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Abstract. In MANETs and similar link-free networks of communicating objects there is no
central authority for naming and connection management. Autoconfiguration of network nodes
is therefore desirable and, building on approaches in IPv6, a number of ‘zero configuration’
networking protocols have been proposed for this case. Typically these protocols do not easily
scale and have difficulty with network partitioning and merging. In this paper we propose a
number of novel, decentralized techniques for name resolution in zero configuration protocols
that are more flexible and yet lead to name extensions of smallest possible length, assuming that
objects sufficiently mix within their ranges. Finally, the techniques are converted into a fully
decentralized, scalable autoconfiguration protocol for use in ad hoc networks with directional
antennas. The protocol is ‘lazy’ in the sense that name resolution is postponed until the moment
that conflicts prevent the correct functioning of the communication structure.

1 Introduction

In mobile ad hoc networks (MANETs) and similar link-free networks, objects communicate by
passing information between themselves without a centrally controlled network infrastructure.
Lacking a central authority for naming and network management, special protocols are needed
for providing and maintaining a routable system in which objects can enter and leave at
arbitrary times. In particular it is desirable that these networks are ‘Zeroconf’ [24] and thus
autoconfiguring, when the network dynamics is taken into account. In this paper we focus on
the issue of naming and name resolution in Zeroconf environments.

In any networking environment, objects and/or their communication ports need to be
uniquely identifiable. One typically distinguishes between the name of an object and its ad-
dress, where the latter is meant for the lower-layer routing protocols. In traditional dynamic
networking, name and address assignment are handled by the DHCP servers in the network.
In MANETs and similar networks of objects this can no longer be assumed. Based on the
approaches in IPv6, a number of protocols have been proposed to autoconfigure MANETs (cf.
[5]). An important goal of autoconfiguration is to resolve name conflicts in the network and
ensure the network-wide uniqueness of names, given a decentralized mechanism for assign-
ing initial names. Many existing autoconfiguration protocols do not easily scale and having
difficulty coping with network partitioning and merging. We explore some novel, alternative
proposals for conflict resolution that may be more flexible and that exploit several new con-
cepts which may be of interest in their own right. We apply it to the case of networks in which
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objects may use so-called smart antennas, which allow for communication with directional
control among the objects.

Although uniqueness of names is an ultimate goal of any naming system, in certain appli-
cations the requirements may be less stringent. In particular, objects may be part of different
relations (‘subnets’) and one may only be interested in uniquely naming objects within each
relation, allowing objects of the same name to exist in different relations or subnets simulta-
neously. All this can also happen under a dynamic scenario: new objects keep arriving, and
subnets keep forming and/or merging. This is the framework we shall be adopting. Note that
the issue of uniquely naming all objects is thus only a special case of the autoconfiguration
problem, in which all objects happen to belong to the same relation. Of special interest to us
will be the ‘size’ of names in large MANETs. The simple methods we propose in this paper
keep name extensions as short as possible.

Depending on the approach taken, autoconfiguration protocols can be extensive and de-
manding on local storage. In MANETs this is not very desirable, as the objects cannot be
expected to accommodate it. Following the design of IPv6 [20], the most common form of
automatic configuration proposed for use in MANETs is stateless autoconfiguration. In this
case it is immaterial what exact names are assigned, as long as they are unique and of use for
routing purposes. (In ‘stateful autoconfiguration’ more information is used and thus a larger
database of names and addresses can be employed.) If names are assigned, it is up to the
MANET system to advertise and use them.

In this paper we propose a number of (nearly) stateless techniques for name resolution
that are flexible and yet lead to unique names of minimized length, assuming that the ob-
jects sufficiently ‘mix’ within their ranges. Also, the latter system is converted into a fully
decentralized, scalable autoconfiguration protocol for use in ad hoc networks with directional
antennas. In the protocol we pursue the idea that in an ad hoc network it is sufficient if
names are unique in all neighbourhoods. This leads to a novel ‘lazy’ protocol which only re-
solves name conflicts when they arise and when they prevent the correct functioning of the
(local) communication structure.

The paper is organized as follows. In Section 2 we describe some existing approaches to
name resolution in MANETs and in networks of mobile agents. In Section 3 we propose a
simple protocol which starts with an unknown number of objects with initially given names,
and which resolves name conflicts whenever the relevant objects meet, i.e. come within each
other’s range. This proposal can be tuned to obtain a protocol which leads to names of
provably minimal length bounded by H + blog nc for distinguishing among n objects, where
H is a bound on the size of the initial names. In the same Section we consider the robustness
of the protocol under network partitioning and merging. The simple name resolution protocols
are applied in the design of a ‘lazy’ autoconfiguration protocol for neighbourly communication
in ad hoc networks with directional antennas in Section 4.

2 Preliminaries

In MANETs and similar networks, objects (agents) collaborate in spite of the absence of a
supporting network infrastructure. Each node of the network can directly communicate with
all nodes within a certain communication radius given by the reach of its communication
hardware (possibly limited by the presence of obstacles like buildings etcetera). We do not
assume that a node ‘knows’ the objects (nodes) in its neighbourhood or within a multihop
distance away from it a priori.
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The problems of naming and name management in networks are by no means new and
well-studied in static contexts, e.g. in the design of distributed operating systems ([8], Ch.
7). Naming assigns to each object in a set a unique label, which must be algorithmically
generated. Ensuring name uniqueness is a complex issue in dynamic sets which acquire new
objects in a non-sequential manner, not one by one and without a unique gate which could
name them. We are therefore interested in object naming in this case, when new objects keep
joining a set individually or in batches and under no central control. We want methods that
keep names as short as possible, in the interest of low cost or low energy transmissions.

