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INTRODUCTION



Bear or raccoon?

[J. Patrick Fischer, CC BY-SA 3.0,

https://commons.wikimedia.org/wiki/File:Grosser_Panda.JPG]
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Why evolutionary trees?
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Another example

Genomic surveillance elucidates
Ebola virus origin and transmission
during the 2014 outbreak
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[Nolen, Leisha et al. “Incidence of Hansen's Disease — United States, 1994-2011."
MMWR. Morbidity and mortality weekly report (2014).]



Output - hierarchical clustering

e Output is a dendogram of the species
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[By Manudouz (Own work) [CC BY-SA 4.0], via Wikimedia Commons]



Clustering algorithms

e The only input of hierarchical clustering algorithms is a distance matrix
e This includes UPGMA and neighbor-joining
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THAT SIMPLE?




Sequencing by synthesis

[By Abizar Lakdawalla, CC BY-SA 3.0, https://en.wikipedia.org/wiki/File:

Sequencing_by_synthesis_Reversible_terminators.png]
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Sequencing, read-sets

e Product of sequencing is not a long sequence, but short substrings

called reads
e Reads have length of 10s to 100s of symbols
e Sequence AGGCTGGA is represented by set {AGGC, TGGA, GCT}.
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e Assembly does not produce a single putative sequence, but several

contigs

e Process of scaffolding and gap filling requires some additional wet-lab
work

e Contigs are approximate substrings with unknown location and

orientation
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Classical approach - first assemble

e Classical approach is to reconstruct the original sequence first

e Genome assembly

e NP-hard problem
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Classical approach - then cluster

e Hierarchical clustering algorithm is used to build a dendogram

e Dendogram is based on edit distance
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Our approach - skip assembly.

e Goal is to build dendrogram directly from the read sets




Our approach - skip assembly.

e Do not skip the assembly, do only the easy parts.
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Alignment-free approaches

e Originally designed do avoid alignment step for genome comparison
e Genome broken into k-mers
e Some approaches work with read data

Comin and Schimd BMC Bioinformatics 2014, 15(Suppl 951

hitp://www biomedcentral.comy/1471-2105/15/59/51
BMC

Bioinformatics

PROCEEDINGS Open Access

Assembly-free genome comparison based on
next-generation sequencing reads and variable
length patterns

Matteo Comin’, Michele Schimd

From RECOMB-Seq: Fourth Annual RECOMB Satellite Workshop on Massively Parallel Sequencing
Pittsburgh, PA, USA. 31 March - 05 April 2014

BRIEFINGS IN BIOINFORMATICS. VOL 15, NO 3. 343-35) dot01053bipee0eT
Advance Access pubished on 23 Septamber 208

New developments of alignment-free
sequence comparison: measures,
statistics and next-generation
sequencing

Kai Song, Jie Ren, Gesine Reinert, Minghua Deng, Michael 5. Waterman and Fengzhu Sun

Submiccad: 20¢h May 203 Raceved (n revised form): 25¢h iy 208
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DISTANCE FUNCTION DESIGN




Clustering algorithms

e The only input of hierarchical clustering algorithms is a distance matrix
e This includes UPGMA and neighbor-joining
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Key observation

e To build dendogram we need to approximate the distance matrix

e Measure that approximates edit distance needed
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Problem reformulation

e Approximate edit distance between two sequences from their
read-set/contig-set representations

Assumptions:

e All reads have the same length [.

e Reads are sampled i.i.d. with replacement from the uniform
distribution on all substrings of length [ of the sequences.

Key terms:

e Read length [.

e Coverage a.
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USING READ-SETS




Monge-Elkan distance

e Our approach is based on Monge-Elkan distance known from databases

e For each read from a read set we find the least distant read in the
second read set
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e Then we average over the read pairs
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Strand and orientation

e In practical setting we do not know which strand do the reads come
from.
e Sometimes we do not know whether a read starts on 5'-end.

