
ρ-index – An Index for Graph Structured Data

Stanislav Bartoň and Pavel Zezula

Faculty of Informatics, Masaryk University, Brno, Czech Republic
{xbarton, zezula}@fi.muni.cz

Abstract. The effort described in this paper introduces an indexing
structure for path search in the graph structured data called ρ-index. It
is based on a graph segmentation S(G) that is meant to represent the
indexed graph G in a simpler manor yet having similar properties as the
graph G had. This is achieved using graph transformations and a special
type of a matrix used to represent the transformed graph.

1 Introduction

In the context of the Semantic Web, ρ-operators are proposed in [1] as a mean
to explore complex relationships [3] between entities. The problem of searching
for the complex relationships can be modeled as the process of searching paths
in a graph where entities represent vertices and edges the relationships between
them. The notion of complex relationships can be also identified in bibliographic
digital libraries, where entities could represent publications and the relationship
can represent references or citations between them.

As proposed in [1], we recognize two kinds of complex relationships. The first
one is represented by a path lying between two inspected vertices. Speaking in
terms of publications this means that one publication indirectly cites or refer-
ences the other publication – a chain of publications can be built so that one
cites another. The second type of complex relationship is a connection between
two inspected vertices. This symbolizes a fact that the two inspected publica-
tions indirectly cite one common publication, see Fig. 1 for an example of this
kind of complex relationship.

The knowledge about complex relationships among publications can be used
for example for ranking the result of the search for publications. Another use
case can be an automated recommendation of publications based on the preferred
set of publications. For that reason, this paper presents an indexing technique
called the ρ-index that enables efficient discovery of complex relationships in
large collections of graph structured data.

2 Motivation

The graph theory proved that a very handy representation of a directed graph
is its adjacency matrix because using matrix algebra we can comfortably study
the graph’s properties. For instance, if the adjacency matrix is powered by two,

X

’cites’ relation

publication

edge sequence

A

B

Fig. 1. An example of a connection between vertices A and B. Two paths originated
in A and B connected in a common vertex X.

each field in the resulting matrix contains a number of paths of length two
lying between every pair of vertices in the original graph. If the computation
continued, the result would contain amounts of all paths of an arbitrary length.
Moreover, with a slight modification of the matrix that is introduced in section
4.2 we would get not just the amounts of paths but the paths themselves.

The main difficulty of a matrix representation of a graph is that its use is
limited to fairly small graphs, because the matrix grows in the quadratic space
and the multiplication operation on matrices has even cubic time complexity.
Therefore, we introduce graph transformations to enable the use of the matrix
approach to graphs of arbitrary size.

3 Theoretical background

The proposed indexing structure is built upon the theoretical base of the graph
theory and following theses. The necessary background definitions can be found
in Appendix A to this paper. The corner stone of this work is a graph segmenta-
tion. A graph segment is very similar to a graph’s subgraph. The main difference
is that the segment also can contain edges that have only one vertex in the
proper segment. The graph segmentation is then a division of the original graph
into segments where is true that no vertex belongs to two different segments and
that the whole graph is segmented – all vertices and edges are present in the
segmentation. The purpose of the graph segmentation S(G) is a simplified rep-
resentation of a graph G by a segment graph SG(G) that has similar properties
that G had. Basically, following a path p in G implies following a path in SG(G)
represented by a proper segment sequence of p.

Lemma 1. If a graph G = (V, E) has a segmentation S(G) that forms a graph
SG(G), any path p = (v1e1v2e2 . . . envn+1) in G can be represented by its proper
segment sequence in S(G) and this representation is unique.

Proof. A segment sequence is another representation of a path in SG(G). In fact,
(S1 . . . Sl) is a simplified representation of (S1h1S2h2 . . . Sl−1hl−1Sl). Thus, we
show that any path in G can be transformed into a path in SG(G) that actually
represents a segment sequence which is the proper segment sequence for this
path.

From the definition of S(G) we have that each vertex in G belongs exactly
to one segment of S(G). Therefore, we take the path p in G and rename the
vertices by the segments they belong to.

p = (v1e1v2e2 . . . envn+1) −→ (S1e1S2e2 . . . enSn+1)
If Si = Si+1 then ei is not a border edge, therefore we omit the part (ei, Si+1)

from the transformed path. We repeat this step until Si 6= Si+1 is true.
According to the definition of SG(G) we drew an edge h = (S1, S2) in SG(G)

whenever EDGES OUT (S1) ∩ EDGES IN(S2) 6= ∅. Presence of ei between
Si and Si+1 in (S1e1S2e2 . . . enSn+1) implies the presence of such edge in G
connecting two vertices from the particular segments where Si 6= Si+1 which
implies that EDGES OUT (Si) ∩ EDGES IN(Si+1) 6= ∅ and therefore exists
an edge h in SG(G) from Si to Si+1.

