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Why the data assimilation?

I The mathematical model could be wrong:
I Wrong conceptualization of the physical reality
I Erroneous inputs
I Inherited errors (numerical errors, interpolation errors, . . .)
I Wrong meteorological forecast
I . . .

I The measurements could be also bad or insufficient:
I Sparse measurement – we don’t have enough information
I Erroneous, but mostly assumed more precise than the model
I Often undirect – need of transformation
I . . .

⇒ the combination of numerical model which can be evaluated in
unlimited analysis points with few accurate measurements can
improve our estimate (prediction)



Data assimilation
Assimilation schema:



Data assimilation - data update step
Assimilation schema:



Data assimilation - time update step
Assimilation schema:



The methods of objective analysis

I Empirical methods
I Interpolation methods
I Cressman algorithm
I SCM

I Bayesian methods
I Optimal interpolation
I Variational methods

I 3D–Var
I 4D–Var

I Kalman filter
I Sequential Monte Carlo methods – particle filters
I Marginalized particle filter
I Ensemble methods
I hybrid filters
I . . .



General Bayesian approach to data assimilation

I Uncertainty is described in terms of probability density
functions

The prior distribution p(x0) is transformed into posterior pdf
p(xt |y1:t) using measurements y1:t = {y1, . . . , yt} by recursive
repetition of the following steps:

p(xt |y1:t−1) =

∫
p(xt |xt−1)p(xt−1|y1:t−1)dxt−1 (1)

p(xt |y1:t) =
p(yt |xt)p(xt |y1:t−1)∫

p(yt |xt)p(xt |y1:t−1)dxt
, (2)

Evaluation of (1) and (2) involves integration over complex spaces
and often it is computationally infeasible. Suboptimal solution can
be found by the means of sequential Monte Carlo methods also
known as particle filters.



Sequential Monte–Carlo methods (particle methods)

I Recursive estimation of the probability density function.

I Representation of probability density function as a set of
particles and its associated weights.

p(xt |y1:t) =
M∑
i

q̃
(i)
t δ(xn

t − x
n,(i)
t ),

M∑
i

q̃
(i)
t = 1, q̃

(i)
t ≥ 0 ∀i

(3)

p(xt |y1:t) ≈ {q̃(i)
t , x

(i)
t }|i=1...M (4)

We have to be able to generate random samples from complicated
distributions.



Sequential Monte–Carlo methods (particle methods)

Illustration of the particle filter idea

Resampling step avoids degradacy of particle ensemble



Marginalized particle filter

Marginalized particle filter estimates the probability density
function by a combination of non–parametric and parametric
density functions

xt =

[
xl
t

xn
t

]
(5)

p(xl
t , x

n
t |y1:t) = p(xl

t |xn
t , y1:t)p(xn

t |y1:t) (6)

E.g. if the xl
t can be treated as linear-Gaussian, the estimated

density function is represented by a weighted sum of Gaussian
distributions, where each particle has a Gaussian distribution
attached to it

p(xl
t , x

n
t |Yt) =

M∑
i=1
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(i)
t δ(xn

t − x
n,(i)
t )N(x̂

l ,(i)
t ,P

(i)
t ) (7)



Marginalized particle filter



Stages of a radiation accident

1. Pre-release phase
I Something is going wrong with the nuclear reactor:)

2. Early phase (EP)
I Failure of nuclear reactor followed by an aerial release of

radionuclides (aerosols, noble gases)
I After the release, there is a radioactive cloud passing over the

terrain
I EP lasts until the radioactive cloud leaves area of interest (e.g.

24hours)
I Dominant pathways of irradiation: inhalation, cloudshine,

groundshine

3. Late (post-emergency) phase (LP)
I Radioactive material is deposited on the ground (the cloud left

a “radioactive trace”)
I Dominant pathways of irradiation: groundshine, ingestion,

inhalation from resuspension
I LP lasts until the radiation levels resume to background values



Part I. - Application of DA in
early phase



Early phase - problem formulation

I Assume an accident in a nuclear power plant followed by
aerial release of radionuclides

I After the release, there is a radioactive cloud passing over the
terrain

I The spatio-temporal distribution of radionuclides is modeled
by the means of numerical dispersion models in order to
determine appropriate countermeasures

I Output of such a model is a prediction of radiation situation
given in terms of radiological quantities, eg. activity
concentration in air C (s, t)

I Modeling is supported by available measurements from
radiation monitoring network designed to measure the γ-dose
rate



Early phase - objectives of DA

We have got

I Atmospheric dispersion model CADM modeling activity
concentration in air C (s, t) in a set of grid points – vector Ct

