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Abstract

Learning from data with generalization capability is studied in the framework of minimization of
regularized empirical error functionals over nested families of hypothesis sets with increasing model
complexity. ForTikhonov’s regularization with kernel stabilizers, minimization over restricted hypoth-
esis sets containing for a fixed integernonly linear combinations of alln-tuples of kernel functions is in-
vestigated. Upper bounds are derived on the rate of convergence of suboptimal solutions from such sets
to the optimal solution achievable without restrictions on model complexity.The bounds are of the form
1/

√
n multiplied by a term that depends on the size of the sample of empirical data, the vector of output

data, the Gram matrix of the kernel with respect to the input data, and the regularization parameter.
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1. Introduction

A key property of systems performing intelligent computing, such as feature extraction,
pattern recognition, semantic web realization, and classification, is learning ability. The
goal of supervised learning is to adjust the parameters of a computational model so that it
approximates to a desired accuracy a functional relationship between inputs and outputs by
learning from a set of examples, i.e., a samplez = {(xi, yi) ∈ � × �, i = 1, . . . , m} of
m input/output pairs ofempirical data. It is desirable that a model trained on a sample of
empirical data also has ageneralization capability, i.e., it is able to satisfactorily process
new data, which were not used for learning. To endow a model with this capability, one
needs some global knowledge of the desired input/output functional relationship, such as
smoothness or lack of high-frequency oscillations.

In statistical learning theory[9,45], learning from empirical data is modelled as mini-
mization of a functional, calledempirical error. For asamplezof data and aloss functionV :
�2 → [0, +∞), the empirical errorEz,V is defined asEz,V (f ) = 1

m

∑m
i=1 V (f (xi), yi),

wheref belongs to a function space, calledhypothesis space, over which such a minimiza-
tion is performed.

Mathematical modeling of generalization requires someprior informationon the behavior
of potential solutions. Such information is already expressed by the choice of a hypothesis
space, over which the empirical error is minimized. It can be further specified by restricting
minimization of the empirical error to a subset of the hypothesis space (containing only
functions with some desired behavior). Alternatively, one can add to the empirical error a
term penalizing undesired properties, or combine these two approaches. The first method
is an application to learning of Ivanov’s regularization, the second one of Tikhonov’s, and
the third one of Miller’s [6, pp. 68–78].
Tikhonov’s regularization[43,44], which was introduced into learning theory by Pog-

gio and Girosi [20,35,36], leads to minimization over the whole hypothesis space of the
regularized empirical error functional, defined as the sum of two functionalsEz,V + ��.
The first one, the empirical errorEz,V , enforces closeness to the samplez of empirical data,
whereas�, calledstabilizer, expresses requirements on the global behavior of the desired
input/output functional relationship. Theregularization parameter� controls the trade-off
between fitting to empirical data and penalizing undesired behavior.

A large class of hypothesis spaces can be studied in the framework of the theory of
Hilbert spaces of a special type, calledreproducing kernel Hilbert spaces(RKHSs). Norms
on such spaces often play the role of measures of various types of oscillations of input/output
mappings. RKHSs were formally defined byAronszajn [2], but their theory employs work by
Schönberg [41], as well as many classical results on kernels and positive definite functions.
RKHSs were introduced into applications closely related to learning by Parzen [33] and
Wahba [47], and into learning theory by Cortes and Vapnik [8] and Girosi [19].

The Representer Theorem[10, p. 42], [18,20,26,35,37,39] states that for Tikhonov’s
regularization with a stabilizer defined as a strictly increasing function of the norm on
an RKHS, the problem of minimization of the regularized empirical error over the whole
space has a unique solution of the form of a linear combination of them-tuple of the kernel
functions, which are parameterized by the input data vectorx = (x1, . . . , xm). In particular,
for a stabilizer equal to the square of the norm on an RKHS, the vectorc of the coefficients
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of the linear combination is obtained as the solution of the well-posed linear system of
equations(�mI + K[x])c = y, whereI is them × m identity matrix,K[x] is the Gram
matrix of the kernelK with respect tox, andy = (y1, . . . , ym) is the output data vector[3].

A paradigmatic example of a kernel is the Gaussian kernel, for which the solution given by
the RepresenterTheorem has the form of an input/output function of a Gaussian radial-basis-
function network withmunits centered at the input datax1, . . . , xm [18]. The coefficients
of the linear combination play the role of output weights of such a network. On the basis
of this interpretation of the Representer Theorem, in [20, p. 219] it was argued that “the
regularization principles lead to approximation schemes that are equivalent to networks
with one layer of hidden units.”

The Representer Theorem was used to design a learning algorithm (see, e.g., [10, p. 42]
and [37, pp. 538–539] ) that requires one to solve the linear system of equations(�mI +
K[x])c = y. An advantage of this algorithm is that it gives the best possible solution of
the task of fitting a function to a given sample of empirical data and satisfying a global
property describable in terms of a condition on smoothness that can be modelled in terms
of a kernel.

However, practical applications of this algorithm are limited by the rate of convergence
of iterative methods solving the system of equations and by the size of the condition number
of the matrix�mI + K[x]. For some methods, the computational requirements for solving
such a system grow polynomially with the sizem of the sample (e.g., for the Gaussian
elimination andm large enough, they grow asm3/3 [32, p. 175]). For some data and
kernels, keeping the condition number of�mI + K[x] small requires a large value of the
regularization parameter�, which may cause poor fit to the empirical data.

The learning algorithm based on the Representer Theorem uses a computational model
of complexity determined by the sizem of the sample of data, and does not allow any
flexibility in choosing the inner parameters of the computational units (as they are set equal
to the input data).

