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Abstract

Learning from data with generalization capability is studied in the framework of minimization of
regularized empirical error functionals over nested families of hypothesis sets with increasing model
complexity. For Tikhonov's regularization with kernel stabilizers, minimization over restricted hypoth-
esis sets containing for a fixed integemly linear combinations of ati-tuples of kernel functions is in-
vestigated. Upper bounds are derived on the rate of convergence of suboptimal solutions from such sets
tothe optimal solution achievable without restrictions on model complexity. The bounds are of the form
1/./n multiplied by a term that depends on the size of the sample of empirical data, the vector of output
data, the Gram matrix of the kernel with respect to the input data, and the regularization parameter.
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1. Introduction

A key property of systems performing intelligent computing, such as feature extraction,
pattern recognition, semantic web realization, and classification, is learning ability. The
goal of supervised learning is to adjust the parameters of a computational model so that it
approximates to a desired accuracy a functional relationship between inputs and outputs by
learning from a set of examples, i.e., a sampte {(x;,y;) € QA xR, i =1,...,m} of
m input/output pairs oeémpirical data It is desirable that a model trained on a sample of
empirical data also hasgeneralization capabilityi.e., it is able to satisfactorily process
new data, which were not used for learning. To endow a model with this capability, one
needs some global knowledge of the desired input/output functional relationship, such as
smoothness or lack of high-frequency oscillations.

In statistical learning theorf9,45], learning from empirical data is modelled as mini-
mization of a functional, calleempirical error. For asamplez of data and éoss functiorV :

N2 — [0, +00), the empirical erro€; vy is defined as; v (f) = % Yo V(i) i),
wheref belongs to a function space, callegpothesis spa¢ever which such a minimiza-
tion is performed.

Mathematical modeling of generalization requires spn@ informationon the behavior
of potential solutions. Such information is already expressed by the choice of a hypothesis
space, over which the empirical error is minimized. It can be further specified by restricting
minimization of the empirical error to a subset of the hypothesis space (containing only
functions with some desired behavior). Alternatively, one can add to the empirical error a
term penalizing undesired properties, or combine these two approaches. The first method
is an application to learning of lvanov’s regularization, the second one of Tikhonov’s, and
the third one of Miller’s [6, pp. 68-78].

Tikhonov's regularizatiorj43,44], which was introduced into learning theory by Pog-
gio and Girosi [20,35,36], leads to minimization over the whole hypothesis space of the
regularized empirical error functionaddefined as the sum of two functiondlsy + V.

The first one, the empirical errég, v, enforces closeness to the sampt# empirical data,
whereas?, calledstabilizer, expresses requirements on the global behavior of the desired
input/output functional relationship. Thiegularization parametey controls the trade-off
between fitting to empirical data and penalizing undesired behavior.

A large class of hypothesis spaces can be studied in the framework of the theory of
Hilbert spaces of a special type, callegiroducing kernel Hilbert spacdRKHS3. Norms
on such spaces often play the role of measures of various types of oscillations of input/output
mappings. RKHSs were formally defined by Aronszajn [2], but their theory employs work by
Schonberg [41], as well as many classical results on kernels and positive definite functions.
RKHSs were introduced into applications closely related to learning by Parzen [33] and
Wabhba [47], and into learning theory by Cortes and Vapnik [8] and Girosi [19].

The Representer Theorefd0, p. 42], [18,20,26,35,37,39] states that for Tikhonov's
regularization with a stabilizer defined as a strictly increasing function of the norm on
an RKHS, the problem of minimization of the regularized empirical error over the whole
space has a unique solution of the form of a linear combination ofthgle of the kernel
functions, which are parameterized by the input data vecten(xs, .. ., x,,). In particular,
for a stabilizer equal to the square of the norm on an RKHS, the vectihe coefficients
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of the linear combination is obtained as the solution of the well-posed linear system of
equationgymZ + K[x])c =y, whereZ is them x m identity matrix,C[x] is the Gram
matrix of the kerneK with respect tox, andy = (y1, .. ., y») is the output data vect§a].

A paradigmatic example of a kernel is the Gaussian kernel, for which the solution given by
the Representer Theorem has the form of an input/output function of a Gaussian radial-basis-
function network withm units centered at the input datg, . . ., x,, [18]. The coefficients
of the linear combination play the role of output weights of such a network. On the basis
of this interpretation of the Representer Theorem, in [20, p. 219] it was argued that “the
regularization principles lead to approximation schemes that are equivalent to networks
with one layer of hidden units.”

The Representer Theorem was used to design a learning algorithm (see, e.g., [10, p. 42]
and [37, pp. 538-539] ) that requires one to solve the linear system of equgtiaDst
K[x])c = y. An advantage of this algorithm is that it gives the best possible solution of
the task of fitting a function to a given sample of empirical data and satisfying a global
property describable in terms of a condition on smoothness that can be modelled in terms
of a kernel.

However, practical applications of this algorithm are limited by the rate of convergence
of iterative methods solving the system of equations and by the size of the condition number
of the matrixymZ + K[x]. For some methods, the computational requirements for solving
such a system grow polynomially with the sizeof the sample (e.g., for the Gaussian
elimination andm large enough, they grow a&3/3 [32, p. 175]). For some data and
kernels, keeping the condition numbery@iZ + K[x] small requires a large value of the
regularization parameter which may cause poor fit to the empirical data.

