On nominal automata and their languages to
verify interactive computation

Tomoyuki Suzuki

Institute of Computer Science,
Academy of Sciences of the Czech Republic,
Czech Republic

23 October, 2014

(joint work with Alexander Kurz and Emilio Tuosto)

Automata and formal languages for computational behaviours

Review: (classical) finite automata

Alphabet X: a finite set of letters, e.g. ¥ = {a, b, ¢}
Automaton A: a tuple (Q, qo, 9, F)

Review: (classical) finite automata

Alphabet ¥: a finite set of letters, e.g. ¥ = {a, b, c}
Automaton A: a tuple (Q, qo, 9, F)

> @: a finite set of states

Review: (classical) finite automata

Alphabet ¥: a finite set of letters, e.g. ¥ = {a, b, c}
Automaton A: a tuple (Q, qo, 9, F)

> qo: the initial state

q3
q6

Q1

.

q2 a7
g5

Review: (classical) finite automata

Alphabet ¥: a finite set of letters, e.g. ¥ = {a, b, c}
Automaton A: a tuple (Q, qo, 9, F)

» F: asubset of @ (accepting states or final states)

q3
qo0

q2 a7
g5

Review: (classical) finite automata
Alphabet X: a finite set of letters, e.g. ¥ = {a, b, ¢}
Automaton A: a tuple (Q, qo, 9, F)

» J: labelled transitions

W
tib

Review: (classical) finite automata

Word w: a finite sequence of letters in ¥, e.g. w = abbca
Language L: a collection of words
For example, the following automaton A

be

)

A word a b c b c b c aisaccepted? or rejected?

Automata: monitors for interactive computational behaviours

Monitoring for static computing
How to detect illegal behaviours on automata?

Example
Let a and b be possible actions and the following constraint:

Two consecutive actions should not be the same.

Monitoring for static computing
How to detect illegal behaviours on automata?

Example
Let a and b be possible actions and the following constraint:
Two consecutive actions should not be the same.

Safe behaviours: ‘a’, ‘bab’, 'ababab’, etc.
Bad behaviours: ‘abb’, ‘baaab’, etc.

Monitoring for static computing
How to detect illegal behaviours on automata?

Example
Let a and b be possible actions and the following constraint:

Two consecutive actions should not be the same.

Safe behaviours: ‘a’, ‘bab’, 'ababab’, etc.
Bad behaviours: ‘abb’, ‘baaab’, etc.

~
©

b

Monitoring for static computing
How to detect illegal behaviours on automata?

Example
Let a and b be possible actions and the following constraint:

Two consecutive actions should not be the same.

Safe behaviours: ‘a’, ‘bab’, 'ababab’, etc.
Bad behaviours: ‘abb’, ‘baaab’, etc.

~
©

b

The monitor detects the malicious behaviours.

--rabababablaal -
~—
illegal

safe

Research question

Is classical automata theory enough to monitor interactive

computations?
Let's discuss this question by comparing with the R.Milner's

argument

Environment-aware designs

not functional,
Communications: < not prescribed, = " environment-aware”

nor deterministic.

Environment-aware designs

not functional,
Communications: < not prescribed, = " environment-aware”

nor deterministic.

Environment-aware designs:
» infinitely many components concurrently moving

» systems must react to the dynamic environments
(all actions are not prescribed)

Environment-aware designs

not functional,
Communications: < not prescribed, = " environment-aware”

nor deterministic.

Environment-aware designs:
» infinitely many components concurrently moving

» systems must react to the dynamic environments
(all actions are not prescribed)

Monitoring on nominal automata (safe computations)

\0*0*01

2

Environment-aware designs

not functional,
Communications: < not prescribed, = " environment-aware”

nor deterministic.

Environment-aware designs:
» infinitely many components concurrently moving

» systems must react to the dynamic environments
(all actions are not prescribed)

Monitoring on nominal automata (safe computations)

\0*0*01

2

E.g., ‘aba’ is described: 'a’ registered in 1 and ‘b’ registered in 2.

Environment-aware designs

not functional,
Communications: < not prescribed, = " environment-aware”

nor deterministic.

Environment-aware designs:
» infinitely many components concurrently moving

» systems must react to the dynamic environments
(all actions are not prescribed)

Monitoring on nominal automata (safe computations)

\0*0*01

2

E.g., ‘aba’ is described: 'a’ registered in 1 and ‘b’ registered in 2.
Also, ‘xyxy' is described: ‘x’ registered in 1 and 'y’ registered in 2.

