
Kernel Base Learning Methods: Regularization
Networks and RBF Networks

Petra Kudová?, Roman Neruda

Institute of Computer Science,
Academy of Sciences of the Czech Republic,

18207 Prague, Czech Republic
petra@cs.cas.cz

Abstract. Kernel based learning methods are subject of great interest at present.
We discuss two kernel based learning methods, namely the Regularization Net-
works (RN) and the Radial Basis Function Network (RBF networks).
The RNs are derived from the regularization theory, had been studied thoroughly
from a function approximation point of view, and therefore have very good theo-
retical background.
The RBF networks represent a model of artificial neural networks with both
neuro-physiological and mathematical motivation. In addition they may be treated
as a generalised form of Regularization Networks, i.e. RN with increased number
of kernel functions.
We demonstrated the performance of both approaches on experiments, including
both benchmark and real-life learning tasks. We claim that the performance of
RN and RBF network is comparable in terms of generalisation error. The RN
approach usually leads to solutions with higher model complexity (high number
of base units). In this situations, the RBF networks can be used as a ’cheaper’
alternative.

1 Introduction

The problem of learning from examples (also called supervised learning) is a subject
of great interest. Systems with the ability to autonomously learn a given task, would be
very useful in many real life applications, namely those involving prediction, classifi-
cation, control, etc.

The problem can be formulated as follows. We are given a set of examples {(xi, yi) ∈
Rd × R}Ni=1

that was obtained by random sampling of some real function f , generally
in the presence of noise. To this set we refer as a training set. Our goal is to recover the
function f from data, or find the best estimate of it. It is not necessary that the function
exactly interpolates all the given data points, but we need a function with good gener-
alisation. That is a function that gives relevant outputs also for the data not included in
the training set.

? The work was supported by the project 1ET100300419 of the Program Information Socienty
(of the Thematic Program II of the National Research Program of the Czech Republic) ”Intel-
ligent Models, Algorithms, Methods and Tools for the Semantic Web Realisation”.

The problem of learning from examples is studied as a function approximation prob-
lem. Given the data set, we are looking for the function that approximate the unknown
function f . It can be done by Empirical Risk Minimization, i.e. minimizing the func-
tional H [f] = 1

N

∑N

i=1
(f(xi) − yi)

2 over a chosen hypothesis space. In section 2 we
will study the problem of learning from examples as a function approximation problem
and show how a regularization network (RN) is derived from regularization theory. In
3 we will discuss a learning algorithm for RNs.

The learning problem can be also handled by artificial neural networks (ANNs).
There is a good supply of network architectures and corresponding supervised learning
algorithms (see [1]). In this case the model, that is a particular type of neural network,
is chosen in advance and its parameters are tuned during learning so as to fit the given
data. In terms of function approximation, the Empirical Risk is minimized over the
hypothesis space defined by the chosen type of ANN, i.e. the space of functions repre-
sentable by this type of ANN. In section 4 we will describe one type of neural network
– an RBF network, which is closely related to RN.

In section 5 the performances of RBF network and RN are compared on experi-
ments, including both benchmark and real learning tasks.

2 Derivation of Regularization Networks

In this section we will study the problem of learning from examples by means of regu-
larization theory.

We are given a set of examples {(xi, yi) ∈ Rd × R}Ni=1
obtained by random sam-

pling of some real function f and we would like to find this function.
Since this problem is ill-posed, we have to add some a priori knowledge about

the function. It is usually assumed that the function is smooth, in the sense that two
similar inputs corresponds to two similar outputs and the function does not oscillate too
much. This is the main idea of the regularization theory, where the solution is found by
minimizing the functional (1) containing both the data and smoothness information.

H [f] =
1

N

N
∑

i=1

(f(xi)− yi)
2 + γΦ[f], (1)

where Φ is called a stabilizer and γ > 0 is the regularization parameter controlling
the trade off between the closeness to data and the smoothness of the solution. The
regularization scheme (1) was first introduced by Tikhonov [2] and therefore it is often
called a Tikhonov regularization.