The learning algorithm based on the Representer Theorem uses a computational model
of complexity determined by the siza of the sample of data, and does not allow any
flexibility in choosing the inner parameters of the computational units (as they are set equal
to the input data).

In this paper, we investigate suboptimal solutions of the problems of minimization of
regularized empirical error functionals over hypothesis sets corresponding to kernel models
with limited complexity and flexible choice of parameters. We derive upper bounds on the
rates of convergence of sequences of suboptimal solutions achievable by minimization over
hypothesis sets formed by linear combinations of at mdstrnel functions (either with
arbitrary parameters or with parameters drawn from the data set) to the optimal solution
given by the Representer Theorem. The upper bounds are of the foymrhultiplied by
a term that depends on the sin@f the sample, th&-norm of the vectoy = (y1, ..., ym)
of output data, the minimal and the maximal eigenvalues of the Gram mi&ixikof the
kernel with respect to the input data, and the regularization parameter

We state conditions on the sample, the kernel and the regularization parameter, under
which the term multiplying 1,/# is “small” and so suboptimal solutions converge “quickly”
to the optimal one. Under such conditions, kernel methods with bounded model complex-
ity provide good approximations to the best possible solution of the learning task. As our
estimates are not merely asymptotic, they can be applied to any bound on model com-
plexity. For the Gaussian kernel we derive an upper bound of the f%rm/vhereb =

2 ) : .
)’:‘—/ax <3ﬂ + 2) andyrznaX is the maximum of the absolute values of output data.
/
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The paperis organized as follows. Sectintroduces concepts concerning minimization
of functionals and Tikhonov's regularization applied to learning from data with RKHSs as
hypothesis spaces. Section 3 states the Representer Theorem and explores the condition
numbers of the matrices used in algorithms based on this theorem. Section 4 develops
tools for investigating approximate optimization over hypothesis sets with bounded model
complexity. Section 5 describes continuity and convexity properties of regularized empirical
error functionals with various types of loss functions and estimates rates of convergence
of sequences of suboptimal solutions to the problem of learning by kernel methods with
increasing model complexity. Section 6 illustrates the estimates on RKHSs defined by
convolution kernels. Section 7 is a brief discussion.

2. Tikhonov's regularization of the learning problem in reproducing kernel Hilbert
spaces

By a normed linear spadg, |.||) we mean a real normed linear spagiedenotes the
set of real numbers.

Let M be a subset cK and® : X — R be a functional. Using standard notation [15],
we denote by

(M, D)

the problem of minimizingb overM; M is calledhypothesis set

By argmin(M, @) = {g € M : O(g) = infgepr P(g)} is denoted the set ahinimum
pointsof the problem(M, ®) and for anys > 0, argmin (M, ®) = {g € M : D(g) <
infeepr D(g) + ¢} is the set ofe-near minimum pointsf (M, ®). A minimum point of
(M, @) is called asolutionof the problem(M, @). A sequencdg,} of elements oM is
called®-minimizing over Mflim ,_, o ®(g,) = infeepr P(g).

LetQbeasetand = {(x;,y;) € Qx N, i =1,...,m} anmtuple of input/output
pairs of data, called sample A standard approach to learning from empirical d8t45]
is based on minimization of thempirical errorfunctional (also called thempirical risk
functional), defined for any in the hypothesis set as

m

1
Ev(f) =Ev(f)=— 3 V(FE), ),

i=1

whereV : 52 — [0, oo) satisfying for ally € %, V(y,y) = 0 is called doss function
When the sample is clear from the context, we write merefy instead of; v .
The most common loss function is teguare lossdefined as

V(f(x),y) = (f(x) — )2
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In this paper, we mostly focus on the empirical error defined using the square loss, for which
we merely write€. So we let

l m
E(f) == (fl) =32
i=1

Other common loss functions are thbsolute value los¥ (f(x), y) = |f(x) — y| and
Vapnik'se-insensitive los¥ (f (x), y) = max(| f (x) — y| — ¢, 0).
Tikhonov's regularizatiomeplaces the problem

(M, Ev)
with the problem
(M, SV + ’VIP)7

where" is a functional calledtabilizerandy > 0 is aregularization parametej43,44].

An important class of stabilizers are squares of norms on reproducing kernel Hilbert
spaces (RKHSs) (see, e.g., [5,10,40]). Such stabilizers often enable one to penalize high
oscillations of various types. For a $8tand a symmetric positive semidefinite function
K : Q x Q — N, calledkernel we denote by#H (Q), ||.llx) the RKHS defined by.

The squared norrn\.||§( is used as a stabilizer instead|jof| ¢ for technical reasons, as the
square of the norm on any Hilbert space is a uniformly convex functional (see Proposition
4.1 (iii)); this implies uniqueness of the solution of the regularized problem (see, e.g., [14,
p. 10; 10, pp. 27, 42]) and convergence of minimizing sequences to this solution [31].