In this paper, we investigate suboptimal solutions of the problems of minimization of
regularized empirical error functionals over hypothesis sets corresponding to kernel models
with limited complexity and flexible choice of parameters. We derive upper bounds on the
rates of convergence of sequences of suboptimal solutions achievable by minimization over
hypothesis sets formed by linear combinations of at mostn kernel functions (either with
arbitrary parameters or with parameters drawn from the data set) to the optimal solution
given by the Representer Theorem. The upper bounds are of the form 1/

√
n multiplied by

a term that depends on the sizemof the sample, thel2-norm of the vectory = (y1, . . . , ym)

of output data, the minimal and the maximal eigenvalues of the Gram matrixK[x] of the
kernel with respect to the input data, and the regularization parameter�.

We state conditions on the sample, the kernel and the regularization parameter, under
which the term multiplying 1/

√
n is “small” and so suboptimal solutions converge “quickly”

to the optimal one. Under such conditions, kernel methods with bounded model complex-
ity provide good approximations to the best possible solution of the learning task. As our
estimates are not merely asymptotic, they can be applied to any bound on model com-
plexity. For the Gaussian kernel we derive an upper bound of the formb√

n
, whereb =

y2
max
�

(
31+�

� + 2
)

andy2
max is the maximum of the absolute values of output data.
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The paper is organized as follows. Section2 introduces concepts concerning minimization
of functionals and Tikhonov’s regularization applied to learning from data with RKHSs as
hypothesis spaces. Section 3 states the Representer Theorem and explores the condition
numbers of the matrices used in algorithms based on this theorem. Section 4 develops
tools for investigating approximate optimization over hypothesis sets with bounded model
complexity. Section 5 describes continuity and convexity properties of regularized empirical
error functionals with various types of loss functions and estimates rates of convergence
of sequences of suboptimal solutions to the problem of learning by kernel methods with
increasing model complexity. Section 6 illustrates the estimates on RKHSs defined by
convolution kernels. Section 7 is a brief discussion.

2. Tikhonov’s regularization of the learning problem in reproducing kernel Hilbert
spaces

By a normed linear space(X, ‖.‖) we mean a real normed linear space.� denotes the
set of real numbers.

Let M be a subset ofX and� : X → � be a functional. Using standard notation [15],
we denote by

(M, �)

the problem of minimizing� overM; M is calledhypothesis set.
By argmin(M, �) = {g ∈ M : �(g) = inf g∈M �(g)} is denoted the set ofminimum

pointsof the problem(M, �) and for anyε > 0, argminε (M, �) = {g ∈ M : �(g) <

inf g∈M �(g) + ε} is the set ofε-near minimum pointsof (M, �). A minimum point of
(M, �) is called asolutionof the problem(M, �). A sequence{gn} of elements ofM is
called�-minimizing over Mif lim n→∞ �(gn) = inf g∈M �(g).

Let � be a set andz = {(xi, yi) ∈ � × �, i = 1, . . . , m} anm-tuple of input/output
pairs of data, called asample. A standard approach to learning from empirical data[9,45]
is based on minimization of theempirical error functional (also called theempirical risk
functional), defined for anyf in the hypothesis set as

EV (f ) = Ez,V (f ) = 1

m

m∑
i=1

V (f (xi), yi),

whereV : �2 → [0, ∞) satisfying for ally ∈ �, V (y, y) = 0 is called aloss function.
When the samplez is clear from the context, we write merelyEV instead ofEz,V .

The most common loss function is thesquare loss, defined as

V (f (x), y) = (f (x) − y)2.
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In this paper, we mostly focus on the empirical error defined using the square loss, for which
we merely writeE . So we let

E(f ) = 1

m

m∑
i=1

(f (xi) − yi)
2.

Other common loss functions are theabsolute value lossV (f (x), y) = |f (x) − y| and
Vapnik’sε-insensitive lossV (f (x), y) = max(|f (x) − y| − ε, 0).

Tikhonov’s regularizationreplaces the problem

(M, EV )

with the problem

(M, EV + ��),

where� is a functional calledstabilizerand� > 0 is aregularization parameter[43,44].
An important class of stabilizers are squares of norms on reproducing kernel Hilbert

spaces (RKHSs) (see, e.g., [5,10,40]). Such stabilizers often enable one to penalize high
oscillations of various types. For a set� and a symmetric positive semidefinite function
K : � × � → �, calledkernel, we denote by(HK(�), ‖.‖K) the RKHS defined byK.
The squared norm‖.‖2

K is used as a stabilizer instead of‖.‖K for technical reasons, as the
square of the norm on any Hilbert space is a uniformly convex functional (see Proposition
4.1 (iii)); this implies uniqueness of the solution of the regularized problem (see, e.g., [14,
p. 10; 10, pp. 27, 42]) and convergence of minimizing sequences to this solution [31].

Using‖.‖2
K as a stabilizer, the regularized empirical error functional with a loss function

V and a regularization parameter� has the form

EV,�,K(f ) = 1

m

m∑
i=1

V (f (xi), yi) + � ‖f ‖2
K.

As in the case of the empirical error, when the square loss is employed in the regularized
empirical error we use the simplified notation

E�,K(f ) = 1

m

m∑
i=1

(f (xi) − yi)
2 + �‖f ‖2

K.

Thus we denote by

(HK(�), E�,K)

the problem of minimizing over the RKHSHK(�) the regularized empirical error with the
square loss and the stabilizer‖.‖2

K .