Now we have (S1ei1Si1ei2 . . . eil−1Sl), so we replace all ei by the respective
edges hj from SG(G). The result is a correct path (S1h1Si1h2 . . . hlSl) in SG(G)
that represents a proper segment sequence (S1 . . . Sl) for the path p in G.

The uniqueness of the proper segment sequence of a path p results from the
definition of segmentation S(G) because no vertex in V can be included in two
different segments. Thus, the chain of segment labels is unique for any path in
G.

Lemma 2. If a graph G = (V, E) has a segmentation S(G) that forms a graph
SG(G), the length of a path in SG(G) that represents a proper segment sequence
of a path p is always less than or equal to the length of p.

Proof. From Lemma 1 we know that each path in G has its proper segment
sequence representation. From the proof of that lemma we know that during the
transformation of the path in G to a path in SG(G) we omit zero or more edges.
Also some edges from G are replaced by edges from SG(G) but always one edge
by another. This implies that the resulting path in SG(G) can be at most of the
same length as the path in G.

4 Overview of the ρ-index

The main idea of the approach introduced in this paper is to identify certain
units in the indexed graph such that when replaced by single vertices, they would
form a new smaller graph that would be easier to navigate, but yet having the
same properties as the original graph had. The aim is to enable the use of the
matrix approach on SG(G) while it is not possible to use it on G. And because
SG(G) is also a regular graph it can be again segmented.

4.1 Proposed graph transformations

The first graph transformation used is a graph to a forest of trees transformation.
The result of this transformation is a set of trees together with a set of transitions
among those trees. A lot of indexing techniques for trees have been developed
for efficient navigation inside a tree. We have chosen the tree signatures [4].
They enable fast navigation inside a tree using simple and cheap operation – a
comparison of preorder and postorder ranks of nodes in the particular tree. The
ranks are represented by integer numbers thus the comparison of the particular
ranks takes O(1) time.

If we take a closer look on the result of this transformation we see that the
acquired trees form vertices and transitions among them edges in a new graph.
This new graph represents the original graph but in a simplified way. Certainly,
any path that was in the original graph is also in the new graph and vice versa.

If the size of the newly acquired graph is small enough to create the matrix
representation of it, the job is done. The index would be then composed of the
tree signatures and the matrix describing all paths among those trees. However,
we would like to index a graph of an arbitrary size. An obvious idea is to use
this graph transformation recursively onto the newly acquired graph as long as
we get a graph of a desired size. But an evaluation of the recursive application
of this transformation in [2] showed that after few applications this method does
not lead to a significant reduction of the amount of nodes in the new graph.

Therefore, another graph transformation has to be used to lower the amount
of vertices in the new graph. The transformation that we have chosen for this
is vertex clustering. It reduces the amount of vertices in a graph by collapsing
subgraphs (segments) into single vertices. Also in the new graph acquired by
this transformation is true that any path in the new graph is contained in the
original one and vice versa. This graph transformation represents the graph
segmentation, thus, the new graph is a segment graph of the original graph.

The reason why the transformation of graph to forest of trees is used is to
make more dense graph out of a sparse graph. The tree signatures can be applied
to tree of any size. This kind of transformation is used only once as a first step
in the process. In all following steps only the vertex clustering is used because
the number of vertices in the transformed graph does not decrease in a linear
way but rather converges to a certain limit.

4.2 Adjacency matrix of paths

A path type adjacency matrix is a modification of a usual adjacency matrix. It
is designed to represent a graph in a path oriented way. Initially, each field of
our matrix contains a path consisting of a single edge whenever there exists such
an edge between two vertices in the graph. The convenience it presents over the
usual adjacency matrix is that after the transitive closure of the path type matrix
is computed, the fields contain not just an amount of paths lying between any two
vertices, but also the paths themselves. Naturally, the mathematical operations
on numbers + and ∗ are replaced by the respective operations on paths - union
and concatenation.

L
ev

el
 3

...