While object names can easily be generated locally, one needs techniques for duplicate
name detection (like ‘duplicate address detection’ of DAD [23]) and for conflict resolution.
As duplicate detection involves probing, the techniques are often combined with neighbour
discovery or even full reconstruction of the entire MANET topology. (Known distributed
algorithms as in [2] or [7] are not sufficient for this.) Among the standard approaches to
naming in ad hoc networks ([19]) are the following:

– assignment of names by an external (or global) naming authority [16],
– taking a unique ‘name’ stored in the hardware of the respective mobile device (e.g. the

MAC number of the wireless access card) [23], or
– generating random names, using a random number generator with suitable ranges in the

nodes ([18], [22]).

The first approach is often not applicable, and the second may not be in the interest of
the object. The third approach is most commonly used but does not guarantee unique names
and thus requires conflict resolution. When a conflict is detected, the objects involved must
somehow choose other names and hope that no new conflicts are introduced. Autoconfigura-
tion could require symmetry breaking between objects and thus, as leader objects are neither
available nor desired in our context, we assume that objects possess a simple random number
generator for chosing initial names randomly and for coin-tossing when symmetry must be
broken. In e.g. [4] a good account is given of the available techniques and their shortcomings.

In some models, names are long enough to practically exclude the possibility of having
doubles. In our approach we consider the case in which relatively short initial names are
generated e.g. randomly, and conflict resolution is used to scale up to a network of any size.
The initial object names can also be generated by hashing a unique but private object identifier
to a small domain of short strings.

Let an object c have a current name h = hc. It is appropriate to view h as the encoding
of a whole set of names owned by c. Most proposals for name resolution to date follow this
viewpoint. A typical example is the use of the buddy system in dynamic storage allocation for
the purposes of dynamic name space allocation ([10]). If a new but unnamed object x enters
the network and finds a named object c, then c assigns to x a (unique) name from its name
space and subsequently splits off half of it name space and gives it to x. A similar approach
using sets of integer intervals ⊆ [0, 2k] as subspaces was described in [25] and used also in the
protocol presented in [21].

In this paper we interpret every name hc as a binary string ∈ Σ? with Σ = {0, 1}. A name
hc implicitly represents the full infinite set of potential names hc Σ?, and it is ‘owned’ by c.
In Section 3 we will show that this leads to a simple and flexible decentralized method for
name resolution, without the need for much administration and with names that can remain
short. We show that it gives a basically optimal solution for the naming problem, assuming
that nodes suitably mix in each other’s communication ranges.
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We consider the name resolution problem in a general framework. Instead of only con-
sidering wireless networks of devices, we also apply it to systems of communicating agents.
Agents can make their own independent decisions and, especially, they move around as they
like. As in the real world, agent naming seems to be unavoidable in any community in which
agents want to distinguish themselves in interactions. Obviously, agents which never interact
need not tell themselves apart since they do not even know about their simultaneous exis-
tence. Agents that have ever met form a relation in the system of relations mentioned in
the Introduction. That is, we see agents as mobile processes having temporary names which
depend on context and which can change over time. For such a model the simple protocols we
design can be used to disambiguate agent names whenever two agents with the same names
encounter. This ultimately leads to the lazy protocol in Section 4.

3 A simple name resolution protocol

Consider a network of communicating objects. Every object c that wants to actively join the
network, is assumed to generate an initial name h = hc ∈ Σ? for itself when it joins, e.g.
randomly using the simple random generator it possesses. We assume that all initial names
are equally long, so no initial name is a proper prefix of another name. This is reasonable,
although the validity of our protocols will not depend on it. Let |x| denote the length of a
string x.

We assume that every initial h is small (e.g. |h| = 8). The initial choice of hc implies that
are likely to be name conflicts (‘collisions’) and thus name resolution is required. We want a
name resolution method that does not depend on knowledge of N , the number of current or
future nodes in the network, and that allows the number of objects to grow and shrink.

For the analysis of our protocols we will adopt a suitable model for mobile objects, which
we call the encounter model. In this model the objects mix in each other’s ranges such that
eventually all objects will encounter in pairs of two and are able to check each other’s name
in an encounter. Objects are said to ‘mix well’ if they encounter uniformly at random. If
objects mix well, any name resolution method will use an expected number of at least Ω(N)
encounters.

3.1 Basic protocol

The basic version of our proposed name resolution method simply ‘divides’ the name spaces
between objects of the same name, quite similar to the buddy system in [10]. The chosen
representation makes this easy to implement and scalable to networks of any size.

Protocol A

1. (initialize) every object c that enters, generates an initial name h = hc.
2. (encounter) if two objects of equal name h meet, then one of them is renamed to

h0 and the other to h1.

(End of Protocol)

The implementation of rule 2 in Protocol A clearly requires symmetry breaking between two
objects, if they find themselves having the same name h. This can be done by coin-tossing,
using the simple random generator which we assume the objects to possess.
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Note that every encounter of two equally named objects may lead to a further name
conflict: the names h0 and/or h1 may already exist and thus, by resolving one name-conflict
we may create two more. Interestingly, Protocol A may be seen as a form of distributed hashing
if the initial names are assigned by a hash function, with distributed collision detection and
conflict resolution. Assume that the set of objects in the network stabilizes at some point. We
first show that Protocol A converges.