Using ||.||§( as a stabilizer, the regularized empirical error functional with a loss function

V and a regularization parametehas the form

1 m
Evk(f)=— 3 V(i) i) + 71 F1I%-
i=1

As in the case of the empirical error, when the square loss is employed in the regularized
empirical error we use the simplified notation

1 m
Exk ()=~ (Fa) =3+ fI%-
i=1

Thus we denote by
(Hk(Q), & k)

the problem of minimizing over the RKHE ¢ () the regularized empirical error with the
square loss and the stabilizlen%.

3. The Representer Theorem

Existence, uniqueness and an explicit formula describing the solution of the problem
(Hk (Q), &, k) of minimizing over the whole RKHS the regularized empirical error with
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the square loss and the stabili:ﬂeﬁ( are given by thd&Representer TheorerRor a kernel
K, a positive integem, and a vectok = (x1, ..., x;;) € Q" of input data, we denote by
K[x] them x m matrix defined as

KIxlij = K(x;, x;),

which is called th&sram matrix of the kernel K with respect to the vectowWe denote by
7 them x m identity matrix.

Theorem 3.1(Representer TheorémLetQ be a nonempty sek : Q x Q — 9 a kerne
m a positive integerx = (x1,...,x,) € Q" ¥y = (y1,..., ym) € R, andy > 0. Then
the problem(#  (Q), &, k) has the unique solution

g”:Zcini, 1)
i=1
wherec = (c1, ..., ¢;) is the unique solution of the well-posed linear system
GmI+Kxhe=y. )

The Representer Theorem was originally provd28j. An elegant proof using functional
derivatives was given in [37, pp. 538-539], while for Mercer kernels a more sophisticated
argument based on the Mercer Theorem was provided in [10, p. 42]. In [26] it was derived
from the theory of inverse problems. Inspection of proofs shows that for any differentiable
loss functionV, the solution is of the forng? = Y ; ¢;K,,. However, wherV is not a
polynomial of degree 2, the equation to be solved to compute the coefficients, c;,
is nonlinear [19, p. 1473]. A weaker form of the Representer Theorem, without a formula
for computing the coefficients, ..., ¢;;, even holds for an arbitrary loss functivhand
a stabilizer of the formy(|| - ||x), wherey : [0, +00) — N is a strictly increasing
function [39].

The Representer Theorem was exploited to design algorithms for learning from data
(see, e.g., [10, p. 42, 37, pp. 538-539]). However, its applications are limited by the rates
of convergence of iterative methods solving the linear system of equations (2) and by the
size of the condition number of the matgimZ + KC[x].

We recall that theondition numbebf a nonsingular x m matrix A with respect to a
norm||.|| on ®X™ is defined as

cond A) = [|A|l A7,

where|| A|| denotes the norm od as a linear operator ™, ||.||). We denote byimax(A)
andAmin(A) the maximal and minimal eigenvalues of the magfixrespectively.

It is easy to check that for any norfn| on %" and anym x m nonsingular matrix
A, condA) > 'é"r;?‘:éﬁ;“ and for any symmetric nonsingular x m matrix .4, conch(A) =

%, wherecond(A) denotes the condition number dfwith respect to thé,-norm

onfn",
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To simplify the notation, we writ€.max instead ofAmax(KC[X]) and similarly for Amin.
As K[x] is positive semidefinite, all its eigenvalues are nonneg§i2ep. 7]. Asi is an
eigenvalue ofC[x] if and only if ym + 4 is an eigenvalue ofmZ + K[x], we have

ym + Amax < Jomax

5 S
M+ Amin  Amin

concb(ymZ 4 K[x]) = = conch(K[x]) )

and

conch(ymZ + K[x]) <1+ ):f“njx. (4)
/

Eqg. 3) shows that whenonca (K[x]) is sufficiently small, good conditioning ¢fnZ +
K[X] is guaranteed for any value pfHowever, for large values ofithe matrixk[x] might
be ill-conditioned. For example, when the data are uniformly distributed over an interval,
then the probability thak’[x] is ill-conditioned increases witin (see [12, Theorem 2.2],

[13, Theorem 5.1]). On the other hand, Eq. (4) shows thatlig conch(ymZ+K[x]) = 1

and thus the regularization parametean always be chosen such thahd (ymZ + K[x])

is close to 1. But good conditioning ofnZ + K[X] is not the only requirement for, as

its value must also allow a good fit to the empirical data and thus it cannot be too large.
Existence of a value gfguaranteeing a good fit to data as well as good conditioning depends
on the rate of convergence of the condition numbenaf + C[x] to 1. The smallelimTax,

the faster such convergence. The problem of chogsingrder to minimize the expected
error was investigated in [11].

When a value ofy guaranteeing both a small condition number and a good fit to the
empirical data cannot be found, algorithms for learning from data that differ from the one
based on the Representer Theorem have to be applied. A variety of learning algorithms
have been developed in the field of neurocomputing. Typically, such algorithms operate on
networks of lower model complexity than the algorithm based on the Representer Theorem.
The number of computational units in such networks is either set in advance or adjusted
during learning, but, typically, it is much smaller than the sizef the sample used as a
training set. Moreover, the values of the computational units’ parameters (which are called
centroidsin the case of RBF networks) are not set equal to the input vectors from the data
sample, but are searched for during learning.