Poggio, Girrosi and Jones in [3] proposed a form of a smoothness functional based
on Fourier transform:

Φ[f] =

∫

Rd

ds
|f̃(s)|2

G̃(s)
, (2)

where f̃ indicates the Fourier transform of f , G̃ is some positive function that goes
to zero for ||s|| → ∞ (i.e. 1/G̃ is a high-pass filter). The stabiliser (2) measures the
energy in the high frequency and so penalises the functions with high oscilations.

It was shown that for a wide class of stabilizers in form of (2) the solution has
a form of feed-forward neural network with one hidden layer, called Regularization
Network, and that different types of stabilizers lead to different types of Regularization
Networks [3, 4].

Poggio and Smale in [4] studied the Regularization Networks derived using a Re-
producing Kernel Hilbert Space (RKHS) as the hypothesis space.

Let HK be an RKHS defined by a symmetric, positive-definite kernel function
Kx(x′) = K(x, x′). Then if we define the stabiliser by means of norm in HK and
minimise the functional

min
f∈HK

H [f], where H [f] =
1

N

N
∑

i=1

(yi − f(xi))
2 + γ||f ||2K (3)

over the hypothesis space HK , the solution of minimisation (3) is unique and has
the form

f(x) =

N
∑

i=1

ciKxi
(x), (NγI + K)c = y, (4)

where I is the identity matrix, K is the matrix Ki,j = K(xi, xj), and y = (y1, . . . , yN).
Girrosi in [?] showed that for positive definite functions of the form K(x−y) (such

as Gaussian function) the norm in RKHS defined by K is equivalent to stabilizer (2):

||f ||2K =

∫

Rd

ds
|f̃(s)|2

G̃(s)
. (5)

3 Learning with Regularization Networks

Input: Data set {xi, yi}
N
i=1
⊆ X × Y Output: Function f.

1. Choose a symmetric, positive-definite function Kx(x′),
continuous on X ×X.

2. Create f : X → Y as f(x) =
∑N

i=1
ciKxi

(x)
and compute c = (c1, . . . , cN) by solving

(NγI + K)c = y, (6)

where I is the identity matrix, K is the matrix
Ki,j = K(xi, xj), and y = (y1, . . . , yN), γ > 0 is real number.

Algorithm 3.1

The form of Regularization Network in (4) leads in the learning algorithm (3.1).
The power of this algorithm is in its simplicity and effectiveness, the drawback is the

size of the model (that is a number of kernel functions), which corresponds to the size

of the training set, and so the tasks with huge data sets lead to solutions of implausible
size.

The algorithm suppose that the type of kernel function and regularization parameter
γ are chosen in advanced.

Let us discuss closely the case of Gaussian kernel K(x, x′) = e
−

(

‖x−x
′‖

b

)2

, which
is widely used.

Once the width b and the regularization parameter γ are fixed, the algorithm reduces
to the problem of solving linear system of equations (6).

Since the system has N variables, N equations, K is positive-definite and (NγI +
K) is strictly positive, it is well-posed, i.e. is has a unique solution and the solution
exists. But we would also like it to be well-conditioned, i.e. insensitive to small pertur-
bations of the data. In other words, we would like the condition number of the matrix
(NγI + K) to be small, which is fulfilled if Nγ is large. Note that we are not entirely
free to choose γ, because with too large γ we loose the closeness to data. See figure 3.

The second parameter b determines the width of the Gaussians, and should reflect
the density of data points. Suppose that the distances between the data points are high
or the widths are small, than the matrix K has 1s on diagonal and small numbers every-
where else and therefore is well-conditioned, but if the widths are too small the matrix
goes to identity and contains almost no information. On the other hand, if the widths
are too large, all elements of the matrix K are close to 1 and its condition number tends
to be high.