Proposition 1. On the assumption that objects mix well, Protocol A eventually leads to
unique names for all objects.

Proof. Two objects with different names remain differently named, no matter how their names
are extended in encounters with other objects. Two objects that have the same name when
they meet, resolve their name-conflict in the encounter and are thus named differently forever
from that moment on. The assumption implies that all pairs will eventually meet and thus that
all names become unique in the long run. More precisely, this will happen with probability
tending to 1 as time goes to infinity. 2

Proposition 2. Suppose the number of objects with the same initial name h has grown to
some (unknown) number n. Then the unique names that will eventually result for these objects
using Protocol A will all have length ≤ |h|+ blog nc.

Proof. As the n objects mix, the result will be that bn
2 c of them are named h0 and bn

2 c of them
become named h1, eventually. Precisely n− 2bn

2 c ≤ 1 agent will remain with name h, which
is then unique. The argument simply continues recursively. Let an object be in level i if it has
obtained a name hα of length |h|+ i. To analyse the result, write n = am2m + · · ·+ a121 + a0

in binary notation, with m = blog nc. The protocol eventually resolves names level after level
such that in the end:

ai = 0 → no string hα of length |h|+ i is the name of an object in the network, and
ai = 1 → every string hα of length |h| + i is the name of an object, of precisely one
object that permanently resides in level i.

This implies that the longest names that result in Protocol A will be those corresponding to
the nodes in level m = blog nc. 2

Proposition 3. Suppose the number of objects with the same initial name h has grown to
some (unknown) number n. The objects obtain their unique name with Protocol A after a
total of O(n log n) name changes.

Proof. If level i is full in the end, the 2i names in the level are all used and account for 2i · i
name-changes in the process towards unique names. The total number is at most

∑m
ai=1 i·2i =

O(m2m) = O(n log n). 2

In the practical case that n is small, the protocol is simple and very efficient. For larger n
the proof shows that in the long run a considerable number of extensions of length ≤ blog nc
will not be used, although they are used in intermediate stages. To be more precise, let
n = bm2m + · · ·+ b121 + b0 be the 1-complement of n, with bm = 0 and bi = ai. Then precisely
the extensions in the levels i with bi = ai = 1 (i.e. ai = 0) will not be used in the end, if no
new objects enter the network. In case n = 1 · 2m this amounts to 1+2+ · · ·+2m−1 = 2m− 1
names, thus about 50% of the available name space remains unused here.
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An arbitrary object c needs to undergo up to log n name changes in order to attain its
unique final name, with n as above. On the other hand, an object needs the specific encounters
in order to make this happen. If the objects are mobile and mixing arbitrarily, the objects
encounter randomly and thus many more than log n encounters may be needed before the
desired effect is reached.

To estimate the effect properly, let us assume by a slight change of notation that we have
a fixed set of N mobile objects initially and that there are n = nc objects c with initial name
h = hc. By the assumption that objects mix well, object c encounters other objects in the
set uniformly at random, step after step. We will say that objects mix aggressively if the
probability of meeting an equal-named counterpart is greater than 0 in every step, as long
as the name resolution process has not finished. Assume also that n = 2m for some integer
m ≥ 2. (For m = 0 there is no name conflict and for m = 1 the expected number of encounters
is precisely N − 1.)

Proposition 4. An object c with initial name h = hc attains its unique final name in Protocol
A after an expected number of at least 10

9 (N − 1) and at most (2n− log n)(N − 1) encounters,
the latter under the assumption that objects mix aggressively.

Proof. Suppose object c has reached the ith level in the name resolution process and thus has
just gotten a name hα with |α| = i, for some i with 0 ≤ i < m. There will be ni = n

2i nodes
in level i that eventually have name hα, and they have to encounter with another object of
name hα (after they were named hα) in order to resolve the name conflicts. This applies to
object c in particular. Because the other objects with name hα only appear gradually and
also disappear again after their conflict is resolved, the probability of c to encounter another
object of name hα may be much smaller than pi = ni−1

N−1 in every trial.
We model the name resolution process of object c in level i by a Poisson trial with success

probabilities r1, r2, · · · . Here rk denotes the probability that c encounters an object of name
hα in the kth try. (A Poisson trial is a Bernoulli trial with varying probabilities of success, cf.
[6].) We clearly have 0 ≤ rk ≤ pi. The expected number of encounters before c can resolve its
name conflict and move to the next level, is equal to the expected number of trials to obtain a
success in the Poisson trial for the first time. We can bound this from below by first omitting
all steps with rk = 0 and then considering the resulting Poisson trial, thus effective assuming
that 1

N−1 ≤ rk ≤ pi. The expected number of trials to reach a first success in this trial is at
least equal to

∞∑
k=1

k
k−1∏
j=1

(1−rj)rk ≥
1

N − 1

∞∑
k=1

k
k−1∏
j=1

(1−rj) ≥
1

N − 1

∞∑
k=1

k(1−pi)k−1 =
1

N − 1
1
p2

i

=
N − 1

(ni − 1)2
.

With this bound we can estimate the expected number of encounters in order for c to go from
level 0 to level m, the level at which it will have finally resolved all its name conflicts. By
linearity of expectation and using that m ≥ 2, this number is at least equal to

m−1∑
i=0

N − 1
(ni − 1)2

= (N − 1) +
1
9
(N − 1) +

m−3∑
i=0

N − 1
(ni − 1)2

≥ 10
9

(N − 1).