Environment-aware designs

not functional,
Communications: < not prescribed, = " environment-aware”

nor deterministic.

Environment-aware designs:
» infinitely many components concurrently moving

» systems must react to the dynamic environments
(all actions are not prescribed)

Monitoring on nominal automata (safe computations)

\0*0*01

2

E.g., ‘aba’ is described: 'a’ registered in 1 and ‘b’ registered in 2.
Also, ‘xyxy' is described: ‘x’ registered in 1 and 'y’ registered in 2.

Environment-aware designs provide schematic pattern matching.

Problem on continuous information-flows

not functional, = “continuous interactions”
Communications: < not prescribed,

nor deterministic.

Problem on continuous information-flows

not functional, = “continuous interactions”
Communications: < not prescribed,

nor deterministic.

What happens if ‘aba’ described once and immediately ‘bcbc’
follows? So, actions 'ababcbc’ on the previous automaton.

“O——0O——0"

2

Problem on continuous information-flows

not functional, = “continuous interactions”
Communications: < not prescribed,

nor deterministic.

What happens if ‘aba’ described once and immediately ‘bcbc’
follows? So, actions 'ababcbc’ on the previous automaton.

“O——0O——0"

2

It stops at the first ‘c’ in ‘ababcbc’, although ‘aba’ and ‘bcbc’ are
safe computations.

Problem on continuous information-flows (cont.)
not functional, = “continuous interactions”
Communications: < not prescribed,

nor deterministic.

Problem on continuous information-flows (cont.)
not functional, = “continuous interactions”
Communications: < not prescribed,
nor deterministic.

One may revise the automaton to restarting form somewhere:

So, by refreshing some parts, ‘ababcbc’ are safe. But,...

Problem on continuous information-flows (cont.)
not functional, = “continuous interactions”
Communications: < not prescribed,
nor deterministic.

One may revise the automaton to restarting form somewhere:

So, by refreshing some parts, ‘ababcbc’ are safe. But,...
Problems: How the monitor notices the right deallocation?

Problem on continuous information-flows (cont.)
not functional, = “continuous interactions”
Communications: < not prescribed,
nor deterministic.

One may revise the automaton to restarting form somewhere:

So, by refreshing some parts, ‘ababcbc’ are safe. But,...
Problems: How the monitor notices the right deallocation?
Possible solutions:

Problem on continuous information-flows (cont.)
not functional, = “continuous interactions”
Communications: < not prescribed,
nor deterministic.

One may revise the automaton to restarting form somewhere:

So, by refreshing some parts, ‘ababcbc’ are safe. But,...
Problems: How the monitor notices the right deallocation?
Possible solutions:

» include deallocations in actions = information-flows are
structured, e.g. trees

Problem on continuous information-flows (cont.)
not functional, = “continuous interactions”
Communications: < not prescribed,
nor deterministic.

One may revise the automaton to restarting form somewhere:

So, by refreshing some parts, ‘ababcbc’ are safe. But,...
Problems: How the monitor notices the right deallocation?
Possible solutions:

» include deallocations in actions = information-flows are
structured, e.g. trees

> let the monitor “guess” = non-determinism and when the
monitor detects ill-behaviours

Nominal automata

Related models

v

N.Kaminski & M.Francez, “Finite-memory automata”

v

U.Montanari & M.Pistore, “History-dependent automata”

v

N.Tzevelekos, “Fresh-register automata”

v

M.Bojanczyk, B.Klin & S.Lasota, “Automata with group
actions”

Related models

v

N.Kaminski & M.Francez, “Finite-memory automata”

v

U.Montanari & M.Pistore, “History-dependent automata”

v

N.Tzevelekos, “Fresh-register automata”

v

M.Bojanczyk, B.Klin & S.Lasota, “Automata with group
actions”

Key idea: automata with resources
= nominal computation theory

Basic nominal automata A’

H=(Q,/,qo, F,tr)
1. Q: (finite) named set (endowed with a function [|_||: @ — N)
and we let reg(q) :={1,...,]|qll}
2. I input function

I(q) ==X Ureg(q)U{x 0}

w

. go: initial state with no memory cell (reg(qo) = 0)

o

. F: final states with no memory cell (reg(q) =0 for g € F)

5. tr: transition relations satisfying for q,q’ € Q and
a € l(q)U{e},

Il =lgll+1 a=x
q €tr(qa) = {|dll+1=]a] a=2
ld'|l = llql otherwise

Picture of A?