The real performance of the algorithm depends significantly on the choice of pa-
rameters γ and b. The optimal choice of these parameters depends on a particular data
set. See figure 2.

We estimate both parameters by adaptive grid search and k-fold crossvalidation.
Adaptive grid search starts with a coarse grid of pairs (γ, b) defined by user and for
each pair computes the crossvalidation error. Then finer grid is evaluated only in the
smaller region containing the pair with the lowest crossvalidation error. The process is
repeated until the crossvalidation error stops decreasing. Then the parameters with the
lowest crossvalidation error are picked up and used for evaluation of the algorithm on
the whole training set.

4 RBF neural networks

An RBF neural network (RBF network) represents a relatively new model of neural
network. On the contrary to classical models (multilayer perceptrons, etc.) it is a net-
work with local units which was motivated by the presence of many local response
units in human brain. Other motivation came from numerical mathematics, radial basis
functions (RBF) were first introduced in the solution of real multivariate problems [5].

In the framework of regularization networks, the RBF networks belong to the fam-
ily of generalised regularization networks. Generalized regularization networks are RN
with lower number of kernels than data points and also it is not necessary that the ker-
nels are uniform (so for example the network with gaussian kernels may use kernels
with different widths).

y(x) = ϕ

(

‖ x − c ‖C

b

)

(7)

fs(x) =

h
∑

j=1

wjsϕ

(

‖ x − cj ‖Cj

bj

)

(8)

Fig. 1. a) RBF network architecture b) RBF network function

An RBF network is a standard feed-forward neural network with one hidden layer
of RBF units and linear output layer (fig. 1). By an RBF unit we mean a neuron
with n real inputs and one real output, realising a radial basis function (7), usually
Gaussian. Instead of the Euclidean norm we use the weighted norm ‖ · ‖C , where
‖x‖2C = (Cx)T (Cx) = xT CT Cx.

The network computes a function f = (f1, . . . , fm) as linear combination of out-
puts of the hidden layer (see (8)).

The goal of RBF network learning is to find the parameters (i.e. centers c, widths b,
norm matrices C and weights w) so as the network function approximates the function
given by the training set {(xi, yi) ∈ Rn ×Rm}Ni=1

.
There is a variety of algorithms for RBF network learning, in our past work we

studied their behaviour and possibilities of their combinations [6, 7].
The two most significant algorithms,Three step learning and Gradient learning, are

sketched in Algorithm 2.1 and Algorithm 2.2. See [6] for details.

Input: Data set {xi, yi}
N
i=1

Output: {ci, bi, Ci, wij}
j=1..m
i=1..h

1. Set the centers ci by a k-means clustering.
2. Set the widths bi and matrices Ci.
3. Set the weights wij by solving ΦW = D.

Dij =

N
∑

t=1

ytje
−

(

‖xt−ci‖Ci
bi

)

2

, Φqr =

N
∑

t=1

e
−

(

‖xt−cq‖Cq

bq

)

2

e
−

(

‖xt−cr‖Cr
br

)

2

Algorithm 4.1

Input: Data set {xi, yi}
N
i=1

Output: {ci, bi, Ci, wij}
j=1..m
i=1..h

1. Put the small part of data aside as an evaluation set ES,
keep the rest as a training set TS .

2. ∀j cj(i)← random sample from TS1, ∀j bj(i), Σ
−1

j (i)← small
random value, i← 0

3. ∀j, p(i) in cj(i), bj(i), Σ
−1

j (i):

∆p(i)← −ε δE1

δp
+ α∆p(i− 1), p(i)← p(i) + ∆p(i)

4. E1 ←
∑

x∈TS1
(f(x)− yi)

2, E2 ←
∑

x∈TS2
(f(x)− yi)

