
Estimating and Measuring Performance of Computational Agents

Roman Neruda, Pavel Krušina
Institute of Computer Science, Academy of Sciences of the Czech Republic,

P.O. Box 5, 18207 Prague, Czech Republic,
bang@cs.cas.cz

Abstract

We study and design multi-agent systems for computa-
tional intelligence modeling. Agents typically reside in a
high-performance parallel environment, such as a cluster
of computational nodes, and utilize a non-blocking asyn-
chronous communication. The need of accurate predictions
of run-time and other characterizations of complex parallel
asynchronous processes bring us to design a new parallel
model creation methodology. In this article our approach is
briefly described and a test case is shown and discussed.

1. Introduction

In our project [4] we develop a multi-agent system aimed
at hybrid computational intelligence models represented as
a collection of autonomous agents in a multi-agent sys-
tem [9]. One of the goals was to develop a unifying frame-
work allowing time complexity estimates for agents en-
compassing computational methods on one hand, and a
computer-aided performance analysis of the real agents be-
havior in a distributed environment on the other. Since a
good fit of theoretical estimates to measured performance
data is needed, we decided to sacrifice the simplicity of the
model (as opposed to e.g. BSP [8] or LogP [1]) for better
accuracy. This feature can be compensated for by a semi-
automated way the parameters of the model are obtained for
a particular computer architecture.

In this paper we demonstrate the above mentioned ap-
proach first on deriving a concrete complexity model called
NASP which is further tuned for various computer architec-
tures, from SMPs to clusters of workstations. Experimental
performance evaluation has been made for a genetic algo-
rithm [6] suite of agents.

2. Theoretical Model

While the theoretical RAM model [2] of serial compu-
tation is clear and widely accepted, the existing program

developing tools target mainly real computers and their ma-
chine codes. We enhance the RAM model such that its pro-
gramming language is a real computer assembler. This ap-
proach has the advantage of generating such models by ma-
chine compilation from high-level programming languages.
Also the possibility of direct execution and measurements
of these models is valuable especially for the complex com-
putations.

A x86 random access machine (86-RAM) is based on the
traditional Random Access Machine (RAM) model with the
instruction and register sets modified to correspond to the
real computer architecture IA-32 [3]. Proper definitions can
be found in [5] and [7].

Definition 1 Generalized serial model of an algorithm A is
a function A on task size J and computer description M re-
turning cost estimates c of the algorithm A implementation
running on the M computer given the J-large task to solve.

We see that in order to be able to make predictions on al-
gorithm costs, we need to obtain the model function A, the
computer description M, and the task description J which
is a generalization of the more traditional variable N mean-
ing the input data size in bits. Now we focus on the machine
independent model creation process.

At the beginning, an algorithm description A in a pro-
gramming language is given. The goal is to estimate the A
run costs on a target machine with the description M. Let
us further assume that we can run A on a different machine
M

′ where we can do extra performance measurements of
the execution. First choice is to select an atomic operations
set A. Those operations define basic metrics in which al-
gorithm requirements are modeled and measured. This se-
lection influences the accuracy the model can achieve: the
larger the set is, the more accurate the model can be. The
simplest atom set has the only member—an instruction, a
two member set is a better selection—an integer instruc-
tion and a floating point instruction. More complex models
count also cache misses, page faults, branch instructions,
context switches, function invocations etc.

Next, the algorithm implementation is executed on the
M

′ computer for various tasks J, and the measurements of
the atomic operations A are done. After that, a suitable
regression technique is applied to get a function approxi-
mation F of these, depending on the task size J. Notice
that most of this work could be done automatically once
the benchmarking tools are available. The function F maps
task size description J in the atoms counts space N |A|. To
obtain time, space and other costs c from these counts, the
atomic operations benchmark on the target machine can be
used. It is common to unify such machine benchmark re-
sults with the machine description M. Finally, a functional
composition of the approximation function F and machine
description argument defines the generalized model func-
tion of A : M× J → c.

Definition 2 An asynchronous parallel machine (ASP) is a
universal computation device consisting of a fixed set of 86-
RAM machines C = P0, P1, ...Pp−1 and a communication
interconnect N.

The ASP machine description M is a quartet M =
[p,A,N, c]. The p is a number of processors. The A is a
matrix p× qC, the qC is number of sequential atomic opera-
tions, Ai,j is the j-th atomic operation cost when executed
on the i-th processor. N is basic communication routines
cost functions Ni : (|δ|, src, dst,Lsrc

C
,Ldst

C
,LN) → c vec-

tor of size qN. And c is a 13-tuple containing a collection of
private data and the following functions:

Cost combination rules:

SeqOver : (c, c) → c

SeqNext : (c, c) → c

SeqOver : (N , c) → c

SeqNext : (N , c) → c

ParOver : (c, c) → c

ParNext : (c, c) → c

Cost reduction operators:

T : c → R+

S : c → N p
0

UC : c → [0, 1]p

UN : c → [0, 1]

OC : c → R+p
0

ON : c → R+

0

The flexibility of ASP model definition leaves inten-
tionally some parameters—like a number and meanings
of atomic operations—unspecified. This makes from ASP
something like an abstract template base upon which vari-
ous but related models can be built. We define one repre-
sentative of the ASP models family by selecting the ASP
free parameters. It is called NASP and we will use it later
in this work.