In order to derive an upperbound, we return to the original Poisson trial. Let us assume
that the objects mix aggressively, i.e. that rk > 0 and thus 1

N−1 ≤ rk ≤ pi for all k ≥ 1. The
expected number of trials to reach a first success in the trial is then equal to
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∞∑
k=1

k
k−1∏
j=1

(1−rj)rk ≤ pi

∞∑
k=1

k
k−1∏
j=1

(1−rj) ≤ pi

∞∑
k=1

k(1− 1
N − 1

)k−1 = pi(N−1)2 = (ni−1)(N−1).

By linearity of expectation, the total expected number of encounters in order for c to go from
level 0 to level m and have its name fully resolved is then bounded by

m−1∑
i=0

(ni − 1)(N − 1) = (
m−1∑
i=0

1
2i

n−m) (N − 1) ≤ (2n− log n)(N − 1)

which was to be shown. 2

If all objects start with initial names that have at most n = O(1) conflicts, the given
argument shows that under reasonable assumptions the conflicts are all resolved in an expected
number of Θ(N) rounds of encounters. The basic protocol thus satisfies the basic requirement
of any name resolution protocol.

Under the same assumption on the mixing behaviour of the objects as above, the expected
number of encounters also has a limited deviation from its mean. In particular, let Xi be the
random variable denoting the number of trials needed by c in order to move from level i to
level i + 1 according to the given model.

Proposition 5. Using protocol A and assuming that the objects mix aggressively, we have
for every t > 0

Prob(|Xi − E(Xi)| ≥ t
√

ni (N − 1)) ≤ 2
t2

.

Proof. We model the random process for object c in level i as before by a Poisson trial with
success probabilities r1, r2, · · · . Assuming that the objects mix aggressively means that we let
rk > 0 and thus 1

N−1 ≤ rk ≤ pi for all k ≥ 1. The value of E(Xi) was estimated in the proof
of Proposition 4. The variance of Xi can be estimated as follows:

V ar(Xi) = E(X2
i )−E(Xi)2 ≤

∑∞
k=1 k2

∏k−1
j=1(1− rj) rk ≤ pi

∑∞
k=1 k2(1− 1

N−1)k−1 =
= pi(2− 1

N−1)(N − 1)3 = (2− 1
N−1)ni(N − 1)2 ≤ 2ni(N − 1)2,

where we use that
∑∞

k=1 k2xk−1 = 1+x
(1−x)3

. The desired estimate for Prob(|Xi − E(Xi)| ≥
t
√

ni (N − 1)) now follows from Chebyshev’s Inequality. 2

If the set of objects in the network does not stabilize but continues to grow, Protocol A
works properly and all objects eventually become uniquely named if they mix sufficiently well
in the pool of objects.

3.2 Name length-optimal resolution

The basic Protocol A did not make optimal use of the available name space and could even-
tually leave 50% of the available names unused. This does not make a great difference in the
maximum name length that is implied, but it can be avoided. We show how this can be done,
in principle. The key is not to destroy all object names in the encounter rule but leave all
existing names in use.
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A possible approach is to split the rule ‘h h → h0 h1’ into two rules ‘h h → h h0’ and
‘hh → hh1’, and to let two objects of equal name h apply one of these rules at random when
they encounter. One can show that this leads to names of length at most O(H +log n) again,
in the expected sense. To achieve it as a worst case and thus have the guarantee of balanced
name lengths, we eliminate the random choices at the expense of a marker bit. Introduce a
companion name h† with every name h, and change the basic protocol as follows.

Protocol B

1. (initialize) every object c that enters, generates an initial name h = hc.
2. (encounter) if two objects of name h or h† meet, then the name conflict is resolved

according to the following rules:
h h → h† h0
h h† → h h1
h† h† → h† h1
(h† h is treated as h h†.)

(End of Protocol)

In all other encounters, objects with name h† are treated as objects with name h. (The name h†

is implemented with a single indicator bit separate from the name field.) The implementation
of rule 2 in Protocol B again requires that arising symmetries are broken by coin-tossing,
using the simple random generators that all objects possess.

Names now carry a tiny bit of extra semantics: names h stand for an equal number of
objects that were renamed to h0 and to h1, and names h† stand for an equal number of
objects that were renamed to h0 and to h1 plus one more object that was renamed to h0.
Assume that the number of objects in the network stabilizes at some point. We first show
that Protocol B again converges.

Proposition 6. On the assumption that objects mix well, Protocol B eventually leads to
unique names for all objects.

Proof. Objects whose initial names differ, will have different names forever. We thus consider
an arbitrary initial name h and show that the name conflict between all objects with initial
name h is resolved properly in the limit. As the protocol leads to objects with names h0 and
h1 (the latter only if there are more than 2 objects with name h), the result then follows by
induction. Define the following counters, where we assume that the number of objects that
eventually enter the network with name h is n:

a = the number of objects with name h b = the number of objects with name h†,
c = the number of objects with name h0 d = the number of objects with name h1.

