CLUSTERING OF NEXT-GENERATION SEQUENCING DATA

Petr Ryšavý, supervised by Filip Železný Thursday 25th April, 2019

IDA, Dept. of Computer Science, FEE, CTU

RESEARCH CENTER FOR INFORMATICS

rci.cvut.cz

Evropské strukturální a investiční fondy OP Výzkum, vývoj a vzdělávání

Intelligent Data Analysis RESEARCH GROUP

INTRODUCTION

Bear or raccoon?

[J. Patrick Fischer, CC BY-SA 3.0, https://commons.wikimedia.org/wiki/File:Grosser_Panda.JPG]

nature International journal of science

Article | Published: 12 September 1985

A molecular solution to the riddle of the giant panda's phylogeny

Stephen J. O'Brien, William G. Nash, David E. Wildt, Mitchell E. Bush & Raoul E. Benveniste

Nature 317, 140-144 (12 September 1985) Download Citation ±

[Reece, Jane B., et al. Campbell biology. No. s 1309. Boston: Pearson, 2014.]

Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak

[Nolen, Leisha et al. "Incidence of Hansen's Disease — United States, 1994–2011." MMWR. Morbidity and mortality weekly report (2014).]

• Output is a dendogram of the species

[By Manudouz (Own work) [CC BY-SA 4.0], via Wikimedia Commons]

Clustering algorithms

- The only input of hierarchical clustering algorithms is a distance matrix
- This includes UPGMA and neighbor-joining

THAT SIMPLE?

Sequencing by synthesis

[By Abizar Lakdawalla, CC BY-SA 3.0, https://en.wikipedia.org/wiki/File: Sequencing_by_synthesis_Reversible_terminators.png]

- Product of sequencing is not a long sequence, but short substrings called reads
- Reads have length of 10s to 100s of symbols
- Sequence AGGCTGGA is represented by set {AGGC, TGGA, GCT}.

Contigs

- Assembly does not produce a single putative sequence, but several contigs
- Process of scaffolding and gap filling requires some additional wet-lab work
- Contigs are approximate substrings with unknown location and orientation

Classical approach is to reconstruct the original sequence first

- Genome assembly
- NP-hard problem

Classical approach - then cluster

- Hierarchical clustering algorithm is used to build a dendogram
- Dendogram is based on edit distance

Our approach - skip assembly.

• Goal is to build dendrogram directly from the read sets

• Do not skip the assembly, do only the easy parts.

Alignment-free approaches

- Originally designed do avoid alignment step for genome comparison
- Genome broken into k-mers
- · Some approaches work with read data

BRIEFINGS IN BIOINFORMATICS. VOL IS. NO 3: 343-353 Advance Access published on 23 September 200 doi:10.1093/bib/bbc06

New developments of alignment-free sequence comparison: measures, statistics and next-generation sequencing

Kai Song, Jie Ren, Gesine Reinert, Minghua Deng, Michael S. Waterman and Fengzhu Sun

Submitted: 28th May 2013; Received (in revised form): 25th July 2013

DISTANCE FUNCTION DESIGN

Clustering algorithms

- The only input of hierarchical clustering algorithms is a distance matrix
- This includes UPGMA and neighbor-joining

Key observation

- To build dendogram we need to approximate the distance matrix
- Measure that approximates edit distance needed

• Approximate edit distance between two sequences from their read-set/contig-set representations

Assumptions:

- All reads have the same length *l*.
- Reads are sampled i.i.d. with replacement from the uniform distribution on all substrings of length *l* of the sequences.

Key terms:

- Read length *l*.
- Coverage α .

USING READ-SETS

- Our approach is based on Monge-Elkan distance known from databases
- For each read from a read set we find the least distant read in the second read set

• Then we average over the read pairs

Strand and orientation

- In practical setting we do not know which strand do the reads come from.
- Sometimes we do not know whether a read starts on 5'-end.

[https://www.slideshare.net/jenuerz/replication-transcription-translation2012]

- Our measure should be symmetric
- Monge-Elkan distance has upper bound l
- Bring distance to proper scale

- Special treatment of leading and trailing gaps
- They may be caused by random positions of the reads

• Modification to edit distance

- Read can match gaps in the sequence alignment
- If distance is an outlier, it is forced to be l

- Coverage α around 2 provides results that are good enough.
- For high coverage data downsample to $\alpha = 2$.

