding ordinal number beside its value. Each
edge is represented as a line. For instance, the first edge is represented by a line
between the first node and second node, which have the values “root” and “db”,
respectively. The information in the data model of “bib.xml” is sketched below.

V = ((0, &0), (1, &1), . . . , (21, &21))

E = ((&0, &1), (&1, &2), (&1, &12), . . . , (&20, &21))

I = (&0, (Value=root, Type=root, Attributes=“”)),

(&1, (Value=db, Type=element, Attributes=“”)),

(&2, (Value=publisher, Type=element, Attributes=“”)),

(&3, (Value=name, Type=element, Attributes=“”)),

(&4, (Value=ABC, Type=text, Attributes=“”)),

. . .

(&21, (Value=29.99, Type=text, Attributes=“”)))

r = (0, &0)

Figure 5.3 shows the valid times of the book elements. The node set V containing
the two book nodes is:

V = ((0, &0, t0), . . . , (5, &5, t5), . . . , (15, &15, t15), . . .)

t5 = [(“Jan 31,1999”, now)]

t15 = [(“Jan 31,2000”, “Dec 31,2000”), (“Jan 1,2001”, now)]

Figure 5.1: The XML document “bib.xml”.

Dept. of Computer Science & Eng., Czech Technical University in Prague 19

root 0

db 1

publisher 2 publisher 12

name 3 book 5 name 13 book 15

ABC 4 isbn 6 title 8 price 10 XYZ 14 isbn 16 title 18 price 20

1234 7 book1 9 19.99 11 2345 17 book2 19 29.99 21

Figure 5.2: The data model for “bib.xml”.

Figure 5.3: Valid time information for book elements in “bib.xml”.

5 and 15 are ordinal numbers representing the nodes positions in the tree structure-
based document, &5 and &15 represent the nodes identifiers, t5 and t15 are valid
times of the two nodes.

5.3 Querying Valid Time

The XPath is extended with an axis to locate the valid time of a node. Each node
in an XML document has a corresponding valid time view containing its valid time
information.

Definition 4: A valid time list can be viewed as an XML document. Let v be a node
in the data model tree of an XML document. The valid time view V is a mapping
from the valid time for v to an XML data model X denoted V (v) = X.

Each time in the valid time list is denoted as a <time> element. The content
of the <time> is unique to the view. Figure 5.4 shows the valid time view of the
first book element in “bib.xml” in the commonly used Gregorian calendar; “year”,
“month”, and “day” element nodes are nested under “begin” and “end” of each view.

20 XML-based Temporal Models: A Valid Time XPath Data Model

A valid time axis is added to the query language to retrieve nodes in a view of
the valid time for a node. The valid time can be viewed as an XML document in
any calendar that the user has defined. The commonly used calendar is Gregorian
calendar; however there are other calendars that are widely used by people in different
regions.

Definition 5: The valid time axis selects the list of nodes that forms a document-order
traversal of the valid time view.

By the definition 5, the nodes in the valid time axis are ordered according to
the document order traversal of the valid time view. The valid time axis of a node
contains the valid time information of the node as if it had originated from an XML
document (a document order refers to the standard document order as it is specified
in Infoset).

Since the <time> elements in the valid time view are ordered by the actual time
they represent, these <time> elements selected by the valid time axis are also in this
order.

Example 1: Below are some simple examples of using the valid time axis to query
within the default view of the valid time.

v/valid specifies the valid time axis of the node v.
v/valid::day selects all the day nodes in the axis.
v/valid::time[2] selects the second time node in the axis .
v/valid(‘‘Gregorian’’) specifies that the calendar to use in the valid time

axis of v is “Gregorian”.

Figure 5.4: The valid time view of the first book element in “bib.xml” in Gregorian
calendar.

Chapter 6

Diff-based Approach

Before describing the XML-based model for archiving data in detail in Chapter 7, we
first describe the main idea behind another approach for archiving data (Diff-based
approach). The Diff-based approach in [3] stores the latest version together with all
forward completed changes between successive versions.

6.1 Data Modeling

• The approach keeps a record of changes – a “delta” – between every pairs of
consecutive versions.

• Diff algorithms are used to compute deltas.
• The latest version is stored together with all forward completed deltas – changes

between successive versions – that can allow one to get to an earlier version by
inverting deltas on the latest version.