Definition 3 A normal asynchronous parallel machine
(NASP) is an ASP device with the following configuration.
The qC equals to 6 and the sequential atomic operations are:

fast integer operation, fast float number operation, slow in-
teger operation, slow float number operation, memory al-
location, and memory deallocation. The qN is 3 and the
communication operations are: send, transfer, and receive.

The ASP machine is a set of connected serial machines.
Each computation node is modeled by a single 86-RAM.
The ASP machine description M combines features of iso-
lated computers such as the A atomic operations costs with
the interconnect network description of N. Further it con-
tains the number of computation nodes p and the structure
c, which keeps track of all various costs relationships, com-
bination rules, and reductions.

The A matrix can be understood as a vector of proces-
sors descriptions, each independent of the others. In each
processor description, the first pair —the costs of single in-
teger and floating point operations—is responsible for se-
rial computation time estimates; while the other pair —the
costs of dynamic memory allocation and deallocation—is
used for memory space estimates.

Similarly the N vector provides cost c for various basic
operations related to network communication.

The c cost structure—the last component of the M ma-
chine description— contains all the costs combination logic
and its instances keep track of all various costs the algorithm
in question pays for. The c object can have a dominant value
on the time axis like the case of the integer operation cost, or
it may have the time component zero and the memory space
bigger like the memory allocation operation has. It can also
have more important attributes as for example network send
operation has— it takes some time, loads the processor and
at the same time loads the interconnect network.

3. MAS implementation of a Genetic algorithm

Genetic Algorithm is an iterative optimization technique
that works on a set of partial solutions—a population. In
each iterations, relatively good solutions are taken from that
set, optionally modified with various operators, and col-
lected to create a new population. This process repeats till a
sufficiently good solution approximation is found (Fig. 1).

A parallelization of Genetic Algorithm is often done via
this scheme replication over the computational nodes and
communicating best solutions among populations (Fig. 1).

Figure 2 shows a block diagram of one iteration of ge-
netic algorithm. Each iteration starts with the fitness func-
tion evaluation for each genome that has changed from the
last iteration—that is phase A. Then, the best genome is
found and sent to the next one in the parallelization ring in
phase B2. The B2 code is executed only if the elite genome
has come to the actual process and only once for any such
incoming genome. Next, in phase C, a new generation is

Operators
Package

Function
Selection

Fitness

Tuner

Genetics

Shaper
Fitness Operators

Figure 1. a) The generalized genetic algorithm
decomposition. b) The generalized genetic
algorithm parallelization via circular commu-
nication among per-machine subpopulations.

created in cooperation with the selection and genetic opera-
tors. When the new population is large enough, the iteration
ends and a new one is started. Any time during the iteration,
an elite genome may come up and be processed—phase B1.
This completes the analysis of Genetic Algorithm code run.
But other agents are executed as well. We name the fitness
function code as F, the selection code S, and the metrics and
genetic operators code M/O.

For each of the computation blocks
(A,B1,B2,C,F,M/O,S), the following properties were
measured: integer operations, floating point operations,
processor cycles, the number and type of communications
performed together with the sizes of transferred data. For
the main blocks A,B1,B2,C, the amount of used memory
was also measured.

4. Experiments

To test the constructed model of our genetic algorithm,
we obtained descriptions of several machines, calculated
predictions of iteration times, and measured them on the
real GA running there. Reference machine is a regular IA32
computer with Celeron CPU, SGI Origin 2000 is a RISC
computer with two R12000 processors, Sun ULTRA 10 is
a RISC computer with one UltraSPARC IIi processor. The
next machine is an IBM PC with Pentium II, and Joyce is
a PC/Linux cluster of 16 Athlon XP nodes connected via a
100-Mbit Ethernet star-topology network.

First, experimental measurements of the genetic algo-
rithm run are compared to the GA models predictions for
all of the test computers. The average relative errors are be-
tween 1.16—in the case of PC—and 1.8—for the Sun com-
puter. Table 1 and Figure 3 gather these results.

Next, the parallel model is compared to the parallel run
of the genetic algorithm. To be able to construct the model
of parallel genetic algorithm, a network inter-node commu-
nication time has to be analyzed. Similarly to the other dis-
tributed memory parallel machines, in the case of Joyce the
communication time depends on the amount of transferred
data. Measurements of these times have been done for a

S S S S S S S S SS

AGenetics

AFitness30

AOPack30

ASelection

A

S

A B2 C B1

M/O

CS

F

B2B1AF

CM/CO

A The fitness function is evaluated.
B1 An elite genome is received from the previous AGe-

netics in the parallelization ring.
B2 If there is an elite genome from outside, it is added

to the current population and the best genome is sent
next through the ring.