3. The Representer Theorem

Existence, uniqueness and an explicit formula describing the solution of the problem
(HK(�), E�,K) of minimizing over the whole RKHS the regularized empirical error with
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the square loss and the stabilizer‖.‖2
K are given by theRepresenter Theorem. For a kernel

K, a positive integerm, and a vectorx = (x1, . . . , xm) ∈ �m of input data, we denote by
K[x] them × m matrix defined as

K[x]ij = K(xi, xj ),

which is called theGram matrix of the kernel K with respect to the vectorx. We denote by
I them × m identity matrix.

Theorem 3.1(Representer Theorem). Let� be a nonempty set, K : �×� → � a kernel,
m a positive integer, x = (x1, . . . , xm) ∈ �m, y = (y1, . . . , ym) ∈ �m, and� > 0. Then
the problem(HK(�), E�,K) has the unique solution

go =
m∑

i=1

ciKxi
, (1)

wherec = (c1, . . . , cm) is the unique solution of the well-posed linear system

(� m I + K[x])c = y. (2)

The RepresenterTheorem was originally proven in[23].An elegant proof using functional
derivatives was given in [37, pp. 538–539], while for Mercer kernels a more sophisticated
argument based on the Mercer Theorem was provided in [10, p. 42]. In [26] it was derived
from the theory of inverse problems. Inspection of proofs shows that for any differentiable
loss functionV, the solution is of the formgo = ∑m

i=1 ciKxi
. However, whenV is not a

polynomial of degree 2, the equation to be solved to compute the coefficientsc1, . . . , cm

is nonlinear [19, p. 1473]. A weaker form of the Representer Theorem, without a formula
for computing the coefficientsc1, . . . , cm, even holds for an arbitrary loss functionV and
a stabilizer of the form�(‖ · ‖K) , where� : [0, +∞) → � is a strictly increasing
function [39].

The Representer Theorem was exploited to design algorithms for learning from data
(see, e.g., [10, p. 42, 37, pp. 538–539]). However, its applications are limited by the rates
of convergence of iterative methods solving the linear system of equations (2) and by the
size of the condition number of the matrix�mI + K[x].

We recall that thecondition numberof a nonsingularm × m matrixA with respect to a
norm‖.‖ on�m is defined as

cond(A) = ‖A‖ ‖A−1‖,

where‖A‖ denotes the norm ofA as a linear operator on(�m, ‖.‖). We denote by�max(A)

and�min(A) the maximal and minimal eigenvalues of the matrixA, respectively.
It is easy to check that for any norm‖.‖ on �m and anym × m nonsingular matrix

A, cond(A)� |�max(A)|
|�min(A)| and for any symmetric nonsingularm × m matrixA, cond2(A) =

|�max(A)|
|�min(A)| , wherecond2(A) denotes the condition number ofA with respect to thel2-norm
on�m.
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To simplify the notation, we write�max instead of�max(K[x]) and similarly for�min.
As K[x] is positive semidefinite, all its eigenvalues are nonnegative[32, p. 7]. As� is an
eigenvalue ofK[x] if and only if �m + � is an eigenvalue of�mI + K[x], we have

cond2(�mI + K[x]) = � m + �max

� m + �min
� �max

�min
= cond2(K[x]) (3)

and

cond2(�mI + K[x])�1 + �max

� m
. (4)

Eq. (3) shows that whencond2(K[x]) is sufficiently small, good conditioning of�mI +
K[x] is guaranteed for any value of�. However, for large values ofm the matrixK[x] might
be ill-conditioned. For example, when the data are uniformly distributed over an interval,
then the probability thatK[x] is ill-conditioned increases withm (see [12, Theorem 2.2],
[13, Theorem 5.1]). On the other hand, Eq. (4) shows that lim�→∞ cond2(�mI+K[x]) = 1
and thus the regularization parameter� can always be chosen such thatcond2(�mI +K[x])
is close to 1. But good conditioning of�mI + K[x] is not the only requirement for�, as
its value must also allow a good fit to the empirical data and thus it cannot be too large.
Existence of a value of� guaranteeing a good fit to data as well as good conditioning depends
on the rate of convergence of the condition number of�mI + K[x] to 1. The smaller�max

m
,

the faster such convergence. The problem of choosing� in order to minimize the expected
error was investigated in [11].

When a value of� guaranteeing both a small condition number and a good fit to the
empirical data cannot be found, algorithms for learning from data that differ from the one
based on the Representer Theorem have to be applied. A variety of learning algorithms
have been developed in the field of neurocomputing. Typically, such algorithms operate on
networks of lower model complexity than the algorithm based on the Representer Theorem.
The number of computational units in such networks is either set in advance or adjusted
during learning, but, typically, it is much smaller than the sizem of the sample used as a
training set. Moreover, the values of the computational units’ parameters (which are called
centroidsin the case of RBF networks) are not set equal to the input vectors from the data
sample, but are searched for during learning.

4. Minimization of functionals over hypothesis sets with bounded model
complexity

In this section, we derive tools for estimating rates of convergence of suboptimal solutions
over computational models withnunits (the case of interest isn < m) to the optimal solution
given by the Representer Theorem. Such suboptimal solutions can be studied in terms of
optimization over nested families of subsets of RKHSs formed by linear combinations of
all n-tuples of kernel functions chosen from the sets{Kx : x ∈ �} or {Kx1, . . . , Kxm}.

For a subsetG of a linear space, letspann G = {∑n
i=1 wigi : wi ∈ �, gi ∈ G

}
de-

note the set of linear combinations of alln-tuples of elements ofG. The optimal solution
to the problem(HK(�), E�,K) described by the Representer Theorem is an element of



V. Kůrková, M. Sanguineti / Journal of Complexity 21 (2005) 350–367 357

spanm GK,x ⊆ spanm GK , whereGK,x = {Kx1, . . . , Kxm} andGK = {Kx : x ∈ �}. The
setspanmGK can be interpreted as the set of all input/output functions of a computational
model with one hidden layer ofm computational units computing functions fromGK . In
particular, for the Gaussian kernel the solution has the form of an input/output function of
a Gaussian radial-basis-function (RBF) network withmcomputational units[20].