Example 2: Suppose we have a database containing data of two genes, the data was
corrected as shown in Figure 6.1. The diff output in Figure 6.2 explains the change
as genes changing their names and id numbers. Figure 6.2 says that lines 2, 3 of
version 1 should be replaced with

i.e., the gene GRTM changed its id to 2953, and also changed its name to ACV2. Simi-
larly, the gene ACV2 changed its id to 6230, and also changed its name to GRTM.

The approach is efficient if we are only interested in retrieving an entire (past)
version from a diff-based repository. Finding the temporal history of an element in
the database may require performing some complicated analysis on diff scripts.

21

22 XML-based Temporal Models: Diff-based Approach

Figure 6.1: Two versions of gene elements.

Figure 6.2: Output of Diff.

Chapter 7

XML-based Model for Archiving
Data

In this archiving technique, the elements can be uniquely identified and retrieved by
their logical keys, elements have timestamps only if they are different from the parent
node; however support for queries is not discussed in [3].

The archiving technique used in this model stem from the requirements and prop-
erties of scientific databases. They are of course, applicable to data in other domains,
but they are especially appropriate to scientific data for a variety of reasons:

1. Scientific data is inserted mostly and the transaction rate is low.
2. Much scientific data is kept in well-organized hierarchical data format and is

naturally converted into XML. This hierarchically structured data usually has
a key structure providing a canonical identification for every part of the docu-
ment.

7.1 Data Modeling

Key-based approach is used for identifying the correspondence and changes between
two given versions based on keys. In contrast to diff-based approach which keeps
changes made to text documents as a sequence of delta, the Key-based approach can
preserve semantic continuity of each data element in the archive. An element may
appear in many versions whose occurrences are identified by using the key structure
and store it only once in the merged hierarchy.

Definition 6: A key is a pair (Q, {P1, . . . , Pk}) where Q and Pi, i ∈ [1, k] are path
expressions in a syntax like XPath. Informally, Q identifies a target set of nodes reach-
able from some context node and this target set of nodes satisfy the key constraints
given by the key paths, Pi, i ∈ [1, k].

23

24 XML-based Temporal Models: XML-based Model for Archiving Data

Example 3: Consider the following XML document

The document satisfies the key(/DB/A,{C}) but it does not satisfy the key (/DB/A,B)
since both A elements have the same key path value, i.e., 1

Example 4: The key (/book,{isbn}) means every book child of the root must have
a unique isbn child, and if two such book nodes have the same value for their isbn
children, then they are the same node. The key (/db,(dept,{name})) refers to that
every dept node within a db node can be uniquely identified by the contents of its
name sub-element.

This archiving technique requires that all versions of the database must conform
to the same key structure and the same schema as well. Frontier node is the deepest
possible keyed node. It is assumed that every node does not occur beneath frontier
node is keyed (we refer to the frontier nodes with examples in Example 5).

There are nodes that can not be uniquely identified by their path or any sub
elements, such nodes occur directly under a frontier node (we refer to the non-keyed
nodes with examples in Example 5). The conventional Diff-approach is applied in
this case.

Example 5: Consider a company database containing information about its employees
and the company address.

• Every employee can be uniquely identified by his employee id, i.e. id is the key
for employees.

• Each employee also has one name, at most one salary value sal, and optionally
one telephone number tel.

Figure 7.1 shows a sequence of versions of the company database, while Figure 7.2
shows version 3 with key information annotated on nodes. Observe that emp nodes
are annotated with their key values, e.g. emp(id=1). We omit the id subelement of
emp because they are already stored as annotations.

The key specification for the company database has the frontier paths:

name is a frontier node but emp is not. If there are first-name and last-name nodes
under name nodes, then these sub-elements are non-keyed nodes beyond the frontier
node name.

Dept. of Computer Science & Eng., Czech Technical University in Prague 25

7.2 Versions Merging

All the versions are merged into one hierarchy where an element appearing in multiple
versions is stored only once along with a timestamp. Before describing the algorithm
Nested merge in detail below, we first describe its main idea which is used for versions
merging. The main idea behind nested merge is:

• Recursively to merge nodes in D (incoming version) to nodes in A (the archive)
that have the same key value, starting from the root.