O

x| 1%
Daan®,

Basic nominal automata

A little bit more preliminaries:
> Alphabet ¥: a finite set of letters (constants)
» Name AN: an “infinite” set of resource identifiers

» Transitions include “resource-allocation %" and
“resource-deallocation @"

Basic nominal automata

A little bit more preliminaries:
> Alphabet ¥: a finite set of letters (constants)
» Name AN: an “infinite” set of resource identifiers

» Transitions include “resource-allocation %" and
“resource-deallocation @"

A run of nominal automata is a sequence of configuration:
Configulation (q, w, list):

> (. a state

» w: a word (sequence of letters etc)

> list: a list of registered resources

Example (X =0, {a,b,c,d,e} CN)

2nd layer
q3 qa
.) (qo, abcaaded, [|)

* ' @
1st layer ;

! Q1 ' g

q2 D Y j
Oth layer * \“\ ‘
. N

Example (X =0, {a,b,c,d,e} CN)

2nd layer
q3.) 4 (qo, abcaaded, []) = (q1, abcaaded, [a])
* - @
1st layer
Q1 r 9
1
© (D
q2 P
Oth layer * \“\ :
*

Example (X =0, {a,b,c,d,e} CN)

2nd layer
q3 q4
. :
1st layer \’
: @ ' g
1 @ @
q2 —
Oth layer * :
. O

(qo, abcaaded, []) = (q1, abcaaded, [a])

EN (g2, bcaaded, [a])

Example (X =0, {a,b,c,d,e} CN)

2nd layer

q3 q4

)2 <q0,abcaaded [) = (q1, abcaaded, [a])
x N Ly (o, bcaaded, [a]) 2 (g3, bcaaded, [a, b])
‘J L (01 L s
@ @
a2 —
0 O,

1stlayer

Oth layer

Example (X =0, {a,b,c,d,e} CN)

2nd layer

" 2 (T S <q0,abcaaded) = (g1, abcaaded, [a])
x N2 Ly (o, bcaaded, [a]) 2 (g3, bcaaded, [a, b])
sstaer f‘ 2 (qq, caaded, [a, b])

Oth layer

Example (X =0, {a,b,c,d,e} CN)

2nd layer

q3 q4
q ,abcaaded, g1, abcaaded, [a
| 2 (g0 0= (@ [a])
x N Ly (qa, bcaaded, [a]) = (g3, bcaaded, [a, b))
et layer f ‘ 2, (qq, caaded, [a, b]) 2, (gs, caaded, [a])

: L @ 5
OO ‘
q2 —
* ,"/ \‘\ |
,/" * \‘\\ Il’
(U @qg

Oth layer

Example (X =0, {a,b,c,d,e} CN)

2nd layer

q3 q4
q ,abcaaded, g1, abcaaded, [a
| 2 (g0 0= (@ [a])
i N (qg,bcaaded [a]) = (g3, bcaaded, [a, b])
et layer f ' 2, (qq, caaded, [a, b]) 2, (gs, caaded, [a])

: @ 5 o
q2 —
@ @qﬁ

Oth layer

Example (X =0, {a,b,c,d,e} CN)

2nd layer

v 2 v <q0,abcaaded [) = (q1, abcaaded, [a])
x N2 Ly (o, bcaaded, [a]) 2 (g3, bcaaded, [a, b])
sstaer f ' <q4,caaded [, b]) 2> (qs, caaded, [a])

1 ‘ =5 (g, caaded, [1) % (qu, caaded, [c])
q2 —
qOQ ©110

Oth layer

Example (X =0, {a,b,c,d,e} CN)

2nd layer

2 <q0,abcaaded [) = (q1, abcaaded, [a])
: (qg,bcaaded [a]) = (g3, bcaaded, [a, b])
2 (qa, caaded, [a, b]) 2> (qs, caaded, [a])

1 ‘ =5 (g, caaded, [1) % (qu, caaded, [c])
- LA > (g2, aaded, [c])
do i C >l](;

1stlayer

Oth layer

Example (X =0, {a,b,c,d,e} CN)

