
Web Information Integration Tool:
Data Structure Modelling

Martin Rimnac
Institute of Computer Science, Academy of Sciences of the Czech Republic,

Pod Vodarenskou vezi 2,
182 07 Prague 8,
Czech Republic

rimnacm@cs.cas.cz

Abstract— The paper describes a method for relational data
model estimation from input web data and usage of this method.
It includes also its principal limitations and shows the model us-
age for a more effective storage into a repository. The repository
is implemented as the universal relation. The properties of the
model are described as well.

Keywords: data structure model, information retrieval

I. INTRODUCTION

Web pages contain a lot of information. The usage of web
page content has been studied since the Internet boom; the
well-known products are search engines or web autonomy
robots.
The information retrieval ”on the web” [1] approach continu-
ally develops: There are new methods for web pages mapping,
a similarity evaluation between documents or new methods for
page ranks. Many of them interpret a web page as a simple list
of words, nothing else. Does there exist a kind of a web page,
which could be read by humans and also could be processed
by automatic tools - at a higher level - in a helpful way for
humans?
One type of these pages could be a web interface to informa-
tion systems or to content managers. Information is presented
in this case as a view of a database and the view is formatted
to the XHTML page, to the XML or RDF format document or
to the plain text (CSV format). This kind of web pages is very
important for the inverse task - information retrieval from a
web page, and document transformation back into a database.
A web robot providing data collection could include: a trans-
formation tool, a repository, an integration tool and a reporter.
The transformation tool extracts information from a document
to a set of tuples. The tuples are stored in a repository, which is
implemented as the universal relation. The integration process
follows, synonyms at an attribute name level are processed.
The last step is a portal reporter, which is used for viewing
and searching information contained in the repository.

The database implementation of the universal relation ([2],
[3]) and the operations in the repository are described in the
paper. The paper includes also a description of a method,
which automatically estimates a data structure model from
an input dataset and which enables to store information in
the repository in a more effective way. The motivation for
the data structure model usage is the same as the normal

forms for the relational data model. The obtained model could
be used as a final relational data model by assuming input
data completeness; in such a case the data structure model
is the nearest to the logical data model. The data structure
model describes the functional dependency system of the data
stored in the repository, so the role of this model is similar to
ontologies in the semantic web context.

In the past, decomposition methods leading to the relational
data model modifications have been published. The input
of these methods is usually a set of functional dependen-
cies in the current model and requirements for new ones
(normal forms, multi-level relations, etc.). These methods
use the theory of sets or graph/hypergraph theory ([4], [5])
for relation and subrelation interpretation. There are many
different approaches as finding the closure of the set [6],
the step by step decomposition from one relation into its
subrelations, removing redundant functional dependencies [7],
converting the relational data model into a multi-level secure
one [8]. All of these methods fulfil requirements such as
minimal redundancy, representativeness or separativness [9].
The vertical [10] and horizontal [11] partitioning must be also
included in this content.

Then there exist also new approaches in XML document
integration [12], the first semantic information searching
tools [13] and project Froogle [14], which all attempt to solve
similar issues.

II. UNIVERSAL RELATION IMPLEMENTATION

The universal relation can be used to describe and store
any object of a universum and its properties. The simplest
implementation of the universal relation ([2], [3]) is the rela-
tionship creation between an attribute set, the active domains
of these attributes and the numerator of tuples. This model
of the universal relation can be extended by attribute name
similarity relations (in clasical mathematical meaning) for the
integration process. In any case all attribute values of any tuple
stored in the repository are accessed in one step.

The main drawback of this simple model is functional
dependencies non-inclusion leading to all tuple attribute values
to be stored in a repository. But there could exist attribute/s
with the same values in different tuples or with the value
depending on the value of other attribute/s. In such a case,

the storage of all such values in a repository is redundant.
It is the reason, why it is better to use the data structure
model, which describes a functional dependency system in
a repository and stores only attributes with different values or
keys of subinstances. The possible handicap of this solution
is not to retrieve values of all the attributes in one step.

A. Data Structure Modelling

The data structure model describes a functional dependency
system. It uses a graph theory interpretation for functional
dependencies: there is an oriented arc between attributes in the
data structure model graph, if the second attribute functionally
depends on the first one. The covering matrix is used for the
storage of the arcs.