- We do not need exact minimum in Monge-Elkan distance.
- We use embedding to identify good candidates.
- q-gram profile is vector of counts of all possible q-grams, i.e. strings from Σ^q .
- *q*-gram distance of two strings is Manhattan distance of their *q*-gram profiles.
- Inspiration by BLAST and dictionary search, q = 3.
- We evaluate edit distance only on reads minimizing the *q*-gram distance.
- q-gram distance is LB on edit distance.

USING CONTIG-SETS

- 1. Calculate expected overlaps of contig pairs.
- 2. Select appropriate overlaps for each contig.
- 3. Average the distances over overlaps.

1) Estimating overlaps for contig pairs

- Consider two contigs *a* and *b* and assume they overlap in the optimal alignment
- Select overlap that minimizes the post-normalized edit distance

$$\overline{\mathsf{dist}}(a,b) = \frac{\mathsf{dist}(a,b)}{\max\{|a|,|b|\}}.$$
(1)

• Heuristic approach based on modification of Smith-Waterman algorithm

AR.

- For one contig we have overlaps with the other contig set
- Select non-overlapping regions that maximize the total value (post-normalized edit distance)
- Reduction to weighted interval schedulling problem

• Sum distances of overlap pairs

$$d(C_A, C_B) = \sum_{(c,d) \in \mathsf{overlap}(C_A, C_B)} \mathsf{dist}(c, d).$$

• The sum does not capture contig size w.r.t. genome size

Normalize

- Divide by maximum possible distance of all overlaps ...
- ... and multiply by genome maximum distance

$$d(C_A, C_B) = \frac{\sum_{(c,d)\in\mathsf{overlap}(C_A, C_B)}\mathsf{dist}(c, d)}{\sum_{(c,d)\in\mathsf{overlap}(C_A, C_B)}\max\{|c|, |d|\}} \cdot \frac{l\max\{|R_A|, |R_B|\}}{\alpha}$$

• The resulting measure is not symmetric ...

• ... average both directions

$$\mathsf{Dist}(C_A, C_B) = \frac{d(C_A, C_B) + d(C_B, C_A)}{2}$$

EXPERIMENTAL RESULTS

- Two real-world and three artificial datasets
- Original DNA sequences used as a reference (if available)
- Two clustering algorithms (Neighbor-joining and UPGMA)
- Comparison with 5 common de novo assemblers (ABySS, edena, SSAKE, SPADes, velvet)

- time (assembly time, distance matrix time, clustering time)
- Pearson's correlation coefficient measuring similarity of the distance matrix to the reference one
- Fowlkes-Mallows index measuring similarity of the clusterings
- Averaging over α and l values.

• Pearson's correlation between distance matrices is close to one

Table 4 Runtime, Pearson's correlation coefficient between distance matrices and Fowlkes-Mallows index for k = 4 and k = 8. The 'reference' method calculates distances from the original sequences. We show only assembly algorithm that gave the highest correlation, the best *d*-type method, and the better algorithm of pairs MES(MESS) (MESSG/MESSGM, and MESSGM.