Protocol B can be seen to maintain the following invariants:

(I1) a + b + c + d = n,
(I2) c = b + d,
(I3) a + b decreases by 1 in each encounter of two objects named h or h†.
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The result now follows from invariant I3. Eventually, i.e. with probability tending to 1 as
time goes to infinity, all objects with name h meet and we obtain that a + b = 1 and thus
either a = 1 and b = 0 or vice versa. Also c + d = n− 1 and, whatever c and d are, they are
< n and thus the name resolution converges in the limit by induction. 2

Proposition 7. Suppose the number of objects with the same initial name h has grown to
some (unknown) number n. Then the unique names that will eventually result for these objects
using Protocol B will all have length ≤ |h|+ blog nc.

Proof. Observe the following additional invariant for the protocol. Let s count the number of
steps in the process of resolving a name conflict involving h or h†:

(I4) d = a + c− n + s.

Note that the resolution process leads to a single name h in s = n − 1 name changes: the
result will be a name h without a † if n is odd and a name h† with a † if n is even. From the
invariant it follows that at this point the following occurs:

– if n is odd, then a = 1, b = 0, s = n− 1 and thus d = c = bn
2 c.

– if n is even, then a = 0, b = 1, s = n− 1 and thus d = c− 1 and c = bn
2 c.

Proceeding recursively we obtain a name tree Tn which has an object named h or h† in
its root, Tdn−1

2
e as its left subtree, and Tbn−1

2
c as its right subtree, with the subtrees filled

recursively. Write n = (2m − 1) + l for some 0 ≤ l < 2m − 1. Then Tn is a binary tree with its
first m levels completely filled and the (m + 1)-st level filled with l nodes. The bound on the
name-lengths implied by using Protocol B follows, as blog nc is the lowest level of Tn. 2

Proposition 8. Name resolution using Protocol B leads to names with extensions of mini-
mum possible length.

Proof. This follows because Tn is a minimum-depth binary tree with n nodes. Names of length
|h|+ blog nc (in the bottom level) are only used insofar as names in this level are needed. 2

3.3 Joining, leaving, and migrating objects

The main advantage of Protocol B is its usage of name extensions of minimum possible length,
its scalability and its flexibility w.r.t. migration or failures of objects. Objects can join at any
time and name conflicts are automatically resolved, in a reasonable number of expected steps
for every object. Objects that leave or fail do not obstruct the protocol either, and the protocol
just continues to operate correctly.

Clearly objects that leave take their name with them and thus make ‘holes’ in the used
name space. These holes are automatically filled up again if the corresponding names are
generated again in a name resolution step. If they are not filled up, the effect of leading to
unnecessary name lengths is limited because of the smoothing effect of the logarithmic factor.
Thus, an explicit ‘name reclamation’ protocol is not really necessary.

The more general case of migrating objects is not much harder. Assume that a new
object arrives from a foreign subnetwork or community into an already existing subnetwork
or community of objects. Suppose that in both communities, objects used protocols A or B for
name resolution. Obviously, the appearance of a new object with a given name is not harmful
to these protocols, which work regardless of the different initializations of names. In fact there
is no mechanism by which encountering agents can sense that one of them is foreign, and the
protocols just work. The minimality of names in a given network can be disturbed, though.
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3.4 Network partitioning and merging

Consider now the situation in which two communities, of sizes n1 and n2 respectively, merge
i.e. are brought together and begin to mix. Consider the case that both communities have
been using Protocol B. The protocol can simply continue to resolve the name conflicts in the
merged set without change. The protocol works simply as if the objects from the different
subcommunities have not met until now. Clearly, it does not even matter how many commu-
nities merge. Assume that in both communities names of maximal length have been used, i.e.
names of length H + blog n1c and H + blog n2c, respectively. Since max{blog n1c, blog n2c} ≤
blog(n1 + n2)c, the names in neither community are ‘too long’ at the moment of the merge
and Protocol B will resolve names with a minimal extension again.

Proposition 9. If Protocol B has been used from the very beginning in the given subnetworks
or communities, then it continues to yield name extensions of minimum possible length after
the subnetworks or communities merge.

In a merge, renaming is necessary only if objects of the same name from the originally
separate communities encounter. Potentially, our name resolution scheme gives shorter names
than other protocols, but the disadvantage is that there might exist duplicate names and that
names are never final in a dynamic context. On the other hand, when merging sets of agents,
the non-uniqueness and thus non-definiteness of names is always to be expected.

If the objects in a network or community get partitioned, the objects can keep their names
and, insofar their names were not yet unique, the protocol can continue to operate without
intervention. Without any further measures, there is no way for objects to discover their non-
presence within a given network. However, it is clear that, again, it may lead to big holes
in the set of names in a subnetwork and the naming then ceases to be name length-optimal.
On the positive side, when objects return they can use their original names as if nothing
happened, i.e. as if in the meantime they have not encountered any object.

4 Lazy autoconfiguration protocol for dynamic networks of agents

We now show how to incorporate the name resolution method into an automatic configuration
protocol, given an ‘initial name service’ that is used at the creation of every object and given
the lazy properties of the detection protocol. We abandon the ‘encounter model’ which we only
needed for proving some basic properties. We take the general viewpoint of dynamic networks
of (autonomous, mobile) agents. An agent can be any artificial, software- or hardware-based
entity that can act autonomously in a dynamic environment.

Recent developments indicate that the full potential of ad hoc networks can be achieved
by making use of mobile devices equipped with so-called smart antennas. Smart antennas
enable a directional sending and receiving of messages. Their use has a number of advantages
over so-called omnidirectional antennas (cf. [14, 15]), e.g. they avoid the need of ‘flooding’ an
entire neighbourhood when a message is to be sent to an specific agent in a known direction
within the neighbourhood. In this section we assume a model that reflects this, more powerful
mode of communication.