2

5. If E1 and E2 are decreasing, i← i+1, go to 3, else STOP.
If E2 started to increase, STOP.

Algorithm 4.2

5 Experimental results

- uceno na bladovi (jaky procesor + pamet) - rn uceno jak bylo popsano - rbf uceno
gradientem, prumer a std z 10 vypoctu, pocitano pro 10, 15, 20, 30 jednotek ... uvedena
nejlepsi - v tabulkach je vzdycky error percentage viz. itat clanek - uceno na treninkove
mnozine (vcetne crossvalidace), chyba na testovaci

0.000 0.002 0.004 0.006 0.008 0.010

0.
5

1.
0

1.
5

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

Glass1, test set error

Fig. 2. Dependancy of error on testing data set on regularization parameter γ and width b.

pl1 jeden den zpatky pl2 dva dni zpatky s znamena, srazky z aktualniho dne

6 Conclusion

References

1. Haykin, S.: Neural Networks: a comprehensive foundation. 2nd edn. Tom Robins (1999)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

-6 -5 -4 -3 -2 -1

er
ro

r
/ l

og
10

(c
on

di
tio

n
nu

m
be

r)

log10(gamma)

Hearta

Training error
Testing error

log10(Condition number)

Fig. 3. Dependancy of errors(on training and testing data sets) and condition number of the linear
system 6 on regularization parameter γ.

task name inputs outpus training set testing set type
cancer 9 2 525 174 class
card 51 2 518 172 class
flare 24 3 800 266 approx
glass 9 6 161 53 class
heartac 35 1 228 75 approx
hearta 35 1 690 230 approx
heartc 35 2 228 75 class
heart 35 2 690 230 class
horse 58 3 273 91 class
soybean 82 19 513 170 class

Table 1. Overview of Proben1 tasks. Number of inputs, number of outputs, number of samples
in training and testing sets.

Etrain Etest γ b time
cancer1 2.29 1.76 0.2690 ×10−3 1.63 4:5:49
cancer2 1.82 3.01 0.2642 ×10−3 1.46 3:30:13
cancer3 2.12 2.80 0.4958 ×10−3 1.58 4:22:27
card1 8.80 10.00 1.5963 ×10−3 4.46 3:36:37
card2 7.63 12.53 1.2864 ×10−3 4.31 3:8:30
card3 6.58 12.32 0.3078 ×10−3 4.43 4:10:19
diabetes1 13.94 16.04 1.4590 ×10−3 1.00 5:29:3
diabetes2 13.85 16.81 1.9810 ×10−3 0.97 5:24:10
diabetes3 13.75 15.93 0.2943 ×10−3 1.42 4:42:47
flare1 0.36 0.54 3.6517 ×10−3 5.70 6:19:53
flare2 0.43 0.27 3.6517 ×10−3 4.07 7:26:6
flare3 0.41 0.34 2.5483 ×10−3 4.85 9:2:17
glass1 3.26 6.95 2.4472 ×10−3 0.30 0:31:18
glass2 4.26 7.91 2.1480 ×10−3 0.51 0:24:30
glass3 4.06 7.33 2.3607 ×10−3 0.42 0:26:42
heartac1 4.19 2.78 1.6144 ×10−3 6.51 1:12:13
heartac2 3.47 3.86 0.8467 ×10−3 6.00 0:56:2
heartac3 3.32 5.01 1.0413 ×10−3 6.50 0:55:14
hearta1 3.49 4.40 0.2618 ×10−3 5.74 7:30:12
hearta2 3.59 4.05 0.2996 ×10−3 5.72 8:43:32
hearta3 3.47 4.43 0.3398 ×10−3 5.48 6:11:4
heartc1 9.90 16.02 1.9832 ×10−3 6.51 1:31:35
heartc2 12.48 6.10 1.1665 ×10−3 6.51 1:29:34
heartc3 8.88 12.66 1.9810 ×10−3 3.37 0:47:22
heart1 9.57 13.65 1.5679 ×10−3 2.89 6:37:13
heart2 9.37 13.80 1.3824 ×10−3 3.09 7:30:9
heart3 9.27 15.99 0.9647 ×10−3 3.90 7:29:45
horse1 7.55 11.90 3.7855 ×10−3 3.40 1:10:59
horse2 7.84 15.18 3.7855 ×10−3 3.87 1:6:2
horse3 4.81 13.58 2.4144 ×10−3 2.94 1:27:51
soybean1 0.12 0.66 0.1075 ×10−3 3.04 3:18:12
soybean2 0.23 0.49 0.1433 ×10−3 3.60 3:17:22
soybean3 0.24 0.58 0.1334 ×10−3 3.88 2:4:27