• When a node y from D is merged with a node x from A, the time stamp of x
is augmented with i (the new version number). The sub-trees of nodes x and y
are then recursively merged together.

• Nodes in D that do not have corresponding nodes in A are simply added to A
with the new version number as its time stamp.

• Nodes in A that no longer exist in the current version D will have their timestamps
terminated appropriately, i.e., these nodes do not contain timestamp i.

Before describing the algorithm, we refer to some notes or assumptions concerned it:

• A node x is value equal to a node y, denoted as x =v y if they agree on their
value. The value of a node consists of its tag name and two things: (1) a possibly
empty list of values of its children nodes according to the document order, and
(2) a possibly empty set of values of its attributes.

• The archive A contains versions 1 through i − 1 and D is the new version
(version i). The archive A contains a single root node rA. for any node x in A,
let time(x) denote the timestamps annotated on node x. rD denotes the virtual
root of D.

• label(x) = label(y) refers to that: The labels of the two nodes are equal, i.e.,
the corresponding tag names are identical and key values are the same.

• A and D are annotated with keys.
• The algorithm is invoked with the following arguments: Nested-merge (x, y, {}).

The last argument contains an inherited timestamp, initially empty.

Algorithm Nested-Merge (x, y, T)
if time(x) exists then add i to time(x);
let T be time(x)
if y is a frontier node then

if every node in children(x) is not a timestamp node then
if x 6= vy then

create timestamp node t1 (i.e., < T t=“T − {i}”>) and attach
children (x) to t1;
create timestamp node t2 (i.e., < T t=“i”>) and attach children(y)
to t2;
attach t1 and t2 as children nodes of x;

else

26 XML-based Temporal Models: XML-based Model for Archiving Data

if there exists a node x′ in children(x) such that children(x′) = v
children (y) then

add i to time (x′).
else

create timestamp node t1 (i.e., <T t=“i”>) and attach children(y)
to t1;
attach t1 as child node of x;

else
let XY = {(x′, y′)|x′ ∈ children(x), y′ ∈ children(y), label(x′) = label(y′)},
let X ′ denotes the rest of the nodes in children(x) that do not occur in XY
and Y ′ denotes the rest
of the nodes in children(y) that do not occur in XY .
for every pair (x′, y′) ∈ XY

(a) Nested-merge (x′, y′, T)
for every x′ ∈ X ′

(b) If time(x′) does not exist then time(x′) := T − {i};
for every y′ ∈ Y ′

(c) time(y′) := i and attach y′ as a child node of x;

Figure 7.1: A sequence of versions of a company database.

Figure 7.2: Version 3 annotated with key values.

A simple example illustrates how the algorithm works.

Example 6: Figure 7.3 shows an example of nested merge when version 3 in Figure 7.1
is merged into the archive containing versions 1 and 2. The algorithm first determines
the current set of timestamps. It is i added to time(x) if time(x) exists. Otherwise,

Dept. of Computer Science & Eng., Czech Technical University in Prague 27

timestamps are inherited from its parent. It is a property of the algorithm that
label(x) and label(y) are the same whenever Nested-Merge (x, y, T) is invoked. The
algorithm then proceeds by checking if y is a frontier node. As an example, sal is a
frontier node. In Figure 7.3, when version 3 is merged, the value of sal of Joe differs
from that in the archive. Hence timestamps are used to enclose the salary values at
the respective times in the new archive.

The children nodes of any frontier node are all timestamps nodes or none of them
is a timestamp node. In Figure 7.3, sal of Joe is an example of a frontier node whose
children are all timestamps nodes, tel of Ann is a frontier node none of whose children
are timestamp nodes. If y is not a frontier node, we partition nodes in children(x)
and children(y) into three sets:

• XY contains pairs of nodes from children(x) and children(y) respectively with
the same label and key value. Nested merge is recursively called on pairs of
nodes in XY , inheriting the current timestamp T .

• X ′ consists of nodes in children(x) where does not exist any node in children(y)
with an equal key values. To ensure that nodes of X ′ no longer exist at time i,
timestamp T excluding i is annotated on nodes of X ′ if they do not already
contain timestamps that terminate earlier than i.