For message routing, the agents in a network need to have unique names. However for local
message routing in ad hoc networks, ‘short’ names that are locally unique are sufficient. This
is where lazy duplicate detection comes in as a useful concept. Nevertheless, as uniqueness of
names is hard to authenticate even locally, naming methods that aim at short public names
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must use ‘private’ information expressed in (unique) agent identifiers. These identifiers may
be derived from some owner-specific number (cf. Section 2 and [23]). We shall adopt this
idea as well. The agent identifiers are used only for authentication purposes but avoided in
message exchanges between named agents whenever possible.

4.1 A self-organizing naming and neighbourly communication protocol

In our model we assume that the agents move in 3D Euclidean space and have no special
knowledge about their location. We also assume that agents do not move ‘too fast’ compared
to the speed of the protocol operations. We capture this by defining the so-called timing
margin ∆T : it is the fraction of time during which an agent cannot leave the reach of the
sending agent at a given time and several actions of protocol C below can be performed.
That is, we assume that the relative positions of agents remain approximately the same
during several rounds of the protocol below. This assumption seems to be fulfilled in most
imaginable applications.

The basis for all communication under such conditions is for each agent to learn its
neighbours. Object c is a neighbour of agent d at a given time if d is reachable from c by a
direct communication at that time. In order to identify neighbours uniquely in case messages
must be sent to them, each agent c maintains a table of its neighbours. The entries in this
table contain directional addresses of the form 〈agent name,agent identifier,direction 〉, where
direction denotes the direction in which an agent with the respective address was seen at
the occasion of its last communication with c. The agent names and directions are used for
detection of name conflicts and their resolution. The agent identifiers are revealed only among
those agents who need to (and agree to) communicate. An agent’s identifier is not used for
message routing.

Known solutions to establish a communication structure exploit e.g. leader election (cf.
[11], [12], and [22]) and require storing address books with names and identities of all agents
within the network in every node. We aim at an approach without leaders and that is respects
the privacy of agents, in the sense that each agent “knows” only the identifiers of its immediate
partners and minimizes the transfers of their identifiers.

We adapt Protocol A so that it can be used as a part of a neighbour detection and
naming protocol, in combination with a neighbourly message communication scheme. We
need to make the following assumptions on the communication abilities of the agents:

– each agent maintains the table of its (known) neighbours, together with their (known)
directional addresses,

– each agent has the ability to transmit to and receive messages from other agents direc-
tionally,

– each agent has the ability of receive omnidirectionally and to determine the direction from
which a message has arrived,

– the communication protocol allows that only one agent can be involved in a communication
with another agent; if two or more agents try to engage in a communication with an other
agent, all participating agents will recognize this fact and neither addressee will obtain
the message.

The first three conditions are the same as in the model of [16] used for neighbour discovery.
The fourth one is necessary in order to prevent interference of messages exchanged between
two agents. Such communication protocols do exist in this context (cf. [14, 15]).
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We describe Protocol C, which is based on Protocol A, allowing initially unnamed agents
to form dynamic networks in which neighbourly messages can be delivered to their addresses.
We specify the protocol in a self-descriptive, action-driven format for any agent c, in three
parts. The first part is simple and concerns the first action of any agent coming to life in the
system for the first time.

Subprotocol C.init

% If an agent c becomes active and enters the set of agents, it carries out the follo-
% wing action to acquire an initial, external name.

1. Initialization
Agent c generates an initial name h = hc (‘prenaming’).

(End of Subprotocol)

The next part of Protocol C deals with neighbor discovery and, also, table maintenance.
An important invariant that must be maintained is the connection between an agent’s name
and its agent identifier, as known and registered locally by other agents in their tables. Note
that it cannot be a global invariant due to the allowed occurrence of doubles in the network.
Locally we control the invariant, but we allow for agents to be mobile without necessarily
checking everything every time. This implies that we allow the invariant to go ‘out of bounds’
temporarily, in cases that are not likely to occur (cf. the déjà vu-situations as explained in
Section 4.2). These cases eventually correct themselves again.

Subprotocol C.nd

% During ‘neighbour discovery’ each agent c intermittently switches between the
% following two actions.

1. Neighbour discovery: sending advertisements to neighbours
In directional mode c sends advertisements in a sequence of probes issued in all
directions covering the part of space under consideration. Within a probe, c adver-
tises its presence by sending its name.

2. Neighbour discovery: Receiving advertisements from neighbours
In omnidirectional mode, c waits for advertisements. If c receives an advertisement
from agent d, agent c determines the direction of the message it received. Then
it compares its own name with the name of the sending agent. Now the following
cases may arise:
(a) the names are different and d is known to c:

In this case c checks the direction from which the advertisement came. If it
coincides with the direction c knows for d from its table plus or minus a mobility
margin, then c corrects the direction of d in its table if necessary, and responds
directionally with its own advertisement. If the direction of d’s advertisement
differs by more than the allowed margin from the registered value, then c treats
d as a new agent and acts as in the next case.



Autoconfiguration in MANETs 13

(b) the names are different but d is unknown to c:
In this case the agents introduce themselves by exchanging their values of
agent identifier. If the identifier of agent d already occurs with a name d′

in c’s table (with d′ necessarily a prefix of d in this case), c updates the entry
for d′ by substituting its new name and direction. If the identifier of agent d
did not occurs in c’s table, then c now creates an entry for d in its table.