2nd layer

, abcaaded, ,abcaaded, [a
2 <qo 0) = (& [a])

: (qg,bcaaded [a]) = (g3, bcaaded, [a, b])
2 (qa, caaded, [a, b]) 2> (qs, caaded, [a])

1 ‘ N (g, caaded, [|) it (q1, caaded, [c])
F > (g2, aaded, [c]) % (g3, aaded, [c, a])
() @qﬁ

1stlayer

Oth layer

Example (X =0, {a,b,c,d,e} CN)

2nd layer

1stlayer

" 1 Q1 5
OO Q
a2 —

Oth layer

* ./ /
@ 6

<q0,abcaaded [) = (q1, abcaaded, [a])
(qg,bcaaded [a]) = (g3, bcaaded, [a, b])

2 (qa, caaded, [a, b]) 2> (qs, caaded, [a])

2 (g, caaded, []) = (q1, caaded, [c])

= (qo, aaded, [c]) % (g3, aaded, [c, a])

2

2,

(qq, aded, [c, a])

Example (X =0, {a,b,c,d,e} CN)

2nd layer

<q0,abcaaded [) = (q1, abcaaded, [a])
*,,/’"' N Ly (qa, bcaaded, [a]) = (g3, bcaaded, [a, b))

2 (qa, caaded, [a, b]) 2> (qs, caaded, [a])

. ‘ 2, (g6, caaded, [1) %+ (q1, caaded, [c])
<q27 aadeda [C]> i> <q3a aaded, [Ca 3]>
%@ @%

1stlayer

1
%
2, (qq, aded, [c, a]) 2, (gs, aded, [c])

Oth layer

Example (X =0, {a,b,c,d,e} CN)

2nd layer

q ,abcaaded, g1, abcaaded, [a
2 (q0 = (q [a])
* N (qg,bcaaded [a]> (g3, bcaaded, [a, b])
' 2, (qq, caaded, [a, b]) 9, (gs, caaded, [a])
. ‘ LN (qe, caaded, []) it (g1, caaded, [c])
> (g2, aaded, [c]) % (g3, aaded, [c, a])

R 2, (qq, aded, [c, a]) 2, (gs, aded, [c])
77 \
Q \& J Q <q67 aded7 []>

1stlayer

Oth layer

Example (X =0, {a,b,c,d,e} CN)

2nd layer

<q0,abcaaded [) = (q1, abcaaded, [a])
*,,/’"' @ Ly (o, bcaaded, [a]) 2 (g3, bcaaded, [a, b])

2 (qa, caaded, [a, b]) 2> (qs, caaded, [a])

. ‘ 2, (g6, caaded, [1) %+ (q1, caaded, [c])
*

= (g2, aaded, [c]) = (g3, aaded [c, a])
i> (qa, aded, [c, a]) 2> (gs, aded, [c])

quf/ *© 2 (qs, aded, [|) % (qu, aded, [a])

1stlayer

Oth layer

Our automaton for this example

2nd layer

a3 q4
2
| = (qo, ded, [a],)
* @
: G Y 95
1
@)
a2
Q|
Oth layer / : :

* ./ i
L * \\\ »

Our automaton for this example

2nd layer

q3 q4
2
| > (g2, ded, [a],) = (g5, ded, [a, d])
*/ @
1st layer “ N ; o
1
(&)
q2
Q|

* ./ i
L * \\\ »

Our automaton for this example

2nd layer

\ % (g2, ded, [a],) =+ (g3, ded, [a, d])

% (qu, ed, [a,d])
Oﬂ“ C
o @

1t layer

Oth layer

Our automaton for this example

2nd layer

\ % (g2, ded, [a],) =+ (g3, ded, [a, d])

*,
2 (qa, ed, [a, d]) > {gs, ed, [a])
Oﬂ“ C
o @

1t layer

Oth layer

Our automaton for this example

2nd layer

q3 qa
2
= (o, ded, [a],) % (gs, ded, [a, d])
* /7 A%
: 2 (qu, ed, [a,d]) 25 (gs, ed, [a])
1st layer . q1 .d 9) <q6, ed, []>
Oth layer * ‘/’ﬁ

Our automaton for this example

2nd layer

A L5 (qo, ded, [a],)

*,
2 (qs. ed. [a,d]) 2> (gs, ed, [a])

N ‘ d 2 (g6, ed, [1) = (qu, ed, [e])
(OO 0 |
o o

(g3, ded, [a, d])

1t layer

Oth layer

Our automaton for this example

2nd layer

(g3, ded, [a, d])
(g5, ed, [a])

2

: =

| . e 2, (g6, ed [)) 2 {au, ed, [e])
a =N <q26, d,[e]) 1

!