I Measurements of time integrated γ-dose rate at time t –
vector yt

I ADM is a function of parameters and inputs
CADM = CADM(Θ)

I A group of most significant parameters θ ∈ Θ is modeled as
random due to the stochastic nature of the background
physics

We want to

I On-line estimate the state xt = [Ct ,θt ]T as the cloud is
passing over stationary measuring sites

I Use posterior distribution p(xt |y1:t) to predict future evolution
of the radiation situation p(xt+k |y1:t)



State evolution model

Evolution of the state is given by the transition pdf p(xt |xt−1):

p(xt |xt−1) = p(Ct , θt |Ct−1, θt−1)

= p(Ct |Ct−1, θt , θt−1)p(θt |Ct−1, θt−1) (8)

Under the choice of atmospheric dispersion model CADM(θt) and
its parameters θt , the evaluation of Ct is deterministic:

p(Ct |Ct−1, θt , θt−1) = δ(Ct − CADM(θt)) (9)

Time evolution of θt is given by the pdf p(θt |θt−1). Invariant
parameters (θt = θ) ⇒ transition pdf is

p(θt |θt−1) = δ(θt − θ). (10)

The process is initialized with prior pdf p(θ0).



State evolution model
We chose the Gaussian puff model (GPM) for the ADM:

C(s, t) =
Q fD(t) R(t)

(2π)
3
2 σs1 σs2 σs3

exp

{
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2
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s1 − ut
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+
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]}
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(11)
where

I t is time index, Q is the total released activity in Bq and u is the wind
speed

I Dispersion coefficients {σsi }|i=1, 2, 3 are functions of distance from the
source

I Factor fD(t) stands for radioactive decay, dry and wet deposition

I Term R(t) accounts for homogenization of the vertical profile of
concentration due to the reflections from the top of mixing layer and the
ground

It is based on approximative solution of the three dimensional
advection-diffusion equation
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Measurement model

Measurements are assumed to be normally distributed and mutually
independent given the state xt . Errors of measurements are set
proportional to the their values with an offset term modeling the
background radiation superposed to the actual dose measurements

yt ∼ N (Dt , Σ(Dt)), (13)

where Dt is a vector of measurements of time integrated absorbed
γ-dose in tissue in all the measuring sites available in time t.

Di ,t =

t∫
t−1

∑
j

Kj µa,j Eγ,j
ρ

Φj(C (s(i), τ)) dτ. (14)

I {Eγ,j ; j ∈ IE} is a set energy levels in a mixture of radionuclides

I Φj is effective dose of gamma rays

I mua,j absorption coefficient

I Kj conversion coefficient

I ρ is the mass density of air

I summation is over assumed energy levels



Measurement model

Φ at a receptor located at s̃ = (s̃1, s̃2, s̃3) from a source of energy Eγ
dispersed in air is

Φ(s̃1, s̃2, s̃3, Eγ) =

∫∫∫
f (Eγ)B(Eγ , µr)C(s1, s2, s3)

4π r 2
ds1 ds2 ds3, (15)

I r 2 = (s̃1 − s1)2 + (s̃2 − s2)2 + (s̃3 − s3)2

I f (Eγ) is the branching ratio to the specific energy

I µ is the attenuation coefficient of air

I B(Eγ , µr) is the dose build-up factor given by Bergers analytical
expression

B(Eγ , µ r) = 1 + aµr exp(b µr), (16)

I Coefficients µ, a and b depend on Eγ .

I Energy dependent absorption coefficient µa is calculated as

µa = µ/

[
1 +

a

(1− b)2

]
. (17)



Measurement model

I The form and simplicity of used Gaussian puff model (11)
allows for numerical evaluation of integral (15) on a compact
support where the concentration is not negligible

I If the radioactive plume is large compared to the mean free
path of the γ-rays, then the semi-infinite cloud approximation
of effective flux can be successfully used

I Integration is performed numerically by the means of Gaussian
quadrature method



Parametrization of atmospheric dispersion model
A group of the most significant variables affecting the dispersion
process (including meteorological inputs) was selected using
available sensitivity and uncertainty studies performed on Gaussian
dispersion models.

variable physical effect parametrization
Q magnitude of release Q = ωt Q0

u wind speed u = (1 + 0.1 ξt) u0 + 0.5 ξt
φ wind direction φ = φ0 + ∆φ, ∆φ = ψt (2π/80) rad.

σsi |i=1, 2 horizontal dispersion σsi = ζt σsi 0 |i=1, 2

Table: Parametrization of selected variables and inputs to the ADM.