(a) Key features of (b) Partial chemical structure
__DNA structure

[https://www.slideshare.net/jenuerz/replication-transcription-translation2012]
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Distance scale and symmetry

e QOur measure should be symmetric
o Monge-Elkan distance has upper bound [

e Bring distance to proper scale

23



Margin gaps

e Special treatment of leading and trailing gaps

e They may be caused by random positions of the reads
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e Modification to edit distance
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Threshold

e Read can match gaps in the sequence alignment

e If distance is an outlier, it is forced to be [

------------------------------
----------------------
-----------------------------

------------------------------
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Too slow ? - sample

o Coverage « around 2 provides results that are good enough.

e For high coverage data downsample to o = 2.
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Too slow 7 - use embedding

e We do not need exact minimum in Monge-Elkan distance.

We use embedding to identify good candidates.

e g-gram profile is vector of counts of all possible g-grams, i.e. strings
from 9.

e g-gram distance of two strings is Manhattan distance of their g-gram
profiles.

Inspiration by BLAST and dictionary search, ¢ = 3.

We evaluate edit distance only on reads minimizing the g-gram
distance.

e g-gram distance is LB on edit distance.
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USING CONTIG-SETS




Three step procedure

1. Calculate expected overlaps of contig pairs.
2. Select appropriate overlaps for each contig.

3. Average the distances over overlaps.
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1) Estimating overlaps for contig pairs

e Consider two contigs a and b and assume they overlap in the optimal
alignment

e Select overlap that minimizes the post-normalized edit distance

= dist(a, b)
dist(a,b) = ———————. 1
mace{al 1] &
e Heuristic approach based on modification of Smith-Waterman
algorithm
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2) Estimating overlaps for contig sets

e For one contig we have overlaps with the other contig set

e Select non-overlapping regions that maximize the total value
(post-normalized edit distance)

e Reduction to weighted interval schedulling problem

a

A
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3) Combining the Results

e Sum distances of overlap pairs

d(Ca,Cp) = > dist(c, d).

(¢,d)€overlap(C4,CR)

e The sum does not capture contig size w.r.t. genome size

A




3) Combining the Results

e Normalize
e Divide by maximum possible distance of all overlaps ...

e ... and multiply by genome maximum distance

Z(c,d)EoverIap(CA,CB) dISt(C’ d) . lmax{|RA|, |RB|}

d(CA7 CB) =
Z(c,d)eoverlap(CA,CB) maX{|c|, |d|} &

e The resulting measure is not symmetric ...

A
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3) Combining the Results

e ... average both directions

d(CA,CB) + d(CB,CA)

Dist(C4,Cp) = 5
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EXPERIMENTAL RESULTS




Experimental setup

Two real-world and three artificial datasets

Original DNA sequences used as a reference (if available)

Two clustering algorithms (Neighbor-joining and UPGMA)

e Comparison with 5 common de novo assemblers (ABySS, edena,
SSAKE, SPADes, velvet)
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Measured characteristics:

time (assembly time, distance matrix time, clustering time)

e Pearson’s correlation coefficient measuring similarity of the distance
matrix to the reference one

Fowlkes-Mallows index measuring similarity of the clusterings

Averaging over « and [ values.
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Results

e Pearson’s correlation between distance matrices is close to one

Table 4 Runtime, Pearson’s correlation cocfficient between distance matrices and Fowlkes-Mallows index for k = 4 and k = 8. The ‘reference’ method
calculates distances from the original sequences. We show only assembly algorithm that gave the highest correlation, the best d-type method, and the

better algorithm of pairs MES/MESS, MESSG/MESSGM, and MESSGa/MESSGMa.

Dataset method finished  assem.  distances  UPGMA NI oo | UPCMA  UPGMA R RJ
reference 112/112 0 3,091 459 325 1 1 1 1
0 337 1.08 3.25 67 319 658 319
Influenza
Mash 112/112 1.53 859 |.679 AT76 575 438 61
dj 111/112 4.86 336 |.837 378 712 403 898
SPAdes 43/112 033 107 |.928 965 752 94 781
reference 112/112 1 1 1
655 846924
Various
Mash 112/112 4.88 11.26 498 .408 267 428 326
dj 109/112 4.84 1932 | 442 378 189 453 317
SPAdes 34/112 177,821 021 079 |.942 698 91 961 949
reference 9/9 1,759,470 44.44 1 1 1 1
max(|Ral,[Rp)  9/9 18,913 14.00 553 368 724 .828
Hepatitis
Mash 9/9 0 3,788 23.00  141.33 |.967 964 966 1 018
di 9/9 0 26,301 4711 397.00 |.973 984 96 187
Velvet 9/9 17774 2,398,724 1.00 367 |.782 803 846 964 84T
reference 1/1 0 653,900 7.00 4.00 1 1 1 1 1
max(|Ral, |R, 1/1 0 1,247 1.00 1.00 | .331 .64 404 613 298
Chromosomes
0 261 307 599 382
0 1,768 328 805 303