* ./ i
L * \\\ »

l> (92, ded, [a],) X
(qa, ed,[a,d]) &

1t layer

Oth layer

Our automaton for this example

2nd layer

B, % (g2, ded, 2],) > (g3, ded, [a,d])

*,
‘ % (qu.ed.[a.d]) 2 (g5, ed. [a])
i o d 25 (ge, ed, []) = (qu, ed, [e])
qQ ‘ #<q26,d[e1> % (g3, d, e, d])
0 ‘@;

1t layer

Oth layer

Our automaton for this example

2nd layer

q3 q4
() % (g, ded, [al,) % (gs. ded, [a, d])
* %
% (qu, ed, [a,d]) > (gs, ed, [a])
1st layer ; : @
, “ " s (g5, ed, [I) = (qu, ed, [e])
1
qz @ l> <q27d [e]> <q37d [e d]>
Q!
2 (qa e, e, d])

* ./ i
L * \\\ »

Our automaton for this example

2nd layer

% (g2, ded, [a],) =+ (g3, ded, [a, d])

1t layer

(qa, ed. [a,d]) 2> (gs, ed, [a])
(g6, ed, 1) = (qu, ed, [e])

<q27 da [e]> — <Q37 d7 [e’ d]>
(qa,e,[e.d]) = (g5, ¢, [e])

oG

* ./ i
L * \\\ »

o 1= o I

Oth layer

Our automaton for this example

2nd layer

a3 q4
: L (g0, ded, [a],) % (gs, ded, [a, d])
% (qured, [a,d]) 2 (45, 0. [a])
- 0w = (go. ed. []) * (a1, ed, [e])
qQ = {q2,d,[e]) > (g3, . [e. o))
2 (gn e le.dl) 2 (a6 [e])
*‘f\" o, (g6, € [])

d6

A simple example (cont.)

Let NV be an infinite set of letters: a,b,c,d,e,... € N.

Many words exhibit the same pattern: for example,

ab ab ab _ab ab cd ef gh ba ca ab ac
T~ N , S~
#F F F # #F O F £ # #F F F

A simple example (cont.)

Let NV be an infinite set of letters: a,b,c,d,e,... € N.

Many words exhibit the same pattern: for example,

But the following words do NOT: aa abaade abc

A simple example (cont.)

Let NV be an infinite set of letters: a,b,c,d,e,... € N.

Many words exhibit the same pattern: for example,

But the following words do NOT: aa abaade abc

Languages over infinite alphabets

U {nl"-nszN*]V0<i§k.n2;_17§n2;}
keN\{0}

Languages on nominal automata

What are “the” words (and languages)?

There are a couple of different notions of words:

What are “the” words (and languages)?

There are a couple of different notions of words:

> sequences of letters and names

What are “the” words (and languages)?

There are a couple of different notions of words:
> sequences of letters and names

» words with explicit binders (resource allocation and
deallocation)

What are “the” words (and languages)?

There are a couple of different notions of words:
> sequences of letters and names

» words with explicit binders (resource allocation and
deallocation)

» orbits

What are “the” words (and languages)?

There are a couple of different notions of words:

> sequences of letters and names

v

words with explicit binders (resource allocation and
deallocation)

orbits

v

schematic words

v

What are “the” words (and languages)?

There are a couple of different notions of words:

>

>

sequences of letters and names

words with explicit binders (resource allocation and
deallocation)

orbits

schematic words

Different notions of words enjoy different mathematical properties:

>

v

v

v

determinism

(regular) expressions
relationships between languages
closure properties

etc

Our research directions, results and open questions

Nominal regular expressions (b-NREs)

ne:=1|0|seX|neN|ne+nelneone|ne* | (,ne)

n

Nominal regular expressions (b-NREs)

ne:=1|0|seX|neN|ne+nelneone|ne* | (,ne),

Example 0+ (ano{mm)), 0 ano {mm)y),
I+ (nno (mm>m>n [+ (ano <mm>m>n
[a]Fao (mm),, [el=co{mm),
[a] - a [a] F {mm),, [e] ¢ [e] = (mm)