4. Minimization of functionals over hypothesis sets with bounded model
complexity

Inthis section, we derive tools for estimating rates of convergence of suboptimal solutions
over computational models wittunits (the case of interestis< m) to the optimal solution
given by the Representer Theorem. Such suboptimal solutions can be studied in terms of
optimization over nested families of subsets of RKHSs formed by linear combinations of
all n-tuples of kernel functions chosen from the S&ts : x € Q} or {K,,, ..., Ky, }.

For a subseG of a linear space, letpan, G = {Zf’zl wigi:w €N, g € G} de-
note the set of linear combinations of altuples of elements d&. The optimal solution
to the problem(Hg (), &, k) described by the Representer Theorem is an element of
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span, Gg x € span, Gk, whereGg x = {Ky,, ..., Ky, } andGg = {K, : x € Q}. The
setspan, G ¢ can be interpreted as the set of all input/output functions of a computational
model with one hidden layer oh computational units computing functions fraG . In
particular, for the Gaussian kernel the solution has the form of an input/output function of
a Gaussian radial-basis-function (RBF) network witkomputational unit§20].

To compare the optimal solution given by the Representer Theorem with suboptimal ones
that can be obtained by minimization &f ¢ over restricted hypothesis sets (containing
only linear combinations of afi-tuples of elements of the s6tx or G ¢ x), we shall employ
a version of the Maurey—Jones—Barron Theorem [3,22,34], reformulated in [24] in terms
of a norm calleds-variation

We recall that theMinkowski functionabf a subseiM of a linear spac&, denoted by
pu. is defined for everyf € X aspy (f) =inf{l e Ry : f/A e M}. If Mis asubset ofa
normed linear spacgX, || - ||), we denote byl M its closurewith respect to the topology
generated by - ||, i.e,ciM ={feX:(Ve>0)AgeM)|f—gl <el

G-variation norm, denoted by.| s, is defined for a subs& of a normed linear space
(X, |I.]) as the Minkowski functional of the closure of the convex hull of theget —G.

So for everyf € X we have

Ifllc =inf{c>0: f/ce€clconv(GU —G)}.

For properties of-variation, se¢24,25,27,28,30].

Maurey—Jones—Barron’s Theorem stated in term&eofariation [24,25] gives for a
Hilbert spacd X, ||.|)), its bounded subs& with s = sup,eq lgll, and everyf € X, the
following upper bound on the rate of approximationfoby span,G: || f — span,G| <

(¢ ||f||G)2—HfH2_

Takingnadvantage of this upper bound, we shall estimate rates of convergence of subop-
timal solutions ovespan, G to the optimal solution of the probleqX, ®) of minimization
of a continuous functionab over a normed linear spaée

A functional® : X — % is continuousat f € X if for any ¢ > 0, there existg > 0
suchthat| f — g|| < nimplies|®(f) — ®(g)| < . A modulus of continuitpf ® at f is a
functionw : [0, +00) — [0, +00) defined aso(a) = sUg|®(f) —D(g)| : I f —gll<a}.

® is convexon a convex seM C X if forall h,g € M and allA € [0, 1], we have
OAh + (L — Dg) <AD(h) + (L — HD(g) and it isuniformly convexf there exists a
nonnegative functiod : R, — N, such that(0) = 0, 4(¢) > 0 for allz > 0, and for all
h,g € Mandalll € [0, 1], D(Jh+(1—A)g) <AD(h)+(1— ) D(g) — A(L—DS(|h—gl)).
Any such functior is called anodulus of convexityf ® [31]%.

Next proposition states some elementary properties of uniformly convex functionals and
moduli of convexity.

4The terminology is not unified: some authors use the term “strictly uniformly convex” instead of “uniformly
convex”, while they reserve the term “uniformly convex” for the case wihereh — R4 merely satisfies
0(0) = 0 andd(rg) > O for somerg > O (see, e.g[46,14, p. 10).
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Proposition 4.1. Let(X, ||.||) be anormed linear spac#/ C X convexand® a uniformly
convex functional on M with a modulus of convexityrhen the following hold

(i) if ¥ is convex on M angl > 0, then¥ + y® is uniformly convex on M with a modulus
of convexityy J;

(ii) if g2 € argmin(M, @), then for everyg € M, 6(|lg — g°ll) <D(g) — P(g?%);

(iii) if (X, |I.|) is a Hilbert spacethen the functional|.||? : X — % is uniformly convex
with a modulus of convexig(r) = ¢2.

Proof. (i) follows directly from the definitions.

(i) By the definition of uniformly convex functional, for everye [0, 1] we havel(1 —
A)o(llg—g°l) <AD(g) +(1—- ) P(g%) —P(Ag +(1—-2)g?). AsD(g?) < P(4g+(1—A)g°),
we geti(1—A)o(llg — g%l <AP(g) + (1 - ) D(g?) — D(g?) = 4 (D(g) — P(g?)). Hence
(1-A)(llg—g°IHh <D(g) —D(g?) forevery € [0, 1]. So we obtaid(|lg —g°l) < D(g) —
D(g%).