Dataset	method	finished	$\frac{\text{assem.}}{\text{ms}}$	$\frac{\text{distances}}{\text{ms}}$	$\frac{\text{UPGMA}}{\text{ms}}$	$\frac{NJ}{ms}$	corr.	$\frac{\text{UPGMA}}{B_4}$	$\frac{\text{UPGMA}}{B_8}$	$\frac{\text{NJ}}{B_4}$	$\frac{\text{NJ}}{B_8}$
	reference	112/112	0	3,991	4.59	3.25	1	1	1	1	1
	$\max(R_A , R_B)$	112/112	0	337	1.08	3.25	.801	.67	.319	.658	.319
	Dist _{MESS}	112/112	0	829,411	0.24	0.26	.945	1	.866	1	.84
Influenza	Dist _{MESSG}	104/112	0	986,757	0.13	0.36	.981	.995	1	.998	.993
	DistMESSGq	112/112	0	49,260	0.09	0.53	.971	.999	.992	.999	.985
	Mash	112/112	0	117	1.53	8.59	.679	.476	.575	.438	.61
	d_2^*	111/112	0	352	4.86	3.36	.837	.378	.712	.403	.898
	SPAdes	43/112	12,230	4,644	0.33	1.07	.928	.965	.752	.94	.781
	reference	112/112	0	59,602	5.21	3.40	1	1	1	1	1
	$\max(R_A , R_B)$	112/112	0	596	1.95	2.35	.907	.671	.655	.846	.924
	DistMESS	76/112	0	1,302,199	0.36	0.53	.93	.627	.804	.873	.933
17	DistMESSG	70/112	0	1,575,721	0.29	0.64	.933	.621	.884	.932	.93
Various	DistMESSGMg	110/112	0	570,361	0.29	0.79	.927	.657	.771	.842	.972
	Mash	112/112	0	238	4.88	11.26	.498	.408	.267	.428	.326
	d_2^*	109/112	0	689	4.84	19.32	.442	.378	.189	.453	.317
	SPAdes	34/112	$18,\!675$	177,821	0.21	0.79	.942	.698	.91	.961	.949
	reference	9/9	0	1,759,470	25.00	44.44	1	1	1	1	1
	$\max(R_A , R_B)$	9/9	0	18,913	7.11	14.00	.181	.553	.368	.724	.828
	DistMES	9/9	0	10,994,207	1.11	3.56	.833	1	.952	1	.961
**	DistMESSGM	9/9	0	20,489,458	4.78	3.78	.965	.994	.946	1	.903
Hepatitis	DistMESSGMa	9/9	0	697,464	1.56	5.78	.9	.915	.947	1	.944
	Mash	9/9	0	3,788	23.00	141.33	.967	.964	.966	1	.918
	d_2^q	9/9	0	26,301	47.11	397.00	.973	.984	.96	1	.87
	Velvet	9/9	17,774	2,398,724	1.00	3.67	.782	.803	.846	.964	.847
	reference	1/1	0	653,909	7.00	4.00	1	1	1	1	1
Chromosomes	$\max(R_A , R_B)$	1/1	0	1.247	1.00	1.00	.331	.64	.404	.613	.298
	DistMES	1/1	0	10,645,321	1.00	0.00	.886	.42	.263	.596	.276
	$Dist_{MESSG\alpha}$	1/1	0	20,713,067	1.00	1.00	.848	.408	.227	.585	.26
	Dist _{MESSGaa}	1/1	0	178,840	1.00	1.00	.841	.673	.301	.9	.262
	Mash	1/1	0	261	1.00	4.00	.33	.588	.307	.599	.382
	d_2^*	1/1	0	1,768	0.00	2.00	.302	.503	.328	.805	.303
	$SSAKE\alpha$	1/1	46,853	55,131	1.00	1.00	.652	.528	.17	.805	.255

• Exact evaluation of Monge-Elkan distance is too slow for real-world

Table 4	Runtime, Pearson's correlation coefficient between distance matrices and Fowlkes-Mallows index for $k = 4$ and $k = 8$. The 'reference' m	ethod
calculates	s distances from the original sequences. We show only assembly algorithm that gave the highest correlation, the best d-type method, ar	nd the
better alg	rorithm of pairs MES/MESS, MESSG/MESSGM, and MESSGq/MESSGMq.	

