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Automata and formal languages for computational behaviours
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Review: (classical) finite automata
Alphabet X: a finite set of letters, e.g. ¥ = {a, b, ¢}
Automaton A: a tuple (Q, qo, 9, F)

» J: labelled transitions
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Review: (classical) finite automata

Word w: a finite sequence of letters in ¥, e.g. w = abbca
Language L: a collection of words
For example, the following automaton A

be

)

A word a b c b c b c aisaccepted? or rejected?



Automata: monitors for interactive computational behaviours
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Monitoring for static computing
How to detect illegal behaviours on automata?

Example
Let a and b be possible actions and the following constraint:

Two consecutive actions should not be the same.

Safe behaviours: ‘a’, ‘bab’, 'ababab’, etc.
Bad behaviours: ‘abb’, ‘baaab’, etc.

~
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The monitor detects the malicious behaviours.

--rabababablaal -
~—
illegal

safe



Research question

Is classical automata theory enough to monitor interactive

computations?
Let's discuss this question by comparing with the R.Milner's

argument
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Environment-aware designs

not functional,
Communications: < not prescribed, = " environment-aware”

nor deterministic.

Environment-aware designs:
» infinitely many components concurrently moving

» systems must react to the dynamic environments
(all actions are not prescribed)

Monitoring on nominal automata (safe computations)
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E.g., ‘aba’ is described: 'a’ registered in 1 and ‘b’ registered in 2.
Also, ‘xyxy' is described: ‘x’ registered in 1 and 'y’ registered in 2.

Environment-aware designs provide schematic pattern matching.
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Problem on continuous information-flows

not functional, = “continuous interactions”
Communications: < not prescribed,

nor deterministic.

What happens if ‘aba’ described once and immediately ‘bcbc’
follows? So, actions 'ababcbc’ on the previous automaton.

“O——0O——0"

2

It stops at the first ‘c’ in ‘ababcbc’, although ‘aba’ and ‘bcbc’ are
safe computations.
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Problem on continuous information-flows (cont.)
not functional, = “continuous interactions”
Communications: < not prescribed,
nor deterministic.

One may revise the automaton to restarting form somewhere:

So, by refreshing some parts, ‘ababcbc’ are safe. But,...
Problems: How the monitor notices the right deallocation?
Possible solutions:

» include deallocations in actions = information-flows are
structured, e.g. trees

> let the monitor “guess” = non-determinism and when the
monitor detects ill-behaviours



Nominal automata
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Related models

v

N.Kaminski & M.Francez, “Finite-memory automata”

v

U.Montanari & M.Pistore, “History-dependent automata”

v

N.Tzevelekos, “Fresh-register automata”

v

M.Bojanczyk, B.Klin & S.Lasota, “Automata with group
actions”

Key idea: automata with resources
= nominal computation theory



Basic nominal automata A’

H=(Q,/,qo, F,tr)
1. Q: (finite) named set (endowed with a function [|_||: @ — N)
and we let reg(q) :={1,...,]|qll}
2. I input function

I(q) ==X Ureg(q)U{x 0}

w

. go: initial state with no memory cell (reg(qo) = 0)

o

. F: final states with no memory cell (reg(q) =0 for g € F)

5. tr: transition relations satisfying for q,q’ € Q and
a € l(q)U{e},

Il =lgll+1 a=x
q €tr(qa) = {|dll+1=]a] a=2
ld'|l = llql otherwise



Picture of A?
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Basic nominal automata

A little bit more preliminaries:
> Alphabet ¥: a finite set of letters (constants)
» Name AN: an “infinite” set of resource identifiers
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A little bit more preliminaries:
> Alphabet ¥: a finite set of letters (constants)
» Name AN: an “infinite” set of resource identifiers

» Transitions include “resource-allocation %" and
“resource-deallocation @"

A run of nominal automata is a sequence of configuration:
Configulation (q, w, list):

> (. a state

» w: a word (sequence of letters etc)

> list: a list of registered resources
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A simple example (cont.)

Let NV be an infinite set of letters: a,b,c,d,e,... € N.

Many words exhibit the same pattern: for example,

ab ab ab _ab ab cd ef gh ba ca ab ac
T~ N , S~
# #F F F # #F O F £ # #F  F F
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A simple example (cont.)

Let NV be an infinite set of letters: a,b,c,d,e,... € N.

Many words exhibit the same pattern: for example,

But the following words do NOT: aa abaade abc

Languages over infinite alphabets

U {nl"-nszN*]V0<i§k.n2;_17§n2;}
keN\{0}
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What are “the” words (and languages)?

There are a couple of different notions of words:

>

>

sequences of letters and names

words with explicit binders (resource allocation and
deallocation)

orbits

schematic words

Different notions of words enjoy different mathematical properties:

>

v

v

v

determinism

(regular) expressions
relationships between languages
closure properties

etc



Our research directions, results and open questions
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I F (gotytans | 0 # 02, 03 # By)

The language is {n2n1n4n3 e N* | N # np,n3 # n4}.
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Extensions of basic nominal automata A?

Nominal automata with flexible deallocations DA!
» the order of deallocations is flexible

> a typical language

Livo = U {non1 cee Ny |\V/I' < k. n; 75 n,-+1}
keN

Nominal automata with chronicles CA?
> the history of resources is kept

> a typical language

Lay = U {non---ne | Vi, j < k. nj # nj}
keN

Nominal automata with flexible deallocations and chronicles
» DA" and CA?



Description of languages over infinite alphabets on
different nominal automata

CDA?




Automata-Language game

Idea: Proponent P provides automaton .4 and Opponent O gives a
counterexample

P chooses an automaton A in C

O chooses a word w in L

P exhibits a path to accept w or revise A to A’ € C
O adds a suffix v so that wv € L

o b=

repeat from Step 3

If O has a winning strategy, £ cannot be accepted by any
automaton A in the class of automata C.

Theorem

> Ly is not accepted by DA?
> Lino is not accepted by CA?



Open problems and further reserach directions

Technical open problems
» Presentations and expressions of words and languages

» General separation method (partially solved: language-languae
game)

» Communicating models and frameworks

» Nominal grammer and effective algorithm



Open problems and further reserach directions

Technical open problems
» Presentations and expressions of words and languages

v

General separation method (partially solved: language-languae
game)

» Communicating models and frameworks
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Further research directions
» Enrichments on resource structures: e.g. not just = and #
but also with security levels or time-stamps
» Safety properties over mobile interactions: how to inductively
guarantee safety properties over mobile interactions

» Schematic pattern matching on large data: schematic pattern
matching to calculate similarities
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