B. Basic Properties of Functional Dependencies

If attributes depend mutually, they have the same size of
their active domains.

A1 → A2 ∧ A2 → A1 ⇒ ‖Dα(A1)‖ = ‖Dα(A2)‖ (1)

The set of functional dependencies has a transitive property:

A1 → A2 ∧ A2 → A3 ⇒ A1 → A3 (2)

The functional dependency can exist only in the case, when
the size of the depending attribute active domain is not greater
than the size of the active domain of the attribute on which it
depends.

A1 → A2 ⇒ ‖Dα(A1)‖ ≥ ‖Dα(A2)‖ (3)

For complex-attribute functional dependencies, if a value of
the (complex-)attribute H depends on the (complex-)attribute
G, then the attribute H depends also on the attribute G
extedend with a random added attribute (these dependencies
are called trivial).

G→ H ⇒ G′ → H ∀G′ ⊃ G (4)

The consequence of (4) is the data structure model contains
a complex-attribute non-trivial functional dependency with m
attributes on one side, if these m attributes have no dependency
between them.
The observation is that if a tuple of a new entity type with all
new attributes is added into a repository, these new attributes
are mutually depended. Thanks to (4), there is no complex-
attribute functional dependency in a new added entity type
tuple.

C. Tuple insertion into a repository

In previous sections, the universal relation implementation
and basic properties of functional dependencies were de-
scribed. Now, let us try to insert several tuples of one entity
type (with n attributes) into an empty repository.

For the first tuple, there is no problem, the tuple will
be added into a repository and all functional dependencies
between n attributes will be added into the data structure
model. The structure model will contain n(n− 1) functional

dependencies, self-attribute or other trivial dependencies are
not considered.

Let us assume the second tuple has some attributes with
the same value as the first one and some with different.
Several functional dependencies will be corrupted, because
there exist attributes with different sizes of active domains.
These corrupted dependencies will be removed from the data
structure model.

Now the question, how a functional dependency corruption
is determinated, arises. The o(n) test for the functional depen-
dency X → Y corruption after the n-th tuple addition is

∃i < n xi = xn ∧ yi 6= yn (5)

One way is to perform a test for all functional dependencies
in the data structure model. The second, more effective, is to
create the data structure model skeleton. Only the skeletons
reflecting the order of attributes given by the active domain
size (3) of non-complex attributes will be considered:

‖Dα(Ai)‖ < ‖Dα(Aj)‖ ⇒ i < j (6)

The observation is that the skeleton containing functional
dependencies with minimal distance between the attribute
active domain sizes is the most useful. These dependencies are
located nearby a diagonal of the covering matrix. The skeleton
also contains functional dependencies, which forks the path in
the skeleton (the skeleton without these arcs is a tree). All the
functional dependencies not containing in the skeleton will
be called non-selected. The result of this observation enables,
by usage of (2, 6), making a test for functional dependency
corruption only for the dependencies in the skeleton. If the test
fails, all dependencies with the same right or left side must
be tested.

In the case of functional dependency in the skeleton being
corrupted, the relation is divided into subrelations according
to the new data structure model.
In the situation, when there are m attributes with no de-
pendencies between them, the complex-attribute functional
dependency determination is enabled as a consequence men-
tioned after (4). All dependencies between the already existing
attributes and the newly added complex-attribute are tested.
On success, the new comlex-attribute functional dependencies
are added into the data structure model. The location of the
new complex-attribute in the covering matrix is important for
the model skeleton, the complex-attribute hierarchy must be
added to the ordering criterion (6). All possible subparts of
the new complex-attribute present in the model are moved up
into the higher hierarchy level. It means the so called virtual
attribute having active domain equal to the Cartesian product
of all concerned attributes is created. This enables to use a
graph skeleton algorithm instead of a hypergraph one. The
modified criterion for the attribute order is:

‖Dα(Gi)‖ < ‖Dα(Gj)‖ ∧ Gi * Gj ⇒ i < j (7)
Gi ⊂ Gj ⇒ i > j (8)

where Gi represents complex-attribute.

