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Motivation: Long-term hexapod deployment €Ty

INPRAGUE

Long-term deployment of a multi-legged walking robot in a dynamic unknown

environment.

m Real-time adaptation to terrain dynamics.
— asphalt, ice, dirt, swamp. ..

® Robust to body changes during deployment.
— leg damage, faulty servo, weight increase. . .

Life-long learning of locomotion control: real-time, adaptable, and robust.

Motion-planning approach: high-degree of controllable freedom makes it slow.
»

Control theory approach: no incremental plasticity
The state-of-the-art can be observed in nature! L\
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Animal locomotion
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= Muscles move body. Exteroception

m Thoracic ganglia controls
muscles.

= Proprioception provides feedback. Thoracic

4
= Brain controls the thoracic _ \\ Ganglia
ganglia, féieet&'lr
= Exteroception provides long \ ‘ Tactile f Proprioception
range observations. Muscé Seta
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Gait: a repetitive motion pattern.
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m Repetitive but also adaptive: - S
= Robust to terrain irregularities. e /m
m Can adapt to body changes. . N
= Can learn new gaits. Z @’/
® Two phases of a leg/muscle: g N
= Stance: Propelling the body forward. & 4
m Swing: Propelling the leg forward. qa U™ \m\
. 2
. Swing phase Stance phase ; \|E|
Tibia = 304 step
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Trochanter Tarsus é 1/2 step. }%‘ \@
g ‘midstance —
/
1 2 | 3 4 = N
Swing phase Stance phase s %} |E| r'd
‘ : 0 p

A. Bushges et al., e-Neuroforum, 2015
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Source of Gait Control

INPRAGUE

Where the gait control comes from?

m Spinal cat on treadmill.

m Changing gaits from walking to running
with respect to speed.

m Able to walk on treadmills with different

speeds.
A Intact B Complete spinal 5d
04 m/s 04m/s

TSI A et oot
Ist b D #
VL vt i e e e
st . ot et
L R e e e . am I L e
L - - 0

G. Barriere, JN, 2008 FV Severin et al., Biofizika, 1967
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Neural architecture S
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Neural pathways between proprioception and muscles.

win

Spinal Dorsal
ganglion Niferer, root

m Afferents are excited by receptors, then
relayed by inter-neurons to efferents \
controlling the muscle.

Spinal Interneuron

m Efferent activation can be dependent on M
activation of multiple afferents. i

N —
Ventral
root
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Neural Architecture CTU
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Neural pathways are not fully mapped, but there are behavior observations.

m Reflexes:
= Stopping reflex (B)
® Searching reflex (C)
® Local motion control:
m Task dependent: swimming/crawling, ’
reverse walking ‘
® Phase dependent: can't lift leg during early H
stance
® Load dependent: climbing hill

K.S. Espenschied et al./Robotics and Autonomous Systems 18 (1996) 59-64
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Central Pattern Generator S
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Even without proprioception and descending signals, the spine generates rhythmic

control signals.
T.G. Brown, Proc R Soc Lond, 1911

m Centrally generated rhythmic signals: tonic input
Central Pattern Generator(CPG)
m Half-center oscillator: reciprocally coupled

neurons inhibition

= Neuron is not oscillatory itself.

m At time just one neuron (group of neurons)
fires.

® Active with positive tonic input.

flexor neuron extensor neuron

The gait is controlled by reflexive pathways and CPGs.
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Modelling The Gait Control

Maintaining the cyclic trajectory. control ~___ sensing
- - \\\ right legs contact

buims ya7

left legs max speed

= x(t) € RM proprioception

2oueIs Yo

= y(t) € RY control signal

® In unperturbed regular environment:

x(t+T)=x(t),yt+T)=y()
m Control y acts on environment which is
observed by proprioception x.