(c) the names collide:
Now c and d apply Protocol A to resolve their name conflict. Next they intro-
duce themselves by exchanging their values of agent identifier, for the purpose
of future communication. Then both agents update the respective entry in their
tables of reachable agents and both agents inform their neighbours about their
current (new, changed) name by sending directional advertisement to them (as
in Action 1).

% Note that step (c) guarantees that the agents announce their new names and
% thus force the agents in their neighborhood to update their tables according-
% ly, in this way restoring there the right correspondences between name and
% agent identifier.

(End of Subprotocol)

Subprotocol C.nd can be triggered in two ways: whenever the agent wants to carry it out,
or whenever there is a name conflict detected that must be resolved. (The name conflict may
be detected in several directions.) In the latter case especially, surrounding agents rely on
the name resolution as part of the autoconfiguration and we must assume that a run through
Subprotocol C.nd takes place quickly, within timing margin ∆T . By definition this also implies
that the local situation does not change too drastically, i.e. that no mobility margins are
exceeded within this time period (which would otherwise induce a possibly lengthy chain of
new introductions by the last clause of action 2.(a) of the subprotocol). Thus we assume that
within ∆T time two agents can resolve a name conflict and advertise their new names by
action 2.(c), and that within another ∆T time the surrounding neighbors can process this
information according to action 2.(a), for a total of 2∆T time.

The final part of protocol C uses the autoconfiguring infrastructure of the agent network
and deals with the exchange of messages in local neighborhoods, the basic communication
mode. The approach relies on Subprotocol C.nd to maintain the directional addresses around
every agent. If an agent c wants to send a message to local neighbor e, it first sends a ‘message
announcement’ to trigger any needed autoconfiguration in the neighborhood, i.e. resolve any
name conflicts that may still exist, before sending the intended message to the intended
neighboring agent e. In this context Subprotocol C.nd is assumed to be pro-active and quick,
and Subprotocol C.com is running as a slower client on top of it.

Subprotocol C.com

% Each agent c wanting to send a message to a neighbour e engages in the various
% actions in the following series.
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1. Neighbour communication: Sending a message announcement
Agent c sends a message announcement in directional mode to the selected neigh-
bour named e in its table. A message announcement has the form 〈(c, e)〉 and is
delivered to all agents with name e within the chosen direction, i.e. plus or minus
the mobility margin.

% If c receives a notification from the communication systems that a name conflict
% has arisen (see below), then it drops the announcement and tries again later,
% otherwise it waits for e to respond. Agent e may or may not have moved away.

If there is no agent e in the chosen direction, no response will come and the attempt
‘times out’, and c moves to action 3 below.

% As argued above, a suitable time-out value will be 2∆T .

2. Neighbour communication: Receiving a message announcement
Upon receiving a message announcement, every neighbouring agent with name e
wants to respond in a directional mode back to c. Now one of the following actions
applies:

% By assumption, if two or more agents now want to respond to c, the communica-
% ation protocol reveals to them (and to c) whether there is a name conflict or
% not.

(a) Receiving a message announcement: no name conflict
If there is no name conflict detected and thus e is a single agent with that name
in c’s neighbourhood, agent e checks two further possibilities:
– c is known: c occurs in e’s neighbourhood table in the direction from which
the message announcement has arrived (plus or minus a mobility margin),
meaning that both agents have already introduced themselves in the Subpro-
tocol C.nd actions. Therefore e can notify c of this and c can send the message
safely to e without requiring any further authentication from e.
– c is unknown: c is not found in e’s neighbourhood table in the direction from
which the message announcement came, meaning that the agents have never
met before or have changed their relative positions in the meantime. Therefore,
they first identify themselves, revealing their identities and updating their table
entries, and c can send his message to e (cf. action 3 below).

% If there is a name conflict, the agents e are immediately diverted to the
% following action however:

(b) Receiving a message announcement: name conflict
If it is detected that there are two or more agents with name e (‘doubles’) in
c’s neighbourhood, then c postpones its message sending to ‘e’, it saves the
agent identifier of e to mark it, and every agent e in its neighbourhood en-
gages to resolve the name conflict as in Subprotocol C.nd of Protocol C.
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% Note that in the framework of this protocol the former agents e, after having
% gotten their new names, advertise themselves anew to c who can update its
% neighbourhood table. Eventually, c can send its postponed message to the
% correct agent e again even though e may now be known under a new name.

3. Neighbour communication: Sending a message
If c receives a suitable notification from e, it sends the intended message to e. If c
receives no notification from e within 2∆T time, it can either give up (assuming
e.g. that e is not there) or check its table for the current name e′ of the agent with
the identifier of e it has saved and resend the message announcement to e′.

% Note that 2∆T time should be sufficient for the needed name resolution between
% some of the agents e. It may be that some agents e remain but the action will
% chose the right agent for sending the message to in the retry. Note that name e′

% will be an extension of name e. If e is not responding within the set time after
% another retry, c can choose to delete it.

(End of Subprotocol)

This completes the descriptions. Further Subprotocols can be built on top of C.com, for
example for multi-hop routing in a MANET.

4.2 Adequacy of Protocol C

Protocol C consists of the ‘stack’ of Subprotocols C.init, C.nd, and C.com that together create
an autoconfiguring communication infrastructure for the agent network.