(iii) For everyh, g € X and everyi < [0, 1], we havel| ik + (1 — ) g2 < Allhll% + (1 —
Mgl? — AL = A)|lh — g2 and thusd(r) = ¢2 is a modulus of convexity of.||2. O

Next theorem gives upper bounds on rates of convergence of suboptimal solutions over
span,G to the optimal solution of the problerfX, ®) of minimization of a continuous
functional ® over a Hilbert spac&. The estimates are formulated in terms of moduli of
continuity and convexity of the functional to be minimized.]

Theorem 4.2. Let (X, ||.||) be a Hilbert spaceG its bounded subset; = SUp,eq llgll,
d®: X - (—o0, +oo]afunctional g € argmin(X, @), ® continuous ag’ with a modulus
of continuityo, {¢,} a sequence of positive real numheys € argmin, (span, G, ®), and

a = (sgllg°llc)? — 11g°lI%. Then for every positive integer n the following estimates hold
(1) inf gespan, ¢ P(g) — P(g?) < (\/g) ;

(i) if |g%lc < oo andlim,_ &, = 0, then{g,} is a ®-minimizing sequence and
D(ga) — D(g7) < (/%) + e

(iii) if @ is uniformly convex with a modulus of convexitythen o(|lg, — g°|) <«

(/E) e

Proof. (i) For every positive integan and every > 0, choose ar-near best approxima-
tion 7 of g2 in span,G. So| g’ — fll < llg? — span, G| + ¢. As f? < span,G, we
have infyespan, ¢ P(g) — P(g%) <@(f,;) — P(¢g°). Estimating the right-hand side of this
inequality in terms of the modulus of continuityof ® atg?, we obtain infcspan, ¢ P(g) —
D) <alll ff — gl <a(llg’ —span, G|+ ¢). By the upper bound from Maurey—Jones—
Barron’s Theorem reformulated in terms@fvariation we get

inf ®(g) — D¢’ <u <\/E + 8> . (5)
gespan, G n

Infimizing (5) overe we obtain (i).
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(ii) By the definition ofe,,-near minimum point, we have
D(g,) — D(g°) < infgespan, ¢ P(g) — P(g%) + &,. SO, by item (i) we get

B(gn) — D(g") <2 (\/5) +on. ®)

If g% is finite and lim,—. o &, = 0, then the right-hand side o6) converges to zero
and so{g,} is ®-minimizing.
(iif) By item (i), the definition of g,-near minimum point, and Proposition 4.1 (iii),

we haved(llg, — 8°I) <®(g) — P(g”) < infgespan ¢ D(g) — P(g”) + 0 < (/%)
+¢,. O

Theorem 4.2 can be also obtained as a corollary of [29, Theorem 4.2], which applies to
other types of regularization, too, such as Ivanov’s one. However, the direct argument used
here is much simpler than the proof of [29, Theorem 4.2].

5. Suboptimal solutions over kernel models with bounded complexity

In this section, we derive estimates of rates of convergence of suboptimal solutions of the
problems(span, G, &, k) to the optimal solutiorg® given by the Representer Theorem
for the problem(H x (), £, k). In contrast to the optimal solutiogf’, which is a linear
combination of the representeky, , . . ., K, determined by the sampke= (x1, ..., x)
of input data, suboptimal solutions are formed by linear combinatioaghitrary n-tuples
of elements ofGx = {K, : x € Q}. In applications, a propen-tuple together with
coefficients of the linear combination can be adjusted by a suitable nonlinear programming
algorithm (see, e.g., [1,7,21]).

To employ Theorem 4.2 to estimate rates of approximate minimization of regularized
empirical error functionals with kernel stabilizers, we need upper bounds on the moduli
of continuity and convexity of these functionals. The next proposition describes convex-
ity and continuity properties of regularized empirical error functionals with various loss
functions.

Proposition 5.1. LetQ be a nonempty sek : Q x Q a kernel sy = sup..qo v K (x, x),

7 > 0, m a positive integerx = (x1, ..., x,) € Q" ¥y = (y1, ..., Ym) € R, Ymax =
max(|y;| :i =1,...,m},andV : "2 — % aloss function. Then the following hold
(i) if for everyi = 1,...,m the functionsV (-, y;) : ® — N are convexthen&y , g is

uniformly convex of x () with a modulus of convexiy(r) = yr?;

(ii) if V is either the square or the absolute value loss functiban at everyf € Hg (QQ)

the functionalfy , k is continuous with a modulus of continuity bounded from above by
the quadratic function(r) = bot? 4 byt, where for the square loss, = sf( + 7 and

b1 =2 (||f||K (s,2< +7) + ymaxsK), while for the absolute value loss, = y andb; =

sk + 291 fllk;



360 V. Kirkova, M. Sanguineti / Journal of Complexity 21 (2005) 350—367

(iif) if V is the square loss functigthen there exists a unique minimum paifitof the
problem(Hx (), Ev k) and for everyf € Hx (Q)

Eviyk (f) —Evy k(€

If—g°l%< .

Proof. (i) It is easy to check that for such loss functions the empirical error functional
Ev =1/m Y7L, V(f(xi), yi) is convex, and so the statement follows from Proposition
4.1 (i) and (iii).