To compare the optimal solution given by the Representer Theorem with suboptimal ones
that can be obtained by minimization ofE�,K over restricted hypothesis sets (containing
only linear combinations of alln-tuples of elements of the setGK orGK,x), we shall employ
a version of the Maurey–Jones–Barron Theorem [3,22,34], reformulated in [24] in terms
of a norm calledG-variation.

We recall that theMinkowski functionalof a subsetM of a linear spaceX, denoted by
pM , is defined for everyf ∈ X aspM(f ) = inf {� ∈ �+ : f/� ∈ M}. If M is a subset of a
normed linear space(X, ‖ · ‖), we denote bycl M its closurewith respect to the topology
generated by‖ · ‖, i.e.,cl M = {f ∈ X : (∀ε > 0) (∃g ∈ M) ‖f − g‖ < ε)}.

G-variation norm, denoted by‖.‖G, is defined for a subsetG of a normed linear space
(X, ‖.‖) as the Minkowski functional of the closure of the convex hull of the setG ∪ −G.
So for everyf ∈ X we have

‖f ‖G = inf {c > 0 : f/c ∈ cl conv(G ∪ −G)} .

For properties ofG-variation, see[24,25,27,28,30].
Maurey–Jones–Barron’s Theorem stated in terms ofG-variation [24,25] gives for a

Hilbert space(X, ‖.‖), its bounded subsetGwith sG = supg∈G ‖g‖, and everyf ∈ X, the
following upper bound on the rate of approximation off by spannG: ‖f − spannG‖�√

(sG ‖f ‖G)2−‖f ‖2

n
.

Taking advantage of this upper bound, we shall estimate rates of convergence of subop-
timal solutions overspannG to the optimal solution of the problem(X, �) of minimization
of a continuous functional� over a normed linear spaceX.

A functional� : X → � is continuousat f ∈ X if for any ε > 0, there exists� > 0
such that‖f − g‖ < � implies|�(f ) − �(g)| < ε. A modulus of continuityof � atf is a
function� : [0, +∞) → [0, +∞) defined as�(a) = sup{|�(f ) −�(g)| : ‖f − g‖�a}.

� is convexon a convex setM ⊆ X if for all h, g ∈ M and all� ∈ [0, 1], we have
�(�h + (1 − �)g)���(h) + (1 − �)�(g) and it isuniformly convexif there exists a
nonnegative function� : �+ → �+ such that�(0) = 0, �(t) > 0 for all t > 0, and for all
h, g ∈ M and all� ∈ [0, 1], �(�h+(1−�)g)���(h)+(1−�)�(g)−�(1−�)�(‖h−g‖).
Any such function� is called amodulus of convexityof � [31] 4 .

Next proposition states some elementary properties of uniformly convex functionals and
moduli of convexity.

4 The terminology is not unified: some authors use the term “strictly uniformly convex” instead of “uniformly
convex”, while they reserve the term “uniformly convex” for the case where� : �+ → �+ merely satisfies
�(0) = 0 and�(t0) > 0 for somet0 > 0 (see, e.g.,[46,14, p. 10]).
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Proposition 4.1. Let(X, ‖.‖) be a normed linear space, M ⊆ X convex,and� a uniformly
convex functional on M with a modulus of convexity�. Then the following hold:
(i) if � is convex on M and� > 0, then� + �� is uniformly convex on M with a modulus
of convexity� �;
(ii) if go ∈ argmin(M, �), then for everyg ∈ M, �(‖g − go‖)��(g) − �(go);
(iii) if (X, ‖.‖) is a Hilbert space, then the functional‖.‖2 : X → � is uniformly convex
with a modulus of convexity�(t) = t2.

Proof. (i) follows directly from the definitions.
(ii) By the definition of uniformly convex functional, for every� ∈ [0, 1] we have�(1−

�)�(‖g−go‖)���(g)+(1−�)�(go)−�(�g+(1−�)go).As�(go)��(�g+(1−�)go),
we get�(1−�)�(‖g −go‖)���(g)+ (1−�)�(go)−�(go) = � (�(g) − �(go)). Hence
(1−�)�(‖g−go‖)��(g)−�(go) for every� ∈ [0, 1]. So we obtain�(‖g−go‖)��(g)−
�(go).

(iii) For everyh, g ∈ X and every� ∈ [0, 1], we have‖�h + (1− �)g‖2��‖h‖2 + (1−
�)‖g‖2 − �(1 − �)‖h − g‖2 and thus�(t) = t2 is a modulus of convexity of‖.‖2. �

Next theorem gives upper bounds on rates of convergence of suboptimal solutions over
spannG to the optimal solution of the problem(X, �) of minimization of a continuous
functional� over a Hilbert spaceX. The estimates are formulated in terms of moduli of
continuity and convexity of the functional to be minimized.�

Theorem 4.2. Let (X, ‖.‖) be a Hilbert space, G its bounded subset, sG = supg∈G ‖g‖,
� : X → (−∞, +∞] a functional, go ∈ argmin(X, �),� continuous atgo with amodulus
of continuity�, {εn} a sequence of positive real numbers, gn ∈ argminεn

(spann G, �), and
a = (sG‖go‖G)2 − ‖go‖2. Then, for every positive integer n the following estimates hold:

(i) inf g∈spann G �(g) − �(go)��
(√

a
n

)
;

(ii) if ‖go‖G < ∞ and limn→∞ εn = 0, then {gn} is a �-minimizing sequence and

�(gn) − �(go)��
(√

a
n

)
+ εn’

(iii) if � is uniformly convex with a modulus of convexity�, then �(‖gn − go‖)��(√
a
n

)
+ εn.

