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Motivation: Long-term hexapod deployment

Long-term deployment of a multi-legged walking robot in a dynamic unknown
environment.

� Real-time adaptation to terrain dynamics.

→ asphalt, ice, dirt, swamp. . .

� Robust to body changes during deployment.

→ leg damage, faulty servo, weight increase. . .

Life-long learning of locomotion control: real-time, adaptable, and robust.
Motion-planning approach: high-degree of controllable freedom makes it slow.

Control theory approach: no incremental plasticity

The state-of-the-art can be observed in nature!
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Animal locomotion

� Muscles move body.

� Thoracic ganglia controls
muscles.

� Proprioception provides feedback.

� Brain controls the thoracic
ganglia.

� Exteroception provides long
range observations.
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Gait

Gait: a repetitive motion pattern.

P. Holmes et al., SIAM, 1994
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Gait

� Repetitive but also adaptive:
� Robust to terrain irregularities.
� Can adapt to body changes.
� Can learn new gaits.

� Two phases of a leg/muscle:
� Stance: Propelling the body forward.
� Swing: Propelling the leg forward.

A. Bushges et al., e-Neuroforum, 2015
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Source of Gait Control

Where the gait control comes from?

� Spinal cat on treadmill.

� Changing gaits from walking to running
with respect to speed.

� Able to walk on treadmills with di�erent
speeds.

G. Barriere, JN, 2008
FV Severin et al., Bio�zika, 1967
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Neural architecture

Neural pathways between proprioception and muscles.

� A�erents are excited by receptors, then
relayed by inter-neurons to e�erents
controlling the muscle.

� E�erent activation can be dependent on
activation of multiple a�erents.
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Neural Architecture

Neural pathways are not fully mapped, but there are behavior observations.

� Re�exes:
� Stopping re�ex (B)
� Searching re�ex (C)

� Local motion control:
� Task dependent: swimming/crawling,

reverse walking
� Phase dependent: can't lift leg during early

stance
� Load dependent: climbing hill
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Central Pattern Generator

Even without proprioception and descending signals, the spine generates rhythmic

control signals.

T.G. Brown, Proc R Soc Lond, 1911

� Centrally generated rhythmic signals:
Central Pattern Generator(CPG)

� Half-center oscillator: reciprocally coupled
neurons
� Neuron is not oscillatory itself.
� At time just one neuron (group of neurons)

�res.
� Active with positive tonic input.

flexor neuron extensor neuron

tonic input

inhibition

The gait is controlled by re�exive pathways and CPGs.
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Modelling The Gait Control

Maintaining the cyclic trajectory.

� x(t) ∈ RM proprioception

� y(t) ∈ RN control signal

� In unperturbed regular environment:
x(t+ T ) = x(t),y(t+ T ) = y(t)

� Control y acts on environment which is
observed by proprioception x.

� Proprioception x is processed by controller
into control y.
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Coupling between neural and motion dynamics.
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Modelling The Gait Control

� Possible with just re�exive
pathways (w.o. CPGs).

� what is the advantage of using
CPG?
� Re�exive pathways are dependent

on proprioception.
� Possible control without feedback.
� Adds phase dependencies to gait

control.
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Models of CPG

Van der Pol Oscillator Non-Linear Oscillator

A.J. Ijspeert et al., Neuroinf., 2005

Matsuoka Neural Oscillator

v̇ = u
u̇ = β(1− v2)u− v

τ v̇ = u
τu̇ = −β v2+u2−E

E u− v

τ v̇f = uf − vf
τ v̇e = ue − ve
γu̇f = −uf − βvf − αue + cf(t)

γu̇e = −ue − βve − αuf + ce(t)
x = max(0, x)
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Self-sustained oscillator

CPGs are modeled as a self-sustained oscillator

(SSO).

� Non-linear dynamic system.

� Self damping.

� Excited by external non-oscillating force.

� Has a limit-cycle attractor.

� The amplitude is stable but phase is free.