Original graph

Tree signatures

Top level matrix

Matrices for segments
L

ev
el

 1
L

ev
el

 2

Fig. 2. A ρ-index consisting of three levels.

4.3 Outline of ρ-index’s structure

Let present a brief example of a three level ρ-index visualized in Fig. 2. Firstly,
the graph to a forest of trees transformation is applied to the graph that is
indexed. Subsequently, a tree signature is created to each acquired tree. The
new graph, where vertices represent trees and edges represent transitions among
trees, is then decomposed by the vertex clustering transformation. For each
collapsed subgraph, its path type adjacency matrix is created. After that a path
type adjacency matrix is created to the newly acquired graph, where vertices
represent collapsed subgraphs (segments).

Hence, the ρ-index has the following structure. On the lowest level, there are
tree signatures of trees obtained by the first graph transformation. Above that
is a set of path type matrices describing each collapsed subgraph. And at the
topmost level is a single path type matrix used to navigate among the subgraphs.
This particular example is visualized in Fig. 2.

5 Preliminary experimental evaluation

An experimental implementation of the ρ-index was built to evaluate its prop-
erties. The measurable aspects are the time necessary to build the ρ-index and
the time consumed to discover the relationships. Furthermore, a proportion of
accessible vertices from the inspected vertex in the indexed graph to the amount
of actually accessed vertices in the ρ-index is measured. Also a total number of
accesses to vertices in the ρ-index is recorded.

The both graphs used to evaluate the ρ-index properties are a part of the
Open Directory Project1 representing the connections among categories. They

1 The Open Directory Project can be found at http://www.dmoz.org.

mostly differ in the size and density. We have run the tests on a usual desktop
computer with a 3 GHz Pentium 4 processor and 2 gigabytes of RAM.

of levels in ρ-index 3 3

of vertices 15 214 169 271

of edges 66 478 255 687

Time to create (mins) 0:45 1:52

of accessible vertices 6419 66 065

Resulting relationship found not found found not found

of accessed vertices 462 130 17 11

of accesses 162 492 5534 97 157

Time to find relationship (secs) 10 2 0.01 0.01

Table 1. Experimental evaluation of ρ-index.

The ρ-index was tested on two graphs that differed in the amount of vertices
they contained. The proportions of both graphs are stated in Table 1. As the
total number of edges in each graph proposes, the smaller graph is more dense
than the bigger one. The evaluation consisted of a set of executions of a path
relationship search. Thus, we used the index to retrieve all paths lying between
the two inspected vertices. The result of this search was either the an empty set or
all paths lying between the two vertices. During each execution the total number
of accesses to vertices in the ρ-index was recorded to measure the efficiency of
designed algorithms.

The number of accessible vertices indicates the amount of vertices that can
be accessed in the indexed graph from the starting vertex. Number of accessed
vertices represents an amount of actually accessed vertices in the ρ-index.

The experimental evaluation concludes that the sparser the graph is the
better results we get from the ρ-index . Why is that true indicates the total
number of accesses to vertices in the ρ-index . We found out that not every
segment sequence that is a product of the transitive closure computation of
SG(G) does represent some path on the lower level (in G). And this happens
more often in the denser graph causing a huge amounts of these false segment
sequences to be checked by the search algorithm.

6 Concluding Remarks & Future Work

During the ρ-index implementation, some further modifications had to be done
to the theoretic design of the ρ-index . The theoretic base of the ρ-index counted
on computation and storage of all possible paths along the building phase of
the index. Nonetheless, huge amounts of paths computed at the higher levels of
the structure turn to be a dead end during the retrieval of a real path between

two vertices in the original graph. Therefore, limitations concerning the maximal
amount of paths stored in each path type matrix field and a maximal iteration
step of the transitive closure computation of path type matrix were set during
the ρ-index creation phase. These limitations have impact on the quality of the
response retrieved using the ρ-index, although they enable the user with the
control over the maximal length of an indexed path and a maximal number of
paths indexed between two vertices. Albeit, these do not limit the use of ρ-
index, since in many cases the user’s concern is limited to the most relevant
relationships.

As the experimental evaluation of the ρ-index implied, the future work will
mainly focus on the design improvement of the ρ-index . One of the possible ways
is to control the undesired storage of segment sequences that do not represent
any path on lower levels. Another direction we draw our attention will be to
index paths and connections only to a certain length and to a certain amount
between any two vertices. To achieve that we would like to introduce weights of
vertices to promote their importance.