Table 2. Overview of results obtained by Regularization Network. Error on the training set
Etrain, error on the testing set Etest, winning regularization parameter γ, winning width b and
time needed for the computation.

units Etrain Etest average time
mean std mean std

cancer1 15 1.85 0.85 1.69 0.72 0:49:18
cancer2 15 1.91 0.26 3.12 0.07 1:1:3
cancer3 15 1.66 0.36 3.19 0.13 0:58:8
card1 10 8.12 0.75365 10.16 0.56799 0:23:23
card2 10 8.05 0.10627 12.81 0.01129 0:2:6
card3 10 6.77 0.09258 12.09 0.00857 0:55:12
flare1 10 0.37 0.01051 0.37 0.00011 1:12:33
flare2 10 0.41 0.00775 0.31 0.00006 0:39:3
flare3 10 0.37 0.00816 0.38 0.00007 0:51:34
glass1 20 5.10 0.14506 6.76 0.02104 0:4:31
glass2 20 4.93 0.06963 7.96 0.00485 0:4:51
glass3 20 5.80 0.98584 8.06 0.97188 0:3:24
heartac1 10 2.26 0.28085 3.69 0.07888 0:28:27
heartac2 10 1.78 0.19411 4.98 0.03768 0:28:20
heartac3 10 1.66 0.06073 5.81 0.00369 0:29:31
hearta1 15 3.08 0.08863 4.36 0.00786 0:25:12
hearta2 10 3.36 0.07981 4.05 0.00637 0:20:41
hearta3 10 3.19 0.04009 4.29 0.00161 0:36:2
heartc1 10 6.07 0.25620 16.17 0.06564 0:12:24
heartc2 10 7.99 0.19760 6.49 0.03905 0:21:34
heartc3 10 7.13 0.60961 14.35 0.37163 0:3:57
heart1 10 9.96 0.39903 14.05 0.15923 0:20:45
heart2 20 6.36 5.87046 11.67 34.46230 0:35:8
heart3 15 6.95 6.04203 12.02 36.50611 0:27:46
horse1 10 10.57 0.21522 11.96 0.04632 0:10:51
horse2 10 10.04 0.31862 16.80 0.10152 0:12:19
horse3 10 9.88 0.26721 14.56 0.07140 0:14:16
soybean1 30 0.28 0.06739 0.73 0.00454 0:48:32
soybean2 30 0.15 0.30384 0.24 0.09232 0:20:23
soybean3 30 0.31 0.09 0.72 0.01 0:40:52

Table 3. Overview of results obtained by RBF network.

correlation with width
min 0.158
max 0.421
mean 0.552
3 nearest neibourhgs 0.357
5 nearest neibourhgs 0.360
10 nearest neibourhs 0.290

Table 4. Correlation coeficients: correlation between width found by crossvalidation (for RN)
and minimal, maximal and mean distance between two data points, mean distance of 3, 5, and 10
nearest neibourghs of each data point. Computed over Proben1 taks.