Matsuoka Neural Oscillator
τ v̇f = uf − vf
τ v̇e = ue − ve
γu̇f = −uf − βvf − αue + cf(t)

γu̇e = −ue − βve − αuf + ce(t)

x = max(0, x)
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Properties of Self-Sustained Oscillator

� ẋ = f(x) General SSO

� Dynamics on the limit cycle:
� Ȧ(x) = 0 Amplitude
� Φ̇(x) = ω0 Natural angular velocity

� ẋ = f(x) +Q(x, t) Perturbed SSO

� Let Q(x, t) be small and periodic
perturbation.
� Amplitude is stable → we neglect

perturbations in amplitude.
� Perturbed phase

Φ̇(x) = ω0 + ε sin(Φq(t))
Φq = tω

� ε and ω are perturbation force and
angular velocity respectively.
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Synchronization ω = ω0

� Φ̇(x) = ω0 + ε sin(Φq(t)); Φq = tω

� Phase di�erence between SSO and perturbation is stable Φ(t)− Φq(t) = cnst.

No perturbation Synchronization Noisy perturbation
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Synchronization ω 6= ω0

� Φ̇(x) = ω0 + ε sin(Φq(t)); Φq = tω

� Phase di�erence between SSO and perturbation is stable Φ(t)− Φq(t) = cnst.

Multiple ω Arnold tongue

Synchronization region
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CPG-based controller

� Control decomposed into
� Phase control: CPG, joints synchronization
� Amplitude control: Re�exes, local adaptation

� Di�erent architectures:
� Biological plausibility: Focused on robotic control or

biologically plausible.
� Feedback: Proprioception is fed to both phase

control and amplitude control.
� CPG distribution: One CPG per joint/leg, exploiting

body symmetry.
� Phase control post-processing: Direct mapping to

control or assisting the re�exes.

S.N. Markin et al., Ann. N. Y. Acad. Sci., 2010
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CPG-based controller learning

Learning the CPG

� Hard: CPG is a non-linear dynamic system.

� Learning the waveform, frequency, phase
dependencies.

� Supervised or self-supervised.

� Connectionist methods of learning:
Back-propagation, Hebb-like learning

Hebb-like frequency learning rule

ẋ = f(x, y, ω0) + εQ(t)
ẏ = f(x, y, ω0)
ω̇0 = −εQ(t) y√

x2+y2

L. Righetti et al., Physica D, 2006

R. Szadkowski 18 / 22



Learning CPG with Back-Propagation Algorithm

R. Szadkowski, P. �íºek, J. Faigl, ITAT, 2018

Tav̇
f
i = ufi − vfi

Tru̇
f
i = −ufi−βvfi −wfeu

e
i −

N∑
j=1

wijufj + cfi(t)

x = max(0, x)

� Parameters to learn: Ta, Tr, β, wfe, wij .

� (almost) di�erentiable.

� Optimization method: Back-propagation
through time

Extensor neuron Flexor neuron

vei

uei

vfi

ufi

to other CPGs

wij wij

from other CPGs

cei cfi

β β

Ta
d
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d
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Problem: Unbalanced inhibition leads to stationary solution

R. Szadkowski 19 / 22



Learning CPG with Back-Propagation Algorithm

� Constraints preventing stationary solutions

wfe <
cmin

cmax
(1 + β)−max

i∈N

 N∑
j

wij


wfe > 1 + Tr/Ta

� Constraints integrated into CPG network equations
� Below: �rst two segments are compliant to constraints, the last one is not.
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Learning CPG with Back-Propagation Algorithm

Hexapod
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Phase coupling learning - Experiments

Learning the tripod gait

� Input
� Proprioception: Ground contact, servo angle

and angular velocity
� Target signal: Repeated tripod gait control

signal

� Controller learns coupling between joints
and proprioception.

Robustness and adaptability

� Coxas are controlled by CPG controller,
femurs are controlled externally

� Coxas must adapt the phase of femurs.

� The proprioception generated by legs on the
left side is turned o�.

� The legs on the right side can sync to
proprioception, while the legs on the must
sync to other CPGs.
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