C The selection is called and the operator package ap-
plies genetic operators.

F The fitness function evaluation.
M The metric operator evaluation.
O The genetic operator evaluation.
S The selection process.
AF The communication between AGenetics and AFit-

ness30.
B1B2 The communication between two AGenetics in the

parallelization ring.
CO The communication between AGenetics and

AOPack30 during evaluation of a genetic opera-
tor.

CM The communication between AGenetics and
AOPack30 during evaluation of a metric opera-
tor.

CS The communication between AGenetics and ASelec-
tion.

Figure 2. Generalized genetic algorithm im-
plementation.

whole scale of data sizes and the following formula approx-
imates the obtained data best: T (x) = max(1.65x, 5000 +
0.75x) − 2500µs.

In our parallel model of GA, we want to predict how
many iteration would proceed between successor elite
genome arrivals into a particular node. To do so, we need
to model the inter-node communication and the overall sys-
tem behavior with respect to the asynchronous nature of its
processes (see Figure 4).

For our test, we selected a configuration of 3 compu-
tational GA nodes. The computational nodes run unsyn-
chronized, thus we can consider the elite genome income
to occur in a random phase of the iteration. Since the elite
genome can be emitted only from a fixed point of the iter-
ation cycle the expected slow-down is one half (of the it-
eration cycle) per parallelization ring node. That is for the

Computer Graph Max E Avg E Min E
SGI 3 2.2 1.6 1.2
Sun 3 4.2 1.8 1.7
PC 3 1.21 1.16 1.04
Joyce 3 2.4 1.3 1.1

Table 1. Model evaluation on test computers.

measurements
predictions

 0
 1

 2
 3

 4
 5 0

 1
 2

 3
 4

 5
 6

 7
 8

 9

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

measurements
predictions

 0
 1

 2
 3

 4
 5 0

 1
 2

 3
 4

 5
 6

 7
 8

 9

 0

 10

 20

 30

 40

 50

 60

measurements
predictions

 0
 1

 2
 3

 4
 5 0

 1
 2

 3
 4

 5
 6

 7
 8

 9

 0
 1
 2
 3
 4
 5
 6
 7
 8

measurements
predictions

 0
 1

 2
 3

 4
 5 0

 1
 2

 3
 4

 5
 6

 7
 8

 9

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Figure 3. GA iteration time measurements and
model predictions on Origin, Sun, IBM PC and
a cluster of PCs.

time the elite genome spends waiting for the target process.
Besides this, there is also the time spent communicating
the elite genome among computational nodes which, if ex-
pressed in iterations, is tc

tG
per parallelization ring node (for

the iteration times tG and the communication time tc). Thus
it can be easily observed that the expected number of itera-
tions between two elite genomes comings is: X = 3

2
+3 tc

tG
.

0 1 2

t tc G

Figure 4. Parallel run of GA on 3 nodes.

The graph in Figure 5 shows the measured numbers of
iterations between elite genomes comings X in the real par-
allel runs of GA together with two model predictions of
these. Since the dependence of the elite genomes coming
interval on the population size has shown to be small for the
investigated parameters, we selected three more population
sizes to try—2,5 and 10. Though the GA model is stressed

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 2 5 10 30 60 90 120 150 180 210 240 270 300

measurements
original model predictions
scaled model predictions

Figure 5. The number of iterations between
elite genomes comings in real measurements
and two models.

beyond the area it was built for, it still shows the correct
tendency.

Acknowledgments

This research has been supported by the Na-
tional Research Program Information Society project
1ET100300419.

References

[1] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser,
E. Santos, R. Subramonian, and T. von Eicken. LogP: To-
wards a realistic model of parallel computation. In Proceed-
ings of the Fourth ACM SIGPLAN Symposium on Principles
and Practise of Parallel Programming, 1993.

[2] S. Fortune and J. Wylie. Parallelism in random access ma-
chines. In Proceedings of the 10th Symposium on theory of
Computing, pages 114–118, 1978.

[3] IA-32 Intel Architecture Software Developer’s Manual, vol-
ume Volume 2: Instruction Set Reference. Intel Corporation.

[4] P. Krušina, R. Neruda, and Z. Petrová. More autonomous
hybrid models in bang. In International Conference on Com-
putational Science, pages 935–942, 2001.

[5] P. Krušina. Models of Multi-Agent Systems. PhD thesis,
Charles University, Prague, 2004.

[6] Z. Michalewicz. Genetic Algorithms+Data Struc-
tures=Evolution Programs. Springer-Verlag, Berlin,
1994.

[7] R. Neruda and P. Krušina. A framework for modelling and
estimating complexity in multi-agent systems. In T. Gonza-
les, editor, Parallel and Distributed Computing and Systems,
pages 602–607. ACTA Press, 2004.

[8] L. Valiant. A bridging model for parallel computation. In
Communications of the ACM, volume 33(8), pages 103–111,
1990.

[9] G. Weiss, editor. Multiagent Systems. The MIT Press, 1999.