RN RBF MLP
Etest # units mean Etest std # units mean Etest std architecture

cancer1 1.76 525 1.69 0.072 15 1.60 0.41 4+2
cancer2 3.01 525 3.12 0.07 15 3.40 0.33 8+4
cancer3 2.80 525 3.19 0.13 15 2.57 0.24 16+8
card1 10.00 518 10.16 0.567 10 10.53 0.57 32+0
card2 12.53 518 12.81 0.011 10 15.47 0.75 24+0
card3 12.32 518 12.09 0.008 10 13.03 0.50 16+8
flare1 0.54 800 0.37 0.00011 10 0.74 0.80 32+0
flare2 0.27 800 0.31 0.00006 10 0.41 0.47 32+0
flare3 0.34 800 0.38 0.00007 10 0.37 0.01 24+0
glass1 6.95 161 6.76 0.02104 20 9.75 0.41 16+8
glass2 7.91 161 7.96 0.00485 20 10.27 0.40 16+8
glass3 7.33 161 8.06 0.97188 20 10.91 0.48 16+8
heartac1 2.78 228 3.69 0.07888 10 2.82 0.22 2+0
heartac2 3.86 228 4.98 0.03768 10 4.54 0.87 8+4
heartac3 5.01 228 5.81 0.00369 10 5.37 0.56 16+8
hearta1 4.40 690 4.36 0.00786 15 4.76 1.14 32+0
hearta2 4.05 690 4.05 0.00637 10 4.52 1.10 16+0
hearta3 4.43 690 4.29 0.00161 10 4.81 0.87 32+0
heartc1 16.02 228 16.17 0.06564 10 17.18 0.79 16+8
heartc2 6.10 228 6.49 0.03905 10 6.47 2.86 8+8
heartc3 12.66 228 14.35 0.37163 10 14.57 2.82 32+0
heart1 13.65 690 14.05 0.15923 10 14.33 1.26 32+0
heart2 13.80 690 11.67 34.46230 20 14.43 3.29 32+0
heart3 15.99 690 12.02 36.50611 15 16.58 0.39 32+0
horse1 11.90 273 11.96 0.04632 10 13.95 0.60 16+8
horse2 15.18 273 16.80 0.10152 10 18.99 1.21 16+8
horse3 13.58 273 14.56 0.07140 10 17.79 2.45 32+0
soybean1 0.66 513 0.73 0.00454 30 1.03 0.05 16+8
soybean2 0.49 513 0.24 0.09232 30 0.90 0.08 32+0
soybean3 0.58 513 0.72 0.01 30 1.05 0.09 16+0

Table 5. Comparision of Etest of RN, RBF and MLP.

RN RBF
Etrain Etest Etrain Etest

ploucnice1 0.057 0.048 0.059 0.049
ploucnice1s 0.0257 0.0891 0.061 0.051
ploucnice2 0.062 0.182 0.088 0.062
ploucnice2s 0.0611 0.167 0.099 0.092

Table 6. Results of RN and RBF on Ploucnice data sets.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 50 100 150 200 250 300 350 400

Ploucnice

prediction
real data

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 50 100 150 200 250 300 350 400

Ploucnice

prediction
real data

Fig. 4. Prediction of flow rate by a) RN b) RBF

2. Tikhonov, A., Arsenin, V.: Solutions of Ill-posed Problems. W.H. Winston, Washington, D.C
(1977)

3. Girosi, F., Jones, M., Poggio, T.: Regularization theory and Neural Networks architectures.
Neural Computation 7,No.2 (1995) 219–269

4. Poggio, T., Smale, S.: The mathematics of learning: Dealing with data. Notices of the AMS
50, No.5 (2003) 537–544

5. Powel, M.: Radial basis functions for multivariable interpolation: A review. In: IMA Con-
ference on Algorithms for the Approximation of Functions and Data, RMCS, Shrivenham,
England (1985) 143–167

6. Neruda, R., Kudová, P.: Hybrid learning of RBF networks. Neural Networks World 12 (2002)
573–585

7. Neruda, R., Kudová, P.: Learning methods for RBF neural networks. Future Generations of
Computer Systems (2004) In press.