Proof. (i) For every positive integern and everyε > 0, choose anε-near best approxima-
tion f ε

n of go in spannG. So‖go − f ε
n ‖ < ‖go − spann G‖ + ε. As f ε

n ∈ spannG, we
have infg∈spann G �(g) − �(go)��(f ε

n ) − �(go). Estimating the right-hand side of this
inequality in terms of the modulus of continuity� of � atgo, we obtain infg∈spann G �(g)−
�(go)��(‖f ε

n − go‖)��(‖go − spannG‖+ ε). By the upper bound from Maurey–Jones–
Barron’s Theorem reformulated in terms ofG-variation we get

inf
g∈spann G

�(g) − �(go)��
(√

a

n
+ ε

)
. (5)

Infimizing (5) overε we obtain (i).
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(ii) By the definition ofεn-near minimum point, we have
�(gn) − �(go)� inf g∈spann G �(g) − �(go) + εn. So, by item (i) we get

�(gn) − �(go)��
(√

a

n

)
+ εn. (6)

If ‖go‖G is finite and limn→∞ εn = 0, then the right-hand side of (6) converges to zero
and so{gn} is �-minimizing.

(iii) By item (i), the definition of εn-near minimum point, and Proposition 4.1 (iii),

we have�(‖gn − go‖)��(gn) − �(go) < inf g∈spann G �(g) − �(go) + εn � �
(√

a
n

)
+ εn. �

Theorem 4.2 can be also obtained as a corollary of [29, Theorem 4.2], which applies to
other types of regularization, too, such as Ivanov’s one. However, the direct argument used
here is much simpler than the proof of [29, Theorem 4.2].

5. Suboptimal solutions over kernel models with bounded complexity

In this section, we derive estimates of rates of convergence of suboptimal solutions of the
problems(spannGK, E�,K) to the optimal solutiongo given by the Representer Theorem
for the problem(HK(�), E�,K). In contrast to the optimal solutiongo, which is a linear
combination of the representersKx1, . . . , Kxm determined by the samplex = (x1, . . . , xm)

of input data, suboptimal solutions are formed by linear combinations ofarbitrary n-tuples
of elements ofGK = {Kx : x ∈ �}. In applications, a propern-tuple together with
coefficients of the linear combination can be adjusted by a suitable nonlinear programming
algorithm (see, e.g., [1,7,21]).

To employ Theorem 4.2 to estimate rates of approximate minimization of regularized
empirical error functionals with kernel stabilizers, we need upper bounds on the moduli
of continuity and convexity of these functionals. The next proposition describes convex-
ity and continuity properties of regularized empirical error functionals with various loss
functions.

Proposition 5.1. Let� be a nonempty set, K : � × � a kernel, sK = supx∈�
√

K(x, x),
� > 0, m a positive integer, x = (x1, . . . , xm) ∈ �m, y = (y1, . . . , ym) ∈ �m, ymax =
max{|yi | : i = 1, . . . , m}, andV : �2 → � a loss function. Then the following hold:
(i) if for every i = 1, . . . , m the functionsV (·, yi) : � → � are convex, thenEV,�,K is
uniformly convex onHK(�) with a modulus of convexity�(t) = �t2;
(ii) if V is either the square or the absolute value loss function, then at everyf ∈ HK(�)

the functionalEV,�,K is continuous with a modulus of continuity bounded from above by
the quadratic function�(t) = b2t2 + b1t , where for the square lossb2 = s2

K + � and
b1 = 2

(‖f ‖K (s2
K + �) + ymaxsK

)
, while for the absolute value loss, b2 = � andb1 =

sK + 2�‖f ‖K ;
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(iii) if V is the square loss function, then there exists a unique minimum pointgo of the
problem(HK(�), EV,�,K) and for everyf ∈ HK(�)

‖f − go‖2
K � EV,�,K(f ) − EV,�,K(go)

�
.

Proof. (i) It is easy to check that for such loss functions the empirical error functional
EV = 1/m

∑m
i=1 V (f (xi), yi) is convex, and so the statement follows from Proposition

4.1 (i) and (iii).
(ii) Using the Cauchy–Schwartz inequality and reproducing property one can show that

for every kernelK, supu∈� |f (u)|�sK‖f ‖K , wheresK = supu∈�
√

K(u, u). Thus for the
square loss,|EV,�,K(f ) − EV,�,K(g)| = ∣∣ 1

m

∑m
i=1

(
(f (xi) − yi)

2 − (g(xi) − yi)
2
)+ �(‖f ‖2

K − ‖g‖2
K

) ∣∣ � ∣∣ 1
m

∑m
i=1 ( f (xi) − g(xi) ) ( f (xi) + g(xi) − 2yi )

∣∣ + � | ‖f ‖K

−‖g‖K | (‖f ‖K +‖g‖K)� supx∈� |f (x)−g(x)| (supx∈� |f (x) + g(x)| + 2ymax
)+� ‖f

− g‖K (‖f ‖K + ‖g‖K).
Let t > 0 andf, g be such that‖f −g‖K � t . Then|EV,�,K(f )−EV,�,K(g)|� t sK (|sK