I All the random parameters are treated as time invariant:
θt(ωt , ξt , ψt , ζt) = θ(ω, ξ, ψ, ζ).

In case of time horizon of several hours, the assumption of stationarity of the

meteorological condition vanishes. Parametrization of the meteorological data

has to be fragmented into shorter time intervals (usually hourly intervals)

where the assumption of stationarity holds.



Numerical experiment

For purposes of numerical experiment was chosen assimilation
scenario with an instantaneous release of 41Ar :

I half life of decay of 41Ar is 109.34 minutes ⇒ the radioactive
decay cannot be neglected

I γ radiation produced on a few energy levels

I we assume just the energy level 1293.57keV with the
branching ratio 99.1%.

I the rest being included in the 0.9% is neglected

I noble gas ⇒ no deposition ⇒ no ground shine ⇒ measured
dose is just from the cloud



Numerical experiment - measurements

I The measured quantity is the time integrated γ-dose from
cloud shine of 41Ar .

I The topology of measuring sites is similar to that of the Early
Warning Network of the Czech Republic

I Nuclear power plant is surrounded by almost fifty stationary
measuring sites capable to measure time integrated γ-dose

I Time horizon spans up to the 1 hour

I The data update step is performed every 10 minutes.

⇒ we performed 6 assimilation cycles consisting of time and data
update steps



Numerical experiment - twin model

Numerical experiment is conducted as a twin experiment, where
the measurements are simulated via a twin model and perturbed.
The set of parameters θTWIN used for evaluation of the twin
model simulating measurements is

θTWIN = (0.72, −0.17, −8.3, 1.3). (18)

variable prior val. param. value true value
Q – released activity 1.0E+10Bq 0.72 7.2E+09Bq

u – wind speed 3.10m/s -0.17 2.96m/s
φ – wind direction 310.0deg -8.3 272.7deg
σsi – horizontal disp. σsi = σsi (dist)|i=1, 2 1.3 σsi = 1.3σsi |i=1, 2

Table: Values of variables of the initial model setting and the twin model.



Numerical experiment
Assimilation results are presented in the form of expected value of
TIC with respect to the predictive densities at different time steps

TIC (s) =

tMAX∫
0

C (s, τ) dτ (19)

on a rectangular grid of dimension 41× 41 grid points with the
grid step 1km. The source of pollution is placed in the center of
the grid.

parameter physical effect pdf type mean value std. dev.
ωt magnitude of release log-normal 1.0 1.0 (3σ trunc.)
ξt wind speed uniform 0.0 1.0
ψt wind direction uniform 0.0 10.0
ζt horizontal dispersion log-normal 1.0 1.0 (3σ trunc.)

Table: Prior distributions of estimated parameters θt = (ωt , ξt , ψt , ζt).



Numerical experiment

Figure: TIC evaluated by the atmospheric dispersion model without the data
assimilation and with initial setting of variables Q = Q0, u = u0, φ = φ0 and
σsi |i=1, 2 = σsi 0 |i=1, 2



Numerical experiment

Figure: TIC evaluated by the twin model used for simulation of
measurements



Numerical experiment

Figure: Expected value of prediction of TIC based on measurements y1



Numerical experiment

Figure: Expected value of prediction of TIC based on measurements y1:2



Numerical experiment

Figure: Expected value of prediction of TIC based on measurements y1:3



Numerical experiment

Figure: Expected value of prediction of TIC based on measurements y1:4



Numerical experiment

Figure: Expected value of prediction of TIC based on measurements y1:5



Numerical experiment

Figure: Expected value of prediction of TIC based on measurements y1:6



Numerical experiment

Figure: TIC evaluated by the twin model used for simulation of
measurements



Early phase: Conclusion and future work

The presented scenario clearly illustrates the power of the method:

I Rapid assessment of the situation in case of an aerial release
of radionuclides is crucial for planning of countermeasures

I Bayesian approach allows joint estimation of spatio-temporal
distribution of activity and parameters of the dispersion model

I Assimilated estimate of the radiation situation on the terrain
can be easily extended to predictions on an arbitrary horizon

I However, a lot of work is required to incorporate the method
to the existing decision support systems

Future work is development of more realistic models of the state
evolution and the measurements: mixture of radionuclides,
extended set of uncertain variables, assumption ground-shine dose
etc.