a3
SSAKEa 1/1 46,853 55,131

1.00

1.00

528

A7

.805

.255
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Results

e Exact evaluation of Monge-Elkan distance is too slow for real-world

Table 4 Runtime, Pearson’s correlation coefficient between distance matrices and Fowlkes-Mallows index for k = 4 and k = 8. The ‘reference’ method
calculates distances from the original sequences. We show only assembly algorithm that gave the highest correlation, the best d-type method, and the
better algorithm of pairs MES/MESS, MESSG/MESSGM, and MESSGq/MESSGMq.

Dataset method finished  assem. | distances | UPGMA NI o, UPCMA  UPGMA  RJ  RJ
reference 112/112 0 3,991 4.59 3.25 1 1 1 1 1
Ryl.|Rp 0 337 1.08 325 801 67 319 658 319
1SEMESSG 3 3 . E! 3 3 3
[Bfiuenza) DistMesscq 112/112 0 49,260 0.09 053 971 1999 992 999 985
Mash 112/112 0 17 1.53 859 679 AT76 575 438 61
d; 111/112 0 352 4.86 3.36 837 378 712 403 .898
SPAdes 43/112 12,230 4,644 033 107 928 965 752 94 781
reference 112/112 0 59,602 5.21 3.40 1 1 1 1 1
max(|R4l.|R 112/112 0 596 1.95 235 907 671 655 846924
et Distwiessc 70/112 0 1,575,721 029 064 933 621 884 932 .93
Distwessomq ~ 110/112 0 570,361 0.29 079 927 657 a7 842 972
Mash 112/112 0 238 4.88 11.26 498 408 267 428 326
d; 109/112 0 689 4.84 19.32 442 378 189 453 317
SPAdes 34/112 18675 | 177,821 021 079 942 698 91 961 949
reference 9/9 0 1759470 | 2500 4444 1 1 1 1 1
max(|Ral, |[Rp)  9/9 0 18,913 7.11 14.00 181 553 368 724 828
s ISLMESSGM 5 3 3 3 B B B B
Hepatitis Distwiesscma 9/9 0 697,464 1.56 5.78 9 915 947 1944
Mash 9/9 0 3,788 23.00  141.33 967 964 966 1 018
dg 9/9 0 26,301 47.11 397.00 973 984 .96 1 87
Velvet 9/9 17,774 | 2,398,724 1.00 367 782 803 846 964 847
reference 1/1 0 653,000 7.00 4.00 1 1 1 1 1
0 1,247 1.00 100 . .64
Cliromesomnez) Distwiesscqa 11 0 178,840 1.00 1.00  .841 673 301 9 262
Mash 11 0 261 1.00 400 .33 588 307 599382
d; 1/1 0 1,768 0.00 2.00 302 503 328 805  .303
SSAKE« /1 46853 | 55131 1.00 100 652 528 17 805 255 39




Results

e Embedding and scaling puts runtime between assembly and
alignment-free approaches

Table 1 Runtime on “E. coli” dataset. Assembly time (without distance matrix calculation
on the same dataset is

(Velvet).

Method Time (in seconds)
11,073

Distmessc(M)qa




Results

e Qur approach requires lower coverage than assembly

Influenza Various

B L T
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.- ABySS -#- Edena -+- SSAKE -+-- SPAdes —e— Velvet

Figure 2: Plot of average Pearson’s correlation coefficient for several choices of coverage values.

41



Results

Various

Influenza.

e QOur approach works better for short reads than assembly
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Figure 3: Plot of average Pearso
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Conclusion

e We have seen two methods for estimating sequence similarity form
read/contig sets

e Only single approximation step
e Adapts advantages of both alignment-free approaches and alignment
similarity

e Further work needed
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