(i) Using the Cauchy—Schwartz inequality and reproducing property one can show that
for every kerneK, sup,cq | f ()| <sk| fllk, wheresx = sup,.q vK (u, u). Thus for the
square 10ss|Ey ; k () — Evyx (@] = |7 ity ((FO) = y)? = (g0xi) — y)?) + 7
(1% = NglZ) | < |3 Xty (fO) —g0)) (f)+ gt —2y) | + vIIflk
—lglgl A flx+1gllk) < SUReq | f(x)—g ()| (SUR.cq |/ (X) + g(X)| + 2ymax)+7 || f
—glx U fllk +llglk)-

Letr > Oandf, g besuchthal f —gllx <t. Then|Ey , k (f) —Evyk (@)I<tsg (Isk
If+gllk +2ymin) + 1y fllx + lglk)<tsk Qlfllx sk + 15k +2ymax) + V¢
QU+ <r? (sg+n+2 (1 fllx 5% + ymaxsk + 7IIf k) Thus || f—gllx < timplies
€.,k (/)=Ev.y.k (@) < P(1) = bar®+byt, whereby = s%+yandby = 2 (|| |k (s +7)
+YmaxSK)-

Similarly, for the absolute value loss we ha\& , x (f) — Ev,. k(8] = |% g
(If i) = yil = [g(xi) — yil) + 7 (Ilflli - Ilglli) | <supco [F @) —g@)I+7 [ £k
—llglx I fllx+lgle)<sk If =gl +71f —glx Ul fllx + llghc)- 1 I1f —glx <t,
then|Ey . k (f) = Evyk@I<sxt +ty (I fllklglg)<sgt+ty(+2|flk). Hence
1Ev..k (f) = Evy.k (@) S P(t) = bat? + bat, whereby = y andby = sk + 2y f k-

(iif) The existence of a uniqgue minimum poigtt follows from the Representer Theorem.
By Proposition 4.1 (i), (ii), and (iii), for every € Hg () we havey| f — g"lﬁ( <€,k
(f)=Evyx@MH. O

The assumptions of Proposition 5.1(i) are satisfied by both the square loss and the absolute
value loss. So these two loss functions determine uniformly convex functiénalg with
quadratic moduli of convexity. Their moduli of continuity at afiye H g (Q) are bounded
from above by the quadratic functighir) = bor2 + b1t , where for both losses depends
onvy and for the square loss, also.gp, while b1 depends on, sk, || f || x and for the square
loss, also orymax. The larger the regularization parametgthe larger the coefficients of the
quadratic function bounding the moduli of continuity. Generally, the modulus of continuity
of &y, x depends on the moduli of continuity of the functiong, y;),i = 1,..., m.

Although the next theorem holds for any positive integgeit is useful only forn < m
since by the Representer Theorem, the minimum poidt, gf overspan, Gk is equal to
the minimum point over the whole spagé (Q).

Theorem 5.2. Let Q be a nonempty sek : Q x Q — N a kernel sy = Sup.cq
VK (x, x), m a positive integex = (x1, ..., xu) € Q" ¥y = (¥1, ..., ym) € N, Ymax =
maxX|yi| :i =1,...,m}, g° = Y i ci Ky, the unique solution ofH g (Q), &, k). {en}
a sequence of positive real numbers such tmj, ., ¢, = 0, and {g,} a sequence of
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ey-near minimum points aspan, G, £k). Leta = (sk 1g°l6)% — I1g° 1%, u = (s2 +
ya,andv = 2((s2 +)llg°Ilk + ymaxsk ) +/a. Then for every positive integer n the fol-
lowing estimates hold
() inf gespan, 65 &9,k (8) — &k () <5 + ﬁ;
(i) &,k (gn) = Ex (&) <3y + 7 + &ns
(i) llgn — 8212 <3 (4 + 2 +2a);

52 u v
(V) sup,cq I8n(x) — go(x)|2< TK (ﬁ + N +8n)-
Proof. (i) Combining Theorem4.2 (i) with Proposition 5.1 (ii), we get iRtspan, 6
& (@)~ .k (8 <P (/%) whereB(r) = (2 +7) 2 +2((53 + Il k + Ymasi) 1
which gives for infespan, 65 &5,k (8) — &,k (%) the upper bounds? + )% + 2((s2 +

DIk + ymansk), [ 8 = 4 + 2.

Similarly, item (ii) follows from Theorem 4.2(ii) and Proposition 5.1(ii), item (iii) follows
from (i) and Proposition 5.1(iii), and item (iv) from (jii) and the inequality gug | f (1)| <
sk | fllk, which is obtained using the Cauchy-Schwartz inequality and the reproducing
property. [

Thus whenu andv are not too large, it is possible to choasemall enough so that a
computational model with units is implementable and a suboptimal solution over such a
model approximates well the optimal solution given by the Representer Theorem.

Only two terms in the above formulas definimgndv cannot be derived directly from the
data sample, the kerneK and the regularization parametethe values of the two norms
of the optimal solutiorg?, i.e., itsG g -variation and its norm.|| . The next proposition
estimates these two values in terms of the sizd the sample, the regularization parameter
7, thelz-norm of the output vectoy, and the maximal and minimal eigenvaluggax and
Amin, Of the Gram matrixC[x] of the kerneK with respect to the input data vectorThe
[1- andl>-norm oni™ are denoted by - |1 and|| - |2, respectively.