‖f + g‖K + 2ymin) + t � (‖f ‖K + ‖g‖K)� t sK (2‖f ‖K sK + t sK + 2ymax) + �t

(2‖f ‖K+t)� t2 (s2
K+�)+2t

(‖f ‖K s2
K + ymaxsK + �‖f ‖K

)
.Thus,‖f −g‖K < t implies

|EV,�,K(f )−EV,�,K(g)|��(t) = b2t2+b1t , whereb2 = s2
K+�andb1 = 2

(‖f ‖K (s2
K + �)

+ymaxsK).
Similarly, for the absolute value loss we have|EV,�,K(f ) − EV,�,K(g)| = ∣∣ 1

m

∑m
i=1

(|f (xi) − yi | − |g(xi) − yi |) + �
(‖f ‖2

K − ‖g‖2
K

) ∣∣ � supx∈� |f (x)−g(x)|+� | ‖f ‖K

−‖g‖K | (‖f ‖K +‖g‖K)�sK ‖f −g‖K +� ‖f −g‖K (‖f ‖K + ‖g‖K). If ‖f −g‖K � t ,
then|EV,�,K(f ) − EV,�,K(g)|�sK t + t � (‖f ‖K‖g‖K)�sK t + t � (t + 2‖f ‖K). Hence
|EV,�,K(f ) − EV,�,K(g)|��(t) = b2t2 + b1t , whereb2 = � andb1 = sK + 2�‖f ‖K .

(iii) The existence of a unique minimum pointgo follows from the Representer Theorem.
By Proposition 4.1 (i), (ii), and (iii), for everyf ∈ HK(�) we have�‖f − go‖2

K � |EV,�,K

(f ) − EV,�,K(go)|. �

The assumptions of Proposition 5.1(i) are satisfied by both the square loss and the absolute
value loss. So these two loss functions determine uniformly convex functionalsEV,�,K with
quadratic moduli of convexity. Their moduli of continuity at anyf ∈ HK(�) are bounded
from above by the quadratic function�(t) = b2t2 + b1t , where for both lossesb2 depends
on� and for the square loss, also onsK , whileb1 depends on�, sK , ‖f ‖K and for the square
loss, also onymax. The larger the regularization parameter�, the larger the coefficients of the
quadratic function bounding the moduli of continuity. Generally, the modulus of continuity
of EV,�,K depends on the moduli of continuity of the functionsV (·, yi), i = 1, . . . , m.

Although the next theorem holds for any positive integern, it is useful only forn < m

since by the Representer Theorem, the minimum point ofE�,K overspanmGK is equal to
the minimum point over the whole spaceHK(�).

Theorem 5.2. Let � be a nonempty set, K : � × � → � a kernel, sK = supx∈�√
K(x, x), m a positive integer, x = (x1, . . . , xm) ∈ �m, y = (y1, . . . , ym) ∈ �m, ymax =

max{|yi | : i = 1, . . . , m}, go = ∑m
i=1 ci Kxi

the unique solution of(HK(�), E�,K), {εn}
a sequence of positive real numbers such thatlimn→∞ εn = 0, and {gn} a sequence of
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εn-near minimum points of(spann GK, EK). Leta = (sK ‖go‖GK
)2 − ‖go‖2

K , u = (s2
K +

�)a, andv = 2
(
(s2

K + �)‖go‖K + ymaxsK

)√
a. Then, for every positive integer n the fol-

lowing estimates hold:
(i) inf g∈spann GK

E�,K(g) − E�,K(go)� u
n

+ v√
n
;

(ii) E�,K(gn) − EK(go)� u
n

+ v√
n

+ εn;

(iii) ‖gn − go‖2
K � 1

�

(
u
n

+ v√
n

+ εn

)
;

(iv) supx∈� |gn(x) − go(x)|2� s2
K

�

(
u
n

+ v√
n

+ εn

)
.

Proof. (i) Combining Theorem4.2 (i) with Proposition 5.1 (ii), we get infg∈spann GK

E�,K(g)−E�,K(go)��
(√

a
n

)
, where�(t) = (s2

K + �) t2 +2 ((s2
K + �)‖go‖K + ymaxsK) t ,

which gives for infg∈spann GK
E�,K(g) − E�,K(go) the upper bound(s2

K + �) a
n

+ 2((s2
K +

�)‖go‖K + ymaxsK)
√

a
n

= u
n

+ v√
n
.

Similarly, item (ii) follows from Theorem 4.2(ii) and Proposition 5.1(ii), item (iii) follows
from (ii) and Proposition 5.1(iii), and item (iv) from (iii) and the inequality supu∈	 |f (u)|�
sK‖f ‖K , which is obtained using the Cauchy-Schwartz inequality and the reproducing
property. �

Thus whenu andv are not too large, it is possible to choosen small enough so that a
computational model withn units is implementable and a suboptimal solution over such a
model approximates well the optimal solution given by the Representer Theorem.

Only two terms in the above formulas defininguandv cannot be derived directly from the
data samplez, the kernelK and the regularization parameter�: the values of the two norms
of the optimal solutiongo, i.e., itsGK -variation and its norm‖.‖K . The next proposition
estimates these two values in terms of the sizemof the sample, the regularization parameter
�, thel2-norm of the output vectory, and the maximal and minimal eigenvalues,�max and
�min, of the Gram matrixK[x] of the kernelK with respect to the input data vectorx. The
l1- andl2-norm on�m are denoted by‖ · ‖1 and‖ · ‖2, respectively.

The estimates in the rest of the paper (Proposition 5.3, Theorem 5.4, and Corollaries 6.1
and 6.2) involve an upper bound on‖go‖GK

, which is also an upper bound on‖go‖GK,x .
Thus, all these estimates can be applied also to approximate solutions over hypothesis sets
formed by functions from spannGK,x. Such solutions are obtained whenn representers are
chosen from the setGK,x, as, e.g., in [42], where approximation techniques were proposed
that reduce the Gram matrixK[x] to a sparse matrix of lower rank.