In Protocol C we took a generic approach and let agents send a separate message an-
nouncement to the intended neighbour first, prior to actually sending a messages to this
neighbour. This avoids with high probability that a message could be received by a ‘double’
to whom the message is not addressed. In case this is considered harmless, the message could
be included in the announcement and the further exchange can be aimed at a notification
in action 3 of Subprotocol C.com that is only to be interpreted as an ‘acknowledgement of
receipt’.

Note that, after the agents have initially advertised themselves to their neighbours, their
value of agent identifier is examined only in statistically unlikely cases, i.e. when in a given
direction (sector) there appears a newly arriving agent with an ‘existing’ name (a ‘double’) or
when there is a yet undetected name conflict in that direction. This is warranted because we
have assumed that the subprotocols all run quick enough compared to the local movements
of the agents.

Protocol C makes essential use of the smart antennas. For example, when doubles are
detected after sending a message announcement, these doubles must be within reach of each
other in order to be able to communicate. In particular, when r is the reach of broadcasting,
they must not be farther than r from each other. Thus, they both must lie in a cone with
at most a 60 degree spherical angle (in 3D space). Hence directional antennas are needed,
otherwise the protocol would not work correctly. (Note that in the case of an omnidirectional
antenna the same message can be heard by two doubles whose distance is more than r.)
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Protocol C can err in case agent c sends a message to e and e is a newly arriving agent
which has already met an agent c (in some other part of the network) different from the one
which is sending the message. Especially, if the relative positions of both c and the ‘old’ e, and
that of the ‘other’ c and the ‘other’ e, coincide (or: differ by less than the mobility margin),
this may cause confusion. This situation is called a déjà vu situation. However, this situation
seems to be highly improbable especially thanks to the fact that ‘prenaming’ avoids most of
the name collisions from the very beginning.

Proposition 10 (Correctness and finiteness of Protocol C). Let c be an agent in a
network controlled by Protocol C, and let at any time t = t0 there be an agent e with directional
address 〈e, e identifier, d〉 recorded in c’s neighbour table. Then, provided that at any time
t > t0 there is an agent with identity e identifier in the neighbourhood of c that is responding
and with the exception of déjà vu situations, Protocol C will deliver a message sent by c to that
agent in finite time, irrespective of whether there were doubles of e or not in its neighbourhood.

Protocol C is a lazy protocol since it does name conflict detection at any moment the
agents want to and can postpone resolution to the last possible moment, i.e. to the moment
when duplicate names cause message delivery to two or more recipients c.q. to non-unique
addressees. Even then only one of the possible conflicts needs to be resolved at a time (cf. [18]
for a similar idea using randomly assigned names). This contributes to the minimization of
traffic in the network: only the conflicting agents and the partners of the agent which had to
change their name are involved. This is to be compared with so-called DAD-based protocols
(Duplicate Address Detection, cf. [13], [5]) which use flooding in order to eliminate duplicates
in the whole network and hence lead to a large number of DAD messages, especially in the
case of network merging.

4.3 Joining, leaving and migrating agents

Joining a network is easy – a name for a joining agent is provided immediately and the agent
is fully operational in terms of having the possibility to communicate with agents chosen in
the neighbour discovery process even, if name conflicts are to be expected. Thus, with respect
to the resolution of duplicate names, Protocol C is related to the proposal in [23] and in fact it
is similar to that of [13] where a joining agent has to check immediately whether its randomly
chosen address is not used by somebody else. “No reply” is interpreted as “no”, but this can
be due to the failure or absence of the queried agent. Therefore, without a further measure
this approach does not lead to a reliable duplicate names resolution. In our case, however,
the duplicate checking is performed only within the neighbour discovery range; on the other
hand, it is repeated all over again, which also helps in the case of a node failure.

Protocol C efficiently handles the migration of agents also. Only in cases when several
agents at the same time decide to join a network, a proliferation of conflict resolution messages
can occur. This seems to be the case with any decentralized protocol without leaders (cf. [19]).
However, thanks to the lazy technique, in our case there is no network flooding when assigning
names or resolving duplicates, in contrast to techniques that preventively detect all possible
naming conflicts without waiting whether they really occur (cf. [11]). The absence of leaders
in our protocol has a further advantage in making the protocol more robust against the failure
or temporary absence of nodes. Note that failures are accommodated in very much the same
way as nodes ‘leaving’. Neighbouring agents will eventually detect that the failed or migrated
agent is no longer responding and cease to communicate with it.
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5 Conclusion

Name resolution protocols for ad hoc networks always seem prepared for the worst case
scenario, in which every object will communicate with every other object. In contrast to it,
our basic protocols offer a smooth transition from the initial state when hardly any object
communicates, to the intermediate but very probable state when groups of communicating
objects have more or less stabilized and changes occur only sporadically. It has thus lead us
to the useful concept of lazy autoconfiguration.

We presented some novel protocols to show that lazy autoconfiguration in MANETs and
dynamic networks of agents is indeed feasible. The protocols derive from a basic ‘lazy’ version
which resolves names conflicts only when they arise in an encounter. An optimization of this
protocol lead to a version which even uses name extensions of minimum possible length. The
basic lazy name resolution protocol was then converted into a lazy autoconfiguration protocol
which can be used e.g. in ad hoc networks with directional antennas and for the purposes of
neighbourly communication.

Unlike several other proposed protocols, our protocol scheme easily scales and is resilient
to the joining, leaving (including failure), and migration of agents. Last but not least, the
protocol is completely decentralized, making use of no leader nodes and no global information.
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