The estimates in the rest of the paper (Proposition 5.3, Theorem 5.4, and Corollaries 6.1
and 6.2) involve an upper bound §g°| g, , which is also an upper bound 48’ |l -

Thus, all these estimates can be applied also to approximate solutions over hypothesis sets
formed by functions from spai@ x x. Such solutions are obtained wherepresenters are
chosen from the se&fk , as, e.g., in [42], where approximation techniques were proposed
that reduce the Gram matrik[x] to a sparse matrix of lower rank.

Proposition 5.3. Let Q be a nonempty seK : Q x Q — R a kerne| sy = sup.cq

JVK(x,x),y > 0,m a positive integex = (x1,...,x,) € Q" y = (y1, ..., ym) € R",
g° = Y !Lic¢i Ky, the unique solution ofHk (Q), &, k). Then the following estimates
hold:

() llgllgy < omilz

i A/ Zmaxllyll2 .
(i) g%l x < 507

2 7 2
2 o2 _ o2 (s m—74min) YIl5
(i) 52 l1g°11%, — llg”l13 < Ckr—rmm iz,
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Proof. (i) From the Representer Theorem, the definitiod@f-variation, and the Cauchy—
Schwartz inequality it follows that

Ig%llcx < Y leil = llclla<v/m [Ic]l2. )
i=1

wherec = (ym Z+K[x])~y. By the definition of the norm of an operattc)|» < || (y m Z+
KIXD Y2 Ilyll2. As (ymZ + K[x])~is symmetric and positive definite, itsnorm is equal

to its maximal eigenvalue, mﬁ So we have
/ min

Iyl

Clo——
licll St

®)

and thus|°llg, < A2

ym+2min ”
(ii) By the Representer Theoreifg® |2 = (Z;":l i Ky, 2 7q C~’KX-’>1< =)= ¢i
¢;jK (x;,x;) = ¢! K[x]c, wherec! denotes the transpose of the veaoks Aminllc|3 < c”
KIxlc< Amaxlicll3 [32, p. 21], we have

2 2 2
Aminllcllz < 118 Ik < Zmaxicll3- ©)

0 A/ Zmaxllyll2
Thus by 8), ll¢°llx < 0=

(iii) By (7)—(9), we obtain
EN8° N, — 813 < sEmIcl3 — ZminllcI3< (sEm — Jmin) cl3

(2 m — Jmin) Y13

O
(ym + imin)z

As both Amin and Anax are nonnegative, we can further simplify as follows the upper
bounds from Proposition 5.3:

. Iyll2
0 < _7 lo
) 118Nl <= (10)
(i) N1g°1x < YomexYllz (11)
ym
sZ|lyli3
(i) s 18°1, — lg”ll% < 552 (12)

y2m

Combining Propositiors.3 with Theorem 5.2 and inequalities (10)—(12), we shall de-
rive upper bounds on rates of convergence of approximate solutions of the problems
(span, Gk, &, k) to the solution of the probleniH g (€2), £, k) in terms ofsg, m, y,

Y12, Ymax» Amin, @NdAmax.

Theorem 5.4. LetQ be anonempty sek’ : QxQ — 9takernelsx = sup,c.q v K (x, x),
y > 0, m a positive integex = (x1,...,x,) € Q" y = V1, ..., Ym) € N, Ymax =
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maxX|y;| :i =1,...,m}, g% = Y i, ¢i Ky, the unique solution oft{ g (Q), &, k), {ex}
a sequence of positive real numbeasd {g,,} a sequence of,-near minimum points of
(span, Gk, & k). Let

2 2 2 1vll2
(s12< +V) (sg m min) IYII5 < <s12( +7) st lylls and

u =
(ym + Amin)? 72m
2
Vimadlyll2 Y/ Sk ™ — Amin
+9 + y -
(( Skt ———— 2+ Ammin YmaxSK S - lyll2
2s A || ll2
< y\/% 2 ((SK PN——— max[y + YmaxSk | -

Then, for every positive integer n the foIIowmg estimates hold:
() Infoespan, 64 Ey.x(8) — & k(87 <5 + [,
(it) &,k (gn) = Ek (8" + I + e
(i) llgn — g% <3 (5 4+ 2+ sn)
(iv) SUp,cq g () — g(x) 2<% (242 +en).

Thus, to obtain a good approximation of the solution(&fx (), £, k) given by the
Representer Theorem by a suboptimal solution computable by a model with at raost
computational units, both and - 7 have to be sufficiently small for some for which

models withn computatlonal units computing functions fra@ are implementable.

6. Estimates for convolution kernels

In this section, we illustrate the estimates given in Theobefrby examples of RHSH
with Q = 94 and convolution kernels. L&k (i, v) = y(|lu — v||) be a convolution kernel,
wherey : % — [0, 1] is monotonically decreasing and satisfig®) = 1 (this includes
the Gaussian kernel). The following corollary estimates rates of convergence of suboptimal
solutions for input/output pairs of datas, y1), ..., (xu, y») for which the input data are
sufficiently separated so thatthere exists[0, 1] such thatforalldistinat, j € {1, ..., m},
Y(llxi — x;1) <t.