Proposition 5.3. Let � be a nonempty set, K : � × � → � a kernel, sK = supx∈�√
K(x, x), � > 0,m a positive integer, x = (x1, . . . , xm) ∈ �m, y = (y1, . . . , ym) ∈ �m,

go = ∑m
i=1 ci Kxi

the unique solution of(HK(�), E�,K). Then the following estimates
hold:
(i) ‖go‖GK

�
√

m‖y‖2
�m+�min

;

(ii) ‖go‖K �
√

�max‖y‖2
�m+�min

;

(iii) s2
K ‖go‖2

GK
− ‖go‖2

K � (s2
K m−�min) ‖y‖2

2
(�m+�min)2 .
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Proof. (i) From the Representer Theorem, the definition ofGK -variation, and the Cauchy–
Schwartz inequality it follows that

‖go‖GK
�

m∑
i=1

|ci | = ‖c‖1�
√

m ‖c‖2, (7)

wherec = (� m I+K[x])−1y. By the definition of the norm of an operator,‖c‖2�‖(� m I+
K[x])−1‖2 ‖y‖2.As(�mI + K[x])−1 is symmetric and positive definite, itsl2-norm is equal
to its maximal eigenvalue, i.e., 1

�m+�min
. So we have

‖c‖2� ‖y‖2

�m + �min
(8)

and thus‖go‖GK
�

√
m‖y‖2

�m+�min
.

(ii) By the Representer Theorem,‖go‖2
K =

〈∑m
i=1 ci Kxi

,
∑m

j=1 cj Kxj

〉
K

= ∑m
i,j=1 ci

cj K(xi, xj ) = cT K[x]c, wherecT denotes the transpose of the vectorc. As�min‖c‖2
2�cT

K[x]c��max‖c‖2
2 [32, p. 21], we have

�min‖c‖2
2�‖go‖2

K ��max‖c‖2
2. (9)

Thus by (8), ‖go‖K �
√

�max‖y‖2
� m+�min

.
(iii) By (7)–(9), we obtain

s2
K‖go‖2

GK
− ‖go‖2

K � s2
Km‖c‖2

2 − �min‖c‖2
2�

(
s2
Km − �min

)
‖c‖2

2

� (s2
K m − �min)‖y‖2

2

(�m + �min)2 . �

As both�min and�max are nonnegative, we can further simplify as follows the upper
bounds from Proposition 5.3:

(i) ‖go‖GK
� ‖y‖2

�
√

m
, (10)

(ii ) ‖go‖K �
√

�max‖y‖2

�m
, (11)

(iii ) s2
K ‖go‖2

GK
− ‖go‖2

K � s2
K‖y‖2

2

�2m
. (12)

Combining Proposition5.3 with Theorem 5.2 and inequalities (10)–(12), we shall de-
rive upper bounds on rates of convergence of approximate solutions of the problems
(spann GK, E�,K) to the solution of the problem(HK(�), E�,K) in terms of sK , m, �,
‖y‖2, ymax, �min, and�max.

Theorem 5.4. Let�beanonempty set,K : �×� → �a kernel, sK = supx∈�
√

K(x, x),
� > 0, m a positive integer, x = (x1, . . . , xm) ∈ �m, y = (y1, . . . , ym) ∈ �m, ymax =
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max{|yi | : i = 1, . . . , m}, go = ∑m
i=1 ci Kxi

the unique solution of(HK(�), E�,K), {εn}
a sequence of positive real numbers, and {gn} a sequence ofεn-near minimum points of
(spann GK, E�,K). Let

ū =
(
s2
K + �

) (s2
K m − �min) ‖y‖2

2

(�m + �min)2 �
(
s2
K + �

) s2
K ‖y‖2

2

�2m
and

v̄ = 2

(
(s2

K + �)

√
�max‖y‖2

� m + �min
+ ymaxsK

) √
s2
K m − �min

�m + �min
‖y‖2

� 2sK

�
√

m
‖y‖2

(
(s2

K + �)

√
�max‖y‖2

�m
+ ymaxsK

)
.

Then, for every positive integer n the following estimates hold:
(i) inf g∈spann GK

E�,K(g) − E�,K(go)� ū
n

+ v̄√
n
;

(ii ) E�,K(gn) − EK(go)� ū
n

+ v̄√
n

+ εn;
(iii ) ‖gn − go‖2

K � 1
�

(
ū
n

+ v̄√
n

+ εn

)
;

(iv) supx∈� |gn(x) − go(x)|2� s2
K

�

(
ū
n

+ v̄√
n

+ εn

)
.

Thus, to obtain a good approximation of the solution of(HK(�), E�,K) given by the
Representer Theorem by a suboptimal solution computable by a model with at mostn < m

computational units, both̄u
n

and v̄√
n

have to be sufficiently small for somen, for which
models withn computational units computing functions fromGK are implementable.

6. Estimates for convolution kernels

In this section, we illustrate the estimates given in Theorem5.4 by examples of RHSH
with � = �d and convolution kernels. LetK(u, v) = �(‖u − v‖) be a convolution kernel,
where� : � → [0, 1] is monotonically decreasing and satisfies�(0) = 1 (this includes
the Gaussian kernel). The following corollary estimates rates of convergence of suboptimal
solutions for input/output pairs of data(x1, y1), . . . , (xm, ym) for which the input data are
sufficiently separated so that there existst ∈ [0, 1] such that for all distincti, j ∈ {1, . . . , m},
�(‖xi − xj‖)� t .