Part II. - Application of DA in
late phase



Late phase - problem formulation

I The radioactive plume moving over terrain leaves a trace due
to the deposition processes (dry and wet deposition)

I The deposited materials cause irradiation via groundshine and
ingestion (radionuclides migrate via root system of plants into
edible parts and causes internal irradiation to people and
livestock)

I The knowledge of groundshine evolution is important in
planning of long–term countermeasures

I We focus on 137Cs (half–time of decay 30 years, detrimental
long–term effect on health of population)

I Temporal distribution of spatially localized radionuclides is
modeled by the means of numerical models

I Modeling is supported by measurements from mobile groups
or from airborne γ spectrometry



Late phase - objectives of DA

We have got

I Parametrized model of time evolution of contamination on a
computational grid - vector dt , some of its parameters θ ∈ Θ
are treated as random

I Measurements of γ-dose rate at time t – vector yt

We want to

I Spatial localization of the deposited material

I Estimate the state xt = [dt ,θt ]T from historical
measurements y1:t

I Use posterior distribution p(xt |y1:t) to predict future evolution
of the radiation situation p(xt+k |y1:t)



Ground exposure model

SD(k , t) = SD(k, t = 0) · R(t) · E (t) (20)

R(t) = exp(− ln 2 · t

Ty
) (21)

E (t) = df · exp(− ln 2 · t

Tf
) + ds · exp(− ln 2 · t

Ts
) (22)

D(k , t) = SD(k , t)DF (23)

D(k , t) dose rate on day t after deposition of a radionuclide [Sv s−1]
SD(k , t) deposition of the radionuclide in location k at time t [Bq m−2]
R(t) factor to account for radioactive dacay occuring between the deposition and t
E (t) factor to account for the environmental decay of groundshine
DF dose-rate conversion factor for groundshine [Sv s−1 perBq m−2]

Ty half-life of radioactive decay [s]
df , ds fractions of fast and slow decay terms, respectively (df + ds = 1)
Tf ,Ts half-life for fast and slow components, respectively [s]



Modeling in the late phase



State space formulation

dt - column vector of SD(k, t) ∀k ∈ K , where K is set of all the
spatial locations on our computational grid

dt =
E (t)R(t)

E (t − 1)R(t − 1)
dt−1 (24)

dt = Mtdt−1, where M = E(t)R(t)
E(t−1)R(t−1) I

⇒ vector dt can be evolved by a linear model as a Markovian
process

Let dTRUE
t is the true unobserved state:

dTRUE
t = Mtd

TRUE
t + ξt , where ξt ∼ N (0,Qt)

yt = Htd
TRUE
t + εt , where εt ∼ N (0,Rt)



Kalman filter

If the initial state dTRUE
0 , and the noise vectors ξt and εt are all

assumed to be mutually independent, we can use the Kalman filter
to do the assimilation.

df
t ≡ dt|t−1, Pf

t ≡ Pt|t−1 - forecast
da

t ≡ dt|t , Pa
t ≡ Pt|t - analysis

df
t = Mtd

a
t−1 (25)

Pf
t = MtP

a
t−1MT

t + Qt (26)

Kt = Pf
t HT [HPf

t HT + Rt ]−1 (27)

da
t = df

t + Kt(yt −Hdf
t ) (28)

Pa
t = (I−KtH)Pf

t (I−KtH)T +KtRtK
T
t (Pa

t = (I−KtH)Pf
t ) (29)

H - observation operator, cov. mats. Qt and Rt must be known!!!



How to estimate model error?

If the model error covariance matrix in not known (our case), we
can:

1. Neglect the model error and treat the model as perfect - this
leads to UNDERESTIMATION of the model error and thus
discrimination of the information provided by measurements

Pf
t = MtP

a
t−1MT

t + Qt → Pf
t = MtP

a
t−1MT

t

2. In case of multiple models being available we can estimate the
error somehow (e.g. use Bayesian model averaging)

3. Use KF and a parametrized form of model error covariance
matrix and estimate its parameters from measurements

4. Use Ensemble Kalman filter (EnKF)

5. . . .



Ensemble KF

ensemble: df
t(1),d

f
t(2), . . . ,d

f
t(M)

df
t(k) = Mda

t−1(k) (30)

Pf ≈ 1

M − 1

M∑
k=1

(df
t(k) − d̄

f
t )(df

t(k) − d̄
f
t )T , d̄

f
t =

1

M

M∑
k=1

df
t(k)

(31)
Kt = Pf

t HT [HPf
t HT + Rt ]−1 (32)

Random perturbations are added to the observations to obtain
observations yt(1), yt(2), . . . , yt(M) for each independent cycle

da
t(k) = df

t(k) + Kt(yt(k) −Hdf
t(k)) (33)

It has been proven that an observational ensemble is required for update

otherwise Pa
t = (I−KtH)Pf

t is not satisfied

Alternatives: Ensemble Square Root KF (avoids measurements perturbation),

Local Ensemble Transform KF, . . .