References

1. Kemafor Anyanwu and Amit Sheth. ρ-queries: enabling querying for semantic asso-
ciations on the semantic web. In Proceedings of the twelfth international conference
on World Wide Web, pages 690–699. ACM Press, 2003.

2. Stanislav Bartoň. Indexing structure for discovering relationships in RDF graph re-
cursively applying tree transformation. In Proceedings of the Semantic Web Work-
shop at 27th Annual International ACM SIGIR Conference, pages 58–68, 2004.

3. Sanjeev Thacker, Amit Sheth, and Shuchi Patel. Complex relationships for the
semantic web. In D. Fensel, J. Hendler, H. Liebermann, and W. Wahlster, editors,
Spinning the Semantic Web. MIT Press, 2002.

4. Pavel Zezula, Giuseppe Amato, Franca Debole, and Fausto Rabitti. Tree signatures
for XML querying and navigation. Lecture Notes in Computer Science, 2824:149–
163, 2003.

Appendix A

Definitions

Definitions necessary to state the theoretical background of the approach intro-
duced in this paper.

1. Vertices V = {v1, ...vn}
2. Edges E = {e1, ...em}, E = V × V, ei = (v, w), v, w ∈ V
3. Graph G = (V,E)
4. Initial vertex of an edge e: LEFT V TX(e) = v1 ⇔ e = (v1, v2)
5. Terminal vertex of an edge e: RIGHT V TX(e) = v2 ⇔ e = (v1, v2)
6. Segment S in graph G : S = (VS , ES) : VS ⊆ V ∧ VE = {e ∈ E |

RIGHT V TX(e) ∈ VS ∨ LEFT V TX(e) ∈ VS}

7. Segmentation S(G) = {S|S is a segment of G} ∧ ⋂
S∈S(G)

VS = ∅ ∧
⋃

S∈S(G)

VS = V

8. EDGES OUT(S) = {e|e ∈ ES ∧LEFT V TX(e) ∈ VS ∧RIGHT V TX(e) 6∈
VS}

9. EDGES IN(S) = {e|e ∈ ES ∧ RIGHT V TX(e) ∈ VS ∧ LEFT V TX(e) 6∈
VS}

10. Sequence of segments (S1 . . . Sl) = S1, . . . Sl ∈ S(G), 1 ≤ i ≤ l − 1 :
EDGES OUT (Si) ∩ EDGES IN(Si+1) 6= ∅

11. Acyclic sequence of segments (S1 . . . Sl) is a sequence of segments where:
1 ≤ i 6= j ≤ l − 1 : Si = Sj ⇒ Si+1 6= Sj+1

12. Acyclic path p = (v1e1v2e2 . . . envn+1) in G : 1 ≤ i ≤ n, 1 ≤ j ≤ n + 1, i 6=
j : ei ∈ E ∧ vi, vj ∈ V ∧ vi = LEFT V TX(ei) ∧ vi+1 = RIGHT V -
TX(ei) ∧ vi 6= vj

13. Simplified path notation: instead of (v1e1v2e2 . . . envn+1) we sometimes use
(e1e2 . . . en) .

14. Connecting path p = (e1e2 . . . en) in a segment sequence (S1 . . . Sl): p ∈
(S1 . . . Sl) : e1 ∈ {EDGES OUT (S1) ∩ EDGES IN(S2)} ∧ en ∈ {EDGES-
OUT (Sl−1) ∩ EDGES IN(Sl)} ∧ ∃i2, i3, . . . il−1 : 1 < i2 < i3 < . . . <

il−1 < n : {e2, . . . ei2} ⊆ ES2 ∧ {ei2 , . . . ei3} ⊆ ES3 ∧ . . . ∧ {eil−2 , . . . eil−1} ⊆
ESl−1

15. Proper segment sequence for a path p = (v1e1v2e2 . . . envn+1) : S(p) =
(S1 . . . Sl) : S(p) is a segment sequence ∧ 1 ≤ i1 < i2 < . . . < il ≤
n + 1 : {v1, . . . vi1} ⊆ VS1 ∧ {vi1 , . . . vi2} ⊆ VS2 ∧ . . . ∧ {vil

, . . . vn+1} ⊆ VSl

16. Segment graph of G: SG(G) = (S(G), X), X = {h|h = (Si, Sj) ⇔ 1 ≤
i, j ≤ k ∧ EDGES OUT (Si) ∩ EDGES IN(Sj) 6= ∅}