• Y ′ consists of nodes in children(y) where does not exist any node in children(x)
with an equal key value. Subtrees rooted at nodes of Y ′ are attached as a sub-
trees of x and they are annotated with a timestamp i since they only begin to
exist at time i.

Observe that in the resulting archive

• nodes appearing in many versions are stored only once in the archive.
• if the node occurs in version 3, then the timestamp of the corresponding node

in the archive contains 3. Note that the node emp (id =3, t=[3]) contains
only the timestamp t=3 since it does not have a corresponding node in the old
archive.

• time intervals is used to describe the sequence of versions for which a node
exists. For example, the time interval [1-3] denotes the set {1, 2, 3}.

• if a node does not have timestamp, it is assumed to inherit the timestamp of its
parent. For example, the name node under the emp (id =1, t=[2-3])inherits
the timestamp t=[2-3].

• the timestamp of a node is always a superset of timestamps of any descendant
node.

28 XML-based Temporal Models: XML-based Model for Archiving Data

Figure 7.3: Merging version 3 into the archive containing versions 1 and 2.

The XML representation of the new archive in Figure 7.3 is as follows.

Dept. of Computer Science & Eng., Czech Technical University in Prague 29

7.3 Querying

Since the archive is in XML, the existing XML query languages such as XQuery can
be used to query such documents. The authors of [3] did not discuss the issue of
temporal queries.

Chapter 8

A Multidimensional XML Model
(MXML)

The proposed approach [5] can represent multiple versioning not only with respect
to time but also to other context parameters such as language, degree of detail, etc.
The model is capable to represent changes not only in an XML document but in the
corresponding XML schema as well. However, how to support queries is not discussed
in [5].

8.1 Data Modelling

In a multidimensional XML document, dimensions may be applied to elements and
attributes. A multidimensional element/attribute is an element/attribute whose con-
tents depend on one or more dimensions. The notion of world is fundamental in
MXML. A world represents an environment under which data in a multidimensional
document obtain a meaning. A world is determined by assigning values to a set of
dimensions.

Definition 7: Let S be a set of dimension names and for each d ∈ S, let Dd, Dd 6= ∅,
be the domain of d. A world W is a set of pairs (d, u), where d ∈ S and u ∈ Dd such
that for every dimension name in S there is exactly one element in W .

Example 7: Consider the world w = {(time, 2005-12-14), (customer type, student),
(edition, English). The dimensions names are time, customer type, and edition. The
assigned values of these dimensions names are 2005-12-14, student, and English re-
spectively.

The syntax of XML is extended in order to incorporate dimensions. A multidi-
mensional element has the form:

30

Dept. of Computer Science & Eng., Czech Technical University in Prague 31

To declare a multidimensional attribute the following syntax is used:

The multidimensional element is denoted by preceding the element’s name with
the special symbol “@”, and encloses one or more context elements. All context
elements of a multidimensional element have the same name which is the name of the
multidimensional element.

Context specifiers qualify the facets of multidimensional elements and attributes,
called context elements/attributes, stating the sets of worlds under which each facet
may hold. The context specifiers of a multidimensional element/attributes are con-
sidered to be mutually exclusive, in other words they must specify disjoint sets of
worlds.

The time period during which a context element/attribute is the holding facet
of the corresponding element/attribute is denoted by qualifying the context ele-
ment/attribute with context specifier of the form [time in{t1 ...t2}], It is assumed
that:

i. A dimension named time is used to represent time. The time domain T of
time is linear and discrete; t1 and t2 represent the start time and end time
respectively.

ii. A reserved valuestart, such that start < t for every t ∈ T, representing the
beginning of time.

iii. A reserved value now, such that t < now for every t ∈ T, representing current
time.

Figure 8.1 shows an instance of MXML document. In this example, the element book
has six subelements:

• The isbn and publisher are multidimensional elements and depend on the
dimension edition. The multidimensional element @isbn has two context ele-
ments having the same name isbn (without the special symbol “@”). [edition
= greek] and [edition = English] are the context specifiers of @isbn.

32 XML-based Temporal Models: A Multidimensional XML Model (MXML)

Figure 8.1: Multidimensional Information about a book encoded in MXML.

• The elements title and authors are conventional elements (remain the same
under every possible world).