Corollary 6.1. LetK : %i? x %Y — 9 be a kernel such thak (s, 1) = y(||s — ¢]|) with
¥ M — [0, 1] monotonically decreasingatisfying)(0) = 1,and such that for all distinct
i,j el ....m}, y(lx; —x;||) <t for somer > 0.Lety > 0, m be a positive integer
X= (X1, ..., %n) € Ry = (y1, ..., ym) € R, Ymax = MaxX{|yi| : i = 1,...,m},
= Y™, ¢ K, the unique solution ofHx (%), £x), {ex} @ Sequence of positive real
numbersand{g,} a sequence af,-near minimum points aspan, Gk, &, k). Let

||y||2

=1+ ) and
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V14 m—Drlyll2 )
+ Ymax
ym

.2
V= Wllyllz <(1+ 7)

Then for every positive integer n the foIIovying estimates hold
(1) inf gespan, 6x Ey.x(8) — &, K(gu) o+ \/Lz;

(i) g}'K(gn) —EK(g”)\n f + &n;

(iii) llgn — & IIK\R ( + [+s,,),

(V) SUBeq lgn(0) — g (P<E (2 + 5 +,).

Proof. Asskx = 1 andimax<|IKIX]ll1 = maxXi—1...m > req |K[Xli ;| [32, pp. 6, 21-23],

we have/max< 1+ (m — 1)z. Hence estimates (i)—(iv) follow from Theorem 5.4 with= i
andv<o. O

Bounding from above the right-hand side of the estimates from Corollary 6.1 in terms of
the maximum of the absolute values of output data, we obtain the following corollary.

Corollary 6.2. LetK : %i¢ x % — % be a kernel such thak (s, 1) = (||s — z]|) with
Y - M — [0, 1] monotonically decreasingatisfying/(0) = 1,and such that for all distinct

i,jef{l....m}, y(lx; —x;||) <t for somer > 0.Lety > 0, m be a positive integer
X = ('xla"~v-xn‘l) [S 9l‘d’niyz ()’l,u-,ym) S g{l/nlyrﬂa)(: max{lyll : l - 17""m}1
= Y L4 ¢i Ky, the unique solution ofHx (R, Ek), {en;n = 1, ..., m} positive

real numbers{g,, :n = 1,...,m} g,-near minimum points ofspan, G, &, k), and
b= VmaX(s”' +2).
Then for every positive integerm the following estimates hold:
(i) infgespan, 6x Ey.x(8) — &) K(go)\ T
(i) &k (gn) — Ex(g°) < L Jr e
(i) llgn — 7% <2 (L= + 20
(V) SuBcq I8n() = g 2<E (L + e, ).

«/1+(m Dt

Proof. As [lyl13<myZay we havel + b= < T2 44 202 (149 ¥ bl 2,
which for ¢t € [0, 1] andn<m is bounded from above b‘%—’y%ax” + ymax(1+’ +

)\/iﬁ <31+*ymax+ 5 2y2 = ’max(3l+* + 2). Hence estimates (i)—(iv) follow from Corol-
lary 6.1. O

So, wheny is not too small andmay is not too large, Corollary 6.2 guarantees a good
approximation of the optimal solution by suboptimal ones.

In particular for the Gaussian kernel, the minimum of the regularized empirical error
functional over the set of functions computable by Gaussian radial-basis function networks
With n computational units approximates the global minimum over the whole RKHS within

f, whereb = >maX(31+ I 4 2).
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7. Discussion

We have compared two approaches to learning from data with generalization capability,
both modeling learning as a minimization of the empirical error functional with the square
loss function regularized by the square of anorm on an RKHS, but differing in the hypothesis
sets over which minimization is performed. The first approach, which is based on the
Representer Theorem, considers minimization of the regularized empirical error over the
whole RKHS, whereas the second one over its subset formed by functions computable by
linear combinations of computational units defined by the kernel.

We have derived upper bounds on the errors of approximation of the optimal solution by
the suboptimal ones obtainable witlincreasing. We have shown that when the absolute
values of output data are not too large and the regularization parameter is not too small,
suboptimal solutions approximate the optimal one within an accu%oyith ¢ moderate.

In such cases, algorithms operating on models witbmputational units can approximate

the optimal solution quite well. Hence, when the solution of the system of linear equations
described in the Representer Theorem is not computationally feasible or when the system
is ill-conditioned, models with bounded complexity provide a useful and quite accurate
alternative to the learning algorithms based on the Representer Theorem. For convolution
kernels ori¢ x 9t the upper bounds from Corollari€sl and 6.2 do not depend on the
numberd of variables, so the approximation of the optimal solution by such models does
not exhibit the curse of dimensionality [4].

Minimization over a set of parameters of a chosen model is a nonlinear programming
problem [35, p. 1489], which can be solved by iterative methods such as gradient descent
[7, pp- 103-106,173-174] (possibly with additive stochastic terms to avoid local minima,
due to the nonconvexity d, x as a function of the parameters), genetic algorithms [21],
and simulated annealing [1].
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