Dataset	method	finished	$\frac{\text{assem.}}{\text{ms}}$	$\frac{distances}{ms}$	UPGMA ms	NJ ms	corr.	$\frac{\text{UPGMA}}{B_4}$	$\frac{\text{UPGMA}}{B_8}$	$\frac{NJ}{B_4}$	$\frac{NJ}{B_8}$
Influenza	reference	112/112	0	3,991	4.59	3.25	1	1	1	1	1
	$max(R_A , R_B)$	112/112	0	337	1.08	3.25	.801	.67	.319	.658	.319
	Dist _{MESS}	112/112	0	829,411	0.24	0.26	.945	1	.866	1	.84
	Dist _{MESSG}	104/112	0	986,757	0.13	0.36	.981	.995	1	.998	.993
	DistMESSGq	112/112	0	49,260	0.09	0.53	.971	.999	.992	.999	.985
	Mash	112/112	0	117	1.53	8.59	.679	.476	.575	.438	.61
	d_2^*	111/112	0	352	4.86	3.36	.837	.378	.712	.403	.898
	SPAdes	43/112	12,230	4,644	0.33	1.07	.928	.965	.752	.94	.781
	reference	112/112	0	59,602	5.21	3.40	1	1	1	1	1
	$\max(R_A , R_B)$	112/112	0	596	1.95	2.35	.907	.671	.655	.846	.924
Various	Dist _{MESS}	76/112	0	1,302,199	0.36	0.53	.93	.627	.804	.873	.933
	Dist _{MESSG}	70/112	0	1,575,721	0.29	0.64	.933	.621	.884	.932	.93
	DistMESSGMq	110/112	0	570,361	0.29	0.79	.927	.657	.771	.842	.972
	Mash	112/112	0	238	4.88	11.26	.498	.408	.267	.428	.326
	d_2^*	109/112	0	689	4.84	19.32	.442	.378	.189	.453	.317
	SPAdes	34/112	18,675	177,821	0.21	0.79	.942	.698	.91	.961	.949
	reference	9/9	0	1,759,470	25.00	44.44	1	1	1	1	1
	$max(R_A , R_B)$	9/9	0	18,913	7.11	14.00	.181	.553	.368	.724	.828
	Dist _{MES}	9/9	0	10,994,207	1.11	3.56	.833	1	.952	1	.961
Uspatitie	DistMESSGM	9/9	0	20,489,458	4.78	3.78	.965	.994	.946	1	.903
nepatitis	DistMESSGMq	9/9	0	697,464	1.56	5.78	.9	.915	.947	1	.944
	Mash	9/9	0	3,788	23.00	141.33	.967	.964	.966	1	.918
	d_2^q	9/9	0	26,301	47.11	397.00	.973	.984	.96	1	.87
	Velvet	9/9	17,774	2,398,724	1.00	3.67	.782	.803	.846	.964	.847
Chromosomes	reference	1/1	0	653,909	7.00	4.00	1	1	1	1	1
	$max(R_A , R_B)$	1/1	0	1,247	1.00	1.00	.331	.64	.404	.613	.298
	Dist _{MES}	1/1	0	10,645,321	1.00	0.00	.886	.42	.263	.596	.276
	$Dist_{MESSG\alpha}$	1/1	0	20,713,067	1.00	1.00	.848	.408	.227	.585	.26
	$Dist_{MESSGq\alpha}$	1/1	0	178,840	1.00	1.00	.841	.673	.301	.9	.262
	Mash	1/1	0	261	1.00	4.00	.33	.588	.307	.599	.382
	d_2^*	1/1	0	1,768	0.00	2.00	.302	.503	.328	.805	.303
	$SSAKE\alpha$	1/1	46,853	55,131	1.00	1.00	.652	.528	.17	.805	.255

• Embedding and scaling puts runtime between assembly and alignment-free approaches

Table 1 Runtime on "E. coli" dataset. Assembly time (without distance matrix calculation) on the same dataset is 18,844 s (ABySS), 18,606 s (Edena), 33,545 s (SPAdes), and 17,701 s (Velvet).

Method	Time (in seconds)					
$\text{Dist}_{\text{MESSG}(M)q\alpha}$	11,073					
co-phylog	583					
Mash	480					
d_2	3,221					
d_2^*	3,235					
$d_2^{ ilde q}$	3,228					
$d_2^{\tilde{q*}}$	3,225					
$\tilde{D_2}$	3,235					
D_2^*	3,301					
$D_2^{\tilde{q}}$	3,224					
$D_2^{\tilde{q*}}$	3,227					

• Our approach requires lower coverage than assembly

Figure 2: Plot of average Pearson's correlation coefficient for several choices of coverage values.

• Our approach works better for short reads than assembly

Figure 3: Plot of average Pearson's correlation coefficient for several choices of read length.

- We have seen two methods for estimating sequence similarity form read/contig sets
- Only single approximation step
- Adapts advantages of both alignment-free approaches and alignment similarity
- Further work needed

THANK YOU FOR YOUR ATTENTION. TIME FOR QUESTIONS!

RESEARCH CENTER FOR INFORMATICS

EVROPSKÁ UNIE Evropské strukturální a investiční fondy OP Výzkum, vývoj a vzdělávání

Intelligent Data Analysis RESEARCH GROUP