This modified criterion allows represention of complex-
attribute functional dependencies (in a special case the multi-
valued ones) in the data structure model. Of course, the
condition on the domain size (3) holds for complex-attribute
dependencies too.

III. DATA STRUCTURE MODEL

This section deals with the advanced properties of the data
structure model. The model reflects a functional dependency
system in a repository. The relations in a repository are
automatically divided into subrelations, if necessary.

Generally, the data structure model in time of initialization
contains n(n − 1) functional dependencies, but implicitly
contains n! of them (all possible functional dependencies,
including the trivial ones). The functional dependencies in the
model can be removed with a new tuple insertion. When no
new instance is available, the data structure model may be
similar (or same) to the logical one. The assumption of no next
tuple is very important, but it is not sufficient. The non-existing
in the real world - but present in the model - dependencies
are caused by limitations of resources. This kind of limitation
could be resolved by a complex integration process, but it does
not guarantee a solution in all cases.

On the other hand, the data structure model evolution
is monotonic (down going number of possible functional
dependencies) and the model is unique to a set of tuples (no
dependency on a tuple order). Formally, the models could be
ordered by number of all (skeleton, non-selected and trivial)
functional dependencies (denoted |M |) implied by the data
structure model. Then it binds:

|M0| = n! (9)
Mi < Mj ⇒ |Mi| > |Mj | (10)

∀Mk : M0 ≤Mk ≤MI ≤M∞ (11)

In this notation, the estimated data structure model Mk after
the (k+ 1)-th tuple insertion is located by the model ordering
between the model after initialisation M0 and the model MI

containing information from all integrated data sources, which
can have more functionaly dependencies that the logical one
M∞.

IV. IMPLEMENTATION AND EXPERIMENT

According to the given ideas, a prototype was implemented
in a PostgreSQL [15] database system. The prototype was
tested on an experimental data set containing information
about rates at an exchange office during two days. The data
were extracted from CSV format file downloadable from the
internet [16]. The tested set has 62 tuples, 31 per a day.

The graph in the Fig. 1 presents the relationship between the
number of the functional dependencies contained in the model
and a number of already stored tuples in a repository. Each
column is divided into two groups and each group is separated
into two parts. The upper group of the functional dependencies
represents the non-selected functional dependencies (denoted
NS), the bottom one the selected (denoted S) functional

Fig. 1. Number of Dependencies

Fig. 2. Benchmark t[ms]

dependencies, i.e. used in the model skeleton, which must be
tested after each new tuple is added. The righttop-leftbottom
hatching parts are the mutually functional dependencies, i.e.
Ai → Aj and Aj → Ai and i > j; the reverse hatching parts
are others.

The observation, that the model skeleton contains at most
2n functional dependencies, can be proved by the graph theory
combined with (2) and (4). The number is getting lower, the
model estimation is monotonic (11). The figure corresponds
with the model theory given before.

The model estimation process benchmark is given in the
Fig. 2. The process is separated into three phases. The first is
the tuple addition into a repository; it includes the attribute or

Fig. 3. Items in the repository

the value record creation, if necessary, see the time difference
between the first and second half of the dataset. The second
step is the corruption of dependencies in the skeleton testing;
if some corrupts, all transitive dependencies with the same
left or right side are tested and all together, in the case of
the corruption, are removed from the model. The test for the
non-selected ones and removing of corrupted is made in the
third phase.

The most complex operation was the addition of the first
tuple of the second day information, because a complex-
attribute is tested (Delete FD peak).

The Fig. 3 compares two ways of a dataset storage into a
repository. The first one, without the model estimation, is lin-
early increasing, all pairs attribute-value are stored. The second
one uses the model estimation and stores only pairs of the
decompositioned relations. The difference is straightforward
in the second half of the dataset, which contains information
about the second day and all the time invariant attribute values
are already stored.

V. CONCLUSION

The paper shows another way of mining web pages different
from the semantic web ideas. This can be used as a connection
between classical web pages and the formats for semantic web;
it joins these technologies. It uses the same documents as the
humans, integrates information from sources and only provides
the collected information for human with no deliberation.