[a,b] - b [e,d] +d

Nominal regular expressions (b-NREs)

ne:=1|0|seX|neN|ne+nelneone|ne* | (,ne),
Example [+ (anol{mm)y,), 0 (ano (mm)m),
I F (ano{mm)n), IF(ano{mm)n),
[a]Fao (mm),, [el=co{mm),
[a] - a [a] F {mm),, [e] ¢ [e] = (mm)
[a, B F b [c,d] - d
[a, b] F b le,d] +d
[a] - a [a, 6] (b [) [e] Fc [e,dl+=(d |)
el F(al) [a] F (o1 | ©1 # a) [l = (c) [c] F (%3 | %3 # c)
[a] - (a1 | 1 # 3) [e] F(cw3 | ©3 # <)
{1 - (0291 | 01 # %0) [+ (2403 | B3 # 4)

I F (gotytans | 0 # 02, 03 # By)

Nominal regular expressions (b-NREs)

ne:=1|0|seX|neN|ne+nelneone|ne* | (,ne),
Example [+ (anol{mm)y,), 0 (ano (mm)m),
I+ (nno (mm>m>n [+ (ano <mm>m>n
[a]Fao (mm),, [el=co{mm),
[a] - a [a] F {mm),, [e] ¢ [e] = (mm)
[a, B F b [c,d] - d
[a, b] F b le,d] +d
[a] - a [a, 6] (b [) [e] Fc [e,dl+=(d |)
el F(al) [a] F (o1 | ©1 # a) [l = (c) [c] F (%3 | %3 # c)
[a] - (a1 | 1 # 3) [e] F(cw3 | ©3 # <)
{1 - (0291 | 01 # %0) [+ (2403 | B3 # 4)

I F (gotytans | 0 # 02, 03 # By)

The language is {n2n1n4n3 e N* | N # np,n3 # n4}.

Extensions of basic nominal automata A?

Nominal automata with flexible deallocations DA!
» the order of deallocations is flexible

> a typical language

Livo = U {nonl cee Ny |VI < k. n; 75 n,-+1}
keN

Extensions of basic nominal automata A?

Nominal automata with flexible deallocations DA!
» the order of deallocations is flexible

> a typical language

Livo = U {non1 cee Ny |\V/I' < k. n; 75 n,-+1}
keN

Nominal automata with chronicles CA?
> the history of resources is kept

> a typical language

Lay = U {non---ne | Vi, j < k. nj # nj}
keN

Extensions of basic nominal automata A?

Nominal automata with flexible deallocations DA!
» the order of deallocations is flexible

> a typical language

Livo = U {non1 cee Ny |\V/I' < k. n; 75 n,-+1}
keN

Nominal automata with chronicles CA?
> the history of resources is kept

> a typical language

Lay = U {non---ne | Vi, j < k. nj # nj}
keN

Nominal automata with flexible deallocations and chronicles
» DA" and CA?

Description of languages over infinite alphabets on
different nominal automata

CDA?

Automata-Language game

Idea: Proponent P provides automaton .4 and Opponent O gives a
counterexample

P chooses an automaton A in C

O chooses a word w in L

P exhibits a path to accept w or revise A to A’ € C
O adds a suffix v so that wv € L

o b=

repeat from Step 3

If O has a winning strategy, £ cannot be accepted by any
automaton A in the class of automata C.

Theorem

> Ly is not accepted by DA?
> Lino is not accepted by CA?

Open problems and further reserach directions

Technical open problems
» Presentations and expressions of words and languages

» General separation method (partially solved: language-languae
game)

» Communicating models and frameworks

» Nominal grammer and effective algorithm

Open problems and further reserach directions

Technical open problems
» Presentations and expressions of words and languages

v

General separation method (partially solved: language-languae
game)

» Communicating models and frameworks

v

Nominal grammer and effective algorithm

Further research directions
» Enrichments on resource structures: e.g. not just = and #
but also with security levels or time-stamps
» Safety properties over mobile interactions: how to inductively
guarantee safety properties over mobile interactions

» Schematic pattern matching on large data: schematic pattern
matching to calculate similarities

	Automata and formal languages for computational behaviours
	Automata: monitors for interactive computational behaviours
	Nominal automata
	Languages on nominal automata
	Our research directions, results and open questions