• The element price is a conventional element containing a multidimensional
attribute (the attribute currency) and two multidimensional elements (value
and discount). The value of the attribute currency depends on the dimensions
edition and time (as to buy the English edition we have to pay in USD, while
to buy the Greek edition we should pay in GRD before 2002-01-01 and in EURO
after that date due to the change of the currency in EU countries).

• The element value depends on the dimensions edition and time, while the
element discount depends on dimensions edition and customer type.

Dept. of Computer Science & Eng., Czech Technical University in Prague 33

As we referred before, the context specifiers of a multidimensional element/attribute
must be mutually exclusive. This property makes it possible, given a specific world,
to reduce an MXML document to an XML document holding under that world. In-
formally the reduction of an MXML document D to an XML document Dw holding
under the world w proceeds as follows:

• Each multidimensional element E is replaced by its context element Ew (the
value of Ew represents the value of E under the world W). If there is no such
context element, then E along with its subelements is removed entirely.

• A multidimensional attribute A is transformed into a conventional attribute Aw

whose name is the same as A and whose value is the holding one under W . If
no such value exists then the attribute is removed entirely.

Example 8: For the world w = {(time, 2002-03-03), (customer type, student), (edi-
tion, greek)}, the MXML document in Figure 8.1 is reduced to the conventional XML
document that follows:

8.2 Data Modification

Three primitive change operations (update, delete, insert) on XML documents can
be represented in MXML for both elements and attributes.

Basic change operations on elements

The deletion of the element r at time t is represented by:

i. changing the end time point of the most recent facet of the element (the facet
for which the end point of the value of d is now) from now to t-1 if r is already
multidimensional element, or

ii. a multidimensional element with a single facet holding during the interval
{start..t-1} as shown in Figure 8.2.

Figure 8.3 shows applying the operation update on the element r at time t (note
that a dimension named d is used to represent time).

34 XML-based Temporal Models: A Multidimensional XML Model (MXML)

Figure 8.2: Applying the operation delete on the element r at time t.

Basic change operations on attributes

The basic change operations on attributes are similar to those on elements. Consider
the element <p a1 =‘‘9’’> v1 </p>, and suppose we want to

i. delete the attribute a1 at time point t. Then we get the following MXML
element:
<p a1 =[d in{start..t-1}]‘‘9’’ [/]> v1 </p>

ii. add at time point t, a new attribute whose name is a2 and whose value is 3.
Then we get the following MXML element:
<p a1 = ‘‘9’’ a2 = [d in {t..now}] ‘‘3’’ [/]> v1 </p>

iii. update the value of the attribute a1 to the new value 8 at time point t, then
we obtain the following MXML element:
<p a1 =[d in{start..t-1}]‘‘9’’[/][d in {t..now}]‘‘8’’[/]> v1 </p>

Basic change operations on an XML schema

Changes in an XML document often require corresponding changes in the document’s
schema. The history of the schema of an XML document can be represented easily,
for instance deleting an element, or adding an attribute to an element at a specific
time point.

Example 9: The following XML schema description adds the fixed value attribute r1

to the element r during the interval {t..now}.

Example 10: Consider the XML document in the left side of Figure 8.2. The schema
for this document may be encoded in XML schema as follows:

Dept. of Computer Science & Eng., Czech Technical University in Prague 35

After deleting the element <r>v2 </r> (as described in Figure 8.2), it is necessary to
modify the document’s schema if we want the XML document resulting by applying
the deletion to become valid. This change can be represented by turning the element
sequence of the above XML schema into a multidimensional element with two facets:

Figure 8.3: Applying the operation delete on the element r at time t.

Chapter 9

Summary of XML-based Temporal
Data Models

So far, we have introduced some works which have made important contributions
in providing expressive and efficient means to model, store, and query XML-based
temporal data models. All the mentioned models are summarized in Figure 9.1. All
the models are capable to represent changes in an XML document by supporting
temporal elements, and incorporating time dimensions. Two time dimensions are
usually considered: valid time and transaction time. In [7] a publication time and
efficiency time in the context of legal documents are proposed. Time dimensions may
be applied to elements and attributes. In [5] and [9] the temporal attributes are
supported. In our point of view, supporting temporal attributes adds an advantage
to the model.