® Proprioception x is processed by controller
into control y.
Coupling between neural and motion dynamics.
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Modelling The Gait Control

control/ sensing

g s ! = right legs contact
L] POSSIb|e W|th JUSt reﬂeXlVe ! " ) left legs max speed
o oy right legs max spee
pathways (w.o. CPGs). 2 ,L:El
® what is the advantage of using 3 ,2{;1 —
CPG?
m Reflexive pathways are dependent
on proprioception.
m Possible control without feedback. Controller
= Adds phase dependencies to gait
control.
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Models of CPG 5, CTU
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Van der Pol Oscillator Non-Linear Oscillator Matsuoka Neural Oscillator

A.J. ljspeert et al., Neuroinf., 2005
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Self-sustained oscillator [ L
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Matsuoka Neural Oscillator

CPGs are modeled as a self-sustained oscillator ot = uf —of
(SSO). ¢ = uf — v°
o N S S
® Non-linear dynamic system. Y w = fu —awt +c(t)
_ yu® = —u® — Bv® — auf + °(t)
= Self damping. T = max(0, z)
m Excited by external non-oscillating force. 041
= Has a limit-cycle attractor. -]
= The amplitude is stable but phase is free.
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Properties of Self-Sustained Oscillator

® x = f(x) General SSO B x = f(x)+ Q(x,t) Perturbed SSO
® Dynamics on the limit cycle: B Let Q(X,t? be small and periodic
- A(X) = 0 Amplitude perturbation.
= &(x) = wy Natural angular velocity = Amplitude is stable — we neglect
perturbations in amplitude.
A ® = Perturbed phase
D (x) = wo + esin(Py(1))
b, = tw
® ¢ and w are perturbation force and
t t

angular velocity respectively.
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Synchronization w = wy

B O(x) = wp + esin(P,(t)); &, = tw
® Phase difference between SSO and perturbation is stable ®(t) — ®,(t) = cnst.
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Synchronization w # wy

m O(x) = wp + esin(P,(t)); &, = tw
® Phase difference between SSO and perturbation is stable ®(t) — ®,(t) = cnst.
Multiple w Arnold tongue

\ Synchronization region
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CPG-based controller
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= Control decomposed into

= Phase control: CPG, joints synchronization
= Amplitude control: Reflexes, local adaptation
m Different architectures:

= Biological plausibility: Focused on robotic control or
biologically plausible.

= Feedback: Proprioception is fed to both phase
control and amplitude control.

= CPG distribution: One CPG per joint/leg, exploiting
body symmetry.

= Phase control post-processing: Direct mapping to
control or assisting the reflexes.

R. Szadkowski

‘Supra-spinal drive

SCI
CPG RGF
Rhythm
generator
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Pattern
Formation
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External Disynaptic
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S.N. Markin et al., Ann. N. Y. Acad. Sci., 2010
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CPG-based controller learning

Learning the CPG

Learning the waveform, frequency, phase
dependencies.

Supervised or self-supervised.

Connectionist methods of learning:
Back-propagation, Hebb-like learning

R. Szadkowski

Hard: CPG is a non-linear dynamic system.

Hebb-like frequency learning rule
T = f(x,y,wo) + EQ(t)

y = f(IE, y7w0)

oo y

wo = —eQ(?) Vg
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L. Righetti et al., Physica D, 2006
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Learning CPG with Back-Propagation Algorithm
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R. Szadkowski, P. Cizek, J. Faigl, ITAT, 2018

j=1
T = max(O,av)

= Parameters to learn: 15, T, 3, wee, w;;.

m (almost) differentiable.

m QOptimization method: Back-propagation
through time

Problem: Unbalanced inhibition leads to stationary solution
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Learning CPG with Back-Propagation Algorithm
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m Constraints preventing stationary solutions

N
Cmin
Wre < 1+3)—ma Wyj
Je cmaa:( /B) iE]\)T( ; K

wpe > 1 +T,/T,

= Constraints integrated into CPG network equations
m Below: first two segments are compliant to constraints, the last one is not.

3] —

0 20 40 60 80 100 120 140
iterations
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Learning CPG with Back-Propagation Algorithm
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Learning results
Control imitation

Hexapod
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Phase coupling learning - Experiments

Robustness and adaptability

Learning the tripod gait m Coxas are controlled by CPG controller,

= Input femurs are controlled externally
= Proprioception: Ground contact, servo angle

and angular velocity ) )
® Target signal: Repeated tripod gait control ™ The proprioception generated by legs on the

m Coxas must adapt the phase of femurs.

signal left side is turned off.
m Controller learns coupling between joints ® The legs on the right side can sync to
and proprioception. proprioception, while the legs on the must

sync to other CPGs.
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