Corollary 6.1. LetK : �d × �d → � be a kernel such thatK(s, t) = �(‖s − t‖) with
� : � → [0, 1]monotonically decreasing,satisfying�(0) = 1,and such that for all distinct
i, j ∈ {1, . . . , m}, �(‖xi − xj‖)� t for somet > 0. Let � > 0, m be a positive integer,
x = (x1, . . . , xm) ∈ �dm, y = (y1, . . . , ym) ∈ �m, ymax = max{|yi | : i = 1, . . . , m},
go = ∑m

i=1 ci Kxi
the unique solution of(HK(�d), EK), {εn} a sequence of positive real

numbers, and{gn} a sequence ofεn-near minimum points of(spann GK, E�,K). Let

û = (1 + �)
‖y‖2

2

�2m
and
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v̂ = 2

�
√

m
‖y‖2

(
(1 + �)

√
1 + (m − 1)t‖y‖2

� m
+ ymax

)

Then, for every positive integer n the following estimates hold:
(i) inf g∈spann GK

E�,K(g) − E�,K(go)� û
n

+ v̂√
n
;

(ii) E�,K(gn) − EK(go)� û
n

+ v̂√
n

+ εn;

(iii) ‖gn − go‖2
K � 1

�

(
û
n

+ v̂√
n

+ εn

)
;

(iv) supx∈� |gn(x) − go(x)|2� 1
�

(
û
n

+ v̂√
n

+ εn

)
.

Proof. As sK = 1 and�max�‖K[x]‖1 = maxj=1,...,m

∑m
i=1 |K[x]i,j | [32, pp. 6, 21–23],

we have�max�1+ (m−1)t . Hence estimates (i)–(iv) follow from Theorem 5.4 withū = û

andv̄� v̂. �

Bounding from above the right-hand side of the estimates from Corollary 6.1 in terms of
the maximum of the absolute values of output data, we obtain the following corollary.

Corollary 6.2. LetK : �d × �d → � be a kernel such thatK(s, t) = �(‖s − t‖) with
� : � → [0, 1]monotonically decreasing,satisfying�(0) = 1,and such that for all distinct
i, j ∈ {1, . . . , m}, �(‖xi − xj‖)� t for somet > 0. Let � > 0, m be a positive integer,
x = (x1, . . . , xm) ∈ �dm, y = (y1, . . . , ym) ∈ �m, ymax = max{|yi | : i = 1, . . . , m},
go = ∑m

i=1 ci Kxi
the unique solution of(HK(�d), EK), {εn; n = 1, . . . , m} positive

real numbers, {gn : n = 1, . . . , m} εn-near minimum points of(spann GK, E�,K), and

b = y2
max
� (31+�

� + 2).
Then, for every positive integern�m the following estimates hold:

(i) inf g∈spann GK
E�,K(g) − E�,K(go)� b√

n
;

(ii ) E�,K(gn) − EK(go)� b√
n

+ εn;
(iii ) ‖gn − go‖2

K � 1
�

(
b√
n

+ εn

)
;

(iv) supx∈� |gn(x) − go(x)|2� 1
�

(
b√
n

+ εn

)
.

Proof. As‖y‖2
2�my2

max, we haveû
n
+ v̂√

n
� 1+�

�2 y2
max

1
n
+ 2

� y2
max((1+�)

√
1+(m−1)t

�
√

m
+1) 1√

n
,

which for t ∈ [0, 1] and n�m is bounded from above by1+�
� y2

max
1
n

+ 2
� y2

max(
1+�
� +

1) 1√
n
�31+�

�2 y2
max+ 2

� y2
max = y2

max
� (31+�

� + 2). Hence estimates (i)–(iv) follow from Corol-

lary 6.1. �

So, when� is not too small andymax is not too large, Corollary 6.2 guarantees a good
approximation of the optimal solution by suboptimal ones.

In particular for the Gaussian kernel, the minimum of the regularized empirical error
functional over the set of functions computable by Gaussian radial-basis function networks
with ncomputational units approximates the global minimum over the whole RKHS within

b√
n
, whereb = y2

max
� (31+�

� + 2).
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7. Discussion

We have compared two approaches to learning from data with generalization capability,
both modeling learning as a minimization of the empirical error functional with the square
loss function regularized by the square of a norm on an RKHS, but differing in the hypothesis
sets over which minimization is performed. The first approach, which is based on the
Representer Theorem, considers minimization of the regularized empirical error over the
whole RKHS, whereas the second one over its subset formed by functions computable by
linear combinations ofn computational units defined by the kernel.

We have derived upper bounds on the errors of approximation of the optimal solution by
the suboptimal ones obtainable withn increasing. We have shown that when the absolute
values of output data are not too large and the regularization parameter is not too small,
suboptimal solutions approximate the optimal one within an accuracyc√

n
with cmoderate.

In such cases, algorithms operating on models withn computational units can approximate
the optimal solution quite well. Hence, when the solution of the system of linear equations
described in the Representer Theorem is not computationally feasible or when the system
is ill-conditioned, models with bounded complexity provide a useful and quite accurate
alternative to the learning algorithms based on the Representer Theorem. For convolution
kernels on�d × �d the upper bounds from Corollaries6.1 and 6.2 do not depend on the
numberd of variables, so the approximation of the optimal solution by such models does
not exhibit the curse of dimensionality [4].

Minimization over a set of parameters of a chosen model is a nonlinear programming
problem [35, p. 1489], which can be solved by iterative methods such as gradient descent
[7, pp. 103–106,173–174] (possibly with additive stochastic terms to avoid local minima,
due to the nonconvexity ofE�,K as a function of the parameters), genetic algorithms [21],
and simulated annealing [1].
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