Temporal information is supported in XML much better than relational tables.
This property is attributed to the hierarchical structure of XML which is compat-
ible perfectly with the structure of temporal data. Only in [5] the syntax of XML
is extended in order to incorporate not only time dimensions but also other dimen-
sions such as language, degree of detail, etc. So the approach in [5] is more general
than other approaches as it allow the treatment of multiple dimensions in a uniform
manner.

In our point of view, the model’s power depends also on supporting powerful
temporal queries. In [9] and [10] powerful temporal queries expressed in XQuery
without requiring the introduction of new constructs in the language are supported.
In [11] a valid time support is added to XPath. This support results in an extended
data model and query language. The other models in [5], [7], and [3] did not discuss
the issue of temporal queries. A significant advantage will be added to the model if
it is not only representing the history of an XML document but also the history of its
corresponding XML schema or DTD as well. In [5], [7], and [9] the temporal XML
schema/DTD is supported by extending the existing XML schema/DTD.

We conclude that XML provides a flexible mechanism to represent complex tem-
poral data. XML can be even an option for implementations of temporal databases
(or multi-dimensional databases) on a top of a temporal XML database. Our work
shows that there are a lot of important topics for forthcoming research. Many re-
search issues remain open at the implementation level, including the use of nested

36

Dept. of Computer Science & Eng., Czech Technical University in Prague 37

Figure 9.1: Summary of XML-based temporal data models.

relations on the top of an object-relational DBMS, reflecting temporal features into
an associated XML query language etc.

Bibliography

[1] Boag, S., Chamberlin, D., Fernández, M. F., Florescu, D., Robie, J. Siméon, J.:
XQuery 1.0: An XML Query Language, W3C Working Draft, 04 April 2005.
Dostupné na: http://www.w3.org/TR/xquery/.

[2] Bourret, R.: XML and Databases, 2004. Available:
http://www.rpbourret.com/xml/XMLAndDatabases.htm.

[3] Buneman, P., Khanna, S., Tajima, K., and Tan, W.: Archiving scientific data.
In proc. of ACM SIGMOD Int. conference, pp. 1-12, 2002.

[4] Dyreson, C.E. Observing Transaction-Time Semantics with TTXPath. In proc.
of the 2nd Int. conference on Web Information System Engineering (WISE),
pp. 193-202, 2001.

[5] Gergatsoulis, M. and Stavrakas, Y.: Representing Changes in XML Docu-
ments using Dimensions. In proc. of 1st Int. XML Database symposium (Xsym),
pp. 208-221, 2003.

[6] Grandi, F. and Mandreoli, T.: The valid web: An XML/XSL Infrastructure
for Temporal Management of Web Documents. In Proc. of Int. conference on
Advances in Information Systems (ADVIS), pp. 294-303, 2000.

[7] Grandi, F., Mandreoli, T., and Bergonzini: A Temporal Data model for the man-
agement of normative texts. In proc. SEBD2003-Natl’ conference on Advanced
Database Systems, pp. 169-178, 2003.

[8] Tansel, A., Clifford, J., Gadia, S., Jajodia, S., Segev, A., Snodgrass, R.T.: Tem-
poral Databases: Theory, Design and Implementation, Benjamin/Cummings
Publishing Company, California. pp. 496-507, 1993.

[9] Wang, F. and Zaniolo, C.: Temporal Queries in XML Document Archives and
Web Warehouses. In proc. of 10th Int. Symposium on Temporal Representation
and Reasoning (TIME-ICTL 2003), pp. 47-55, 2003.

[10] Wang, F. and Zaniolo, C.: XBIT: An XML-based Bitemporal Data Model . In
proc. of 23rd Int. conference on Conceptual Modeling (ER2004), 2004.

[11] Zhang, S. and Dyreson, C.: Adding Valid Time to XPath. In proc. of Database
and Network Information Systems (DNIS), pp. 29-42, 2002.

38

Dept. of Computer Science & Eng., Czech Technical University in Prague 39

[12] W3C: Extensible Markup Language (XML) 1.1. W3C Recommendation 04 Feb-
ruary 2004, edited in place 15 April 2004. Available:
http://www.w3.org/TR/xml11/.