In the paper, the implementation of the universal relation,
which is useful for the integration process, was described. The
main aim of the paper was to show how it is possible to
perform the tuple storage into a repository more effectively. It
consists in a data structure model creation, which contains all
functional dependencies and affects the storage in a repository.
The very important effective functional dependency testing
was also described.

The paper also includes ideas on the described relational
data model estimation, shows problems and limitation of this
approach. The reason for the described method usage is given
in the experimental part.

The ideas presented in the paper were implemented, the
solution has been tested on real web sources in the CSV format
and the results were included.

In the future, the automatic generation of the synonymous
attributes in different sources is planned to be added. It will
start the integration process needed for a better global model
estimation. The next work plan is to create a tool finding
parts of related information in complex web presentations and
automatically adding them into a repository. The knowledge
stored in a repository will increase, which may require the
distribution of the problem.

ACKNOWLEDGMENT

The work was supported by the project 1ET100300419 of
the Program Information Society (of the Thematic Program
II of the National Research Program of the Czech Republic)
”Intelligent Models, Algorithms, Methods and Tools for the
Semantic Web Realisation” and partly by the Institutional
Research Plan AV0Z10300504 “Computer Science for the
Information Society: Models, Algorithms, Applications”.

REFERENCES

[1] A.A.Barfourosh, M.L. Anderson, H.R.M.Nezbad, D Perlis ”Information
Retrieval on the World Wide Web and Active Logic: A Survey and Prob-
lem Definition” http://citeseer.ist.psu.edu/barfourosh02information.html
[online]. 2002.

[2] S.M.Kuck, Y. Sagiv “A Universal Relation Database System Imple-
mented Via the Network Model”, in Symposium on Principles of
Database Systems, pp. 147–157. 1982.

[3] D.Bednarek, D.Obdrzalek, J.Yaghob, F. Zavoral ”Access Rights Defini-
tion and Management in an Information System based on a DataPile
Structure” in ITAT 2004, Workshop on Information Technologies -
Application and Theory, 2004.

[4] G. Ausiello, A. D’Atri, M. Moscarini, “Chordality Properties on Graphs
and Minimal Conceptual Connections in Semantic Data Models”, in
Symposium on Principles of Database Systems, pp. 164–170. 1985.

[5] Bruno T. Messmer, Horst Bunke ”Efficient Subgraph Isomorphism
Detection: A Decomposition Approach”, in IEEE Transactions on
Knowledge and Data Engineering. pp.: 307-323. 2000.

[6] P.A. Bernstein, J.R. Swenson, D.C. Tsichristzis, “A Unified Approach to
Functional Dependecies and Relations”, in SigMod, pp. 237–245, 1975.

[7] J. Biskup, U. Dayal, P.A. Bernstein, “Synthesizing Independend
Database Schemas”, in SigMod, pp. 143–150, 1979.

[8] F. Cuppens, K. Yazdanian ”A Natural Decomposition of Multi-level
Relations”, in IEEE Symposium on Security and Privacy, pp. 273-284.
1992.

[9] G. Grahme, K. Räihä, “Database Decomposition into Fourth Normal
Form”, in Conference on Very Large Databases, pp. 186–196, 1983.

[10] B.N. Shamkant, R. Minyoung, “Vertical Partitioning for Database
Design – a Graphical Algorithm”, in SigMod, pp. 440–450, 1989.

[11] L. Bellatreche, K. Karlapalem, A. Simonet, “Algorithms and Support
for Horizontal Class Partitioning in Obect–Oriented Databases”, in
Distributed and Parallel Databases, 8, Kluwer Academic Publisher.
pp. 115–179, 2000.

[12] D. Rosaci, G. Terracina, D. Ursino, “A Framework for Abstracting
Data Sources Having Heterogennous Representation Formats”, in Data
& Knowledge Engineering, vol. 48, pp. 1–38. 2004.

[13] “Swoogle”, http://www.swoogle.org [online].
[14] “Froogle”, http://froogle.google.com [online].
[15] “Postgres”, http://www.postgresql.com [online].
[16] “Ceska narodni banka”, http://wdb.cnb.cz/CNB TXT/KURZY.K CURRTXT

[online].