Inflation factor

Ensemble variance can be still underestimated because of the
sampling errors and insufficient number of ensemble members. The
inflation factor is used to replace ensemble members according to:

∀k ∈ M : dt(k) = ρ(dt(k) − d̄
f
t ) + d̄

f
t ,

where ρ tunes the magnitude of inflation



Formulation of assimilation scenario

I We want to estimate joint pdf of the state xt = [dt , ds , ρ]
comprised of the deposition vector dt (groundshine dose),
environmental decay parameter ds and the inflation factor ρ

I We exploit the fact that dt can be treated as linear-Gaussian
given the model parameter dst and inflation factor ρt and thus
can be marginalized out of the state xt

p(xt |y1:t) = p(dt , ds , ρ|y1:t) = p(dt |ds , ρ, y1:t)p(ds , ρ|y1:t) (34)

p(dt , ds , ρ|y1:t)︸ ︷︷ ︸
MPF

= p(dt |ds , ρ, y1:t)︸ ︷︷ ︸
EnKF

p(ds , ρ|y1:t)︸ ︷︷ ︸
PF

(35)



How to estimate parameters θ = (ds , ρ)?

The observations represent the only source of information about
forecast error. When the measurements are available, we can
evaluate observed–minus–forecasted residuals:

vt = yt −Ht d̄
f
t (36)

E [vtv
T
t ] = HtP

f
t HT

t + Rt = St (37)

I Parametrization of model error by θt implies parametrization
of the residual error St = St(θt)



Estimation of model error covariance

I We assume vt ∼ N(0,St(θt))

I We want to assign weights to all θt according to available
observations in each time step

The weights are given by the likelihood function:

p(vt |θt) = (2π)−
n
2 (det St)−

1
2 exp

[
−1

2
(vT

t S−1
t vt)

]
(38)

Maximizing (38) is equivalent to maximizing f (θt) - the logarithm
of (38)

f (θt) = − log det St −
1

2
(vT

t S−1
t vt) (39)

For given θt , let S(θt) = GGT and s = G−1v, where G is lower triangular
Cholesky factor of S:

f (θt) = − log
n∏

i=1

g 2
ii − ||s||22



Details of assimilation scenario

I Computational grid is a subset of polar grid, total number of
analyzed points is 520

I Measurements comprise a rectangular grid with the grid step
1.5km, total number of measurement locations is 136

I Time step is 30 days

I Observation operator is a nearest neighbor interpolation
operator

I The value of ds used for simulation of measurements was set
to 0.56

I Each EnKF attached to a particle has 30 members and the
total number of particles is 50 ⇒ we run 50 EnKFs for
different combinations of (ds , ρ) and evaluate its weights upon
agreement with measurements



Simulation of measurements

I Simulated measurements are sampled from a twin model

yt = Hxt + εt ; εt ∼ N(0,Rt)

Rt = diag(εt;1, εt;2, . . . , εt;p)

εt;i = CHixt + K

xt = Mtxt−1

I C is the coefficient of proportionality and K is the offset term
simulating background radiation

I Measurements are assumed mutually independent



Twin model used for simulation of measurements



Selection of the prior ensemble

Initial uncertainty must be embodied into the prior distribution
given by the ensemble - background field

I Spatial localization of the ensemble members should be in
accordance with the physical reality

I In the variability of the prior ensemble should be embodied all
the uncertainty regarding the release scenario (wind speed and
direction, magnitude of release etc.)



Selection of the prior ensemble

I The initial condition in the late phase are given by the
radiation situation on terrain at the end of the early phase ⇒
we can employ atmospheric dispersion model to determine
initial conditions for the late phase

I Parameters of the atmospheric dispersion model

ADM1 – intenzity of release
ADM2 – horizontal dispersion
ADM3 – horizontal fluctuation of wind dir.
ADM4 – dry deposition of elem.
ADM5 – dry depozition of aero.
ADM6 – elution of elem. iodine
ADM7 – elution of aero.
ADM8 – advection speed of plume
ADM9 – wind profile
ADM10 – vertical dispersion
ADM11 – mixing layer height
ADM12 – heat flux
ADM13 – precipitation intensity



Selection of the prior ensemble



Selection of the prior ensemble

I In the variability of the prior pre-ensemble is embodied all the
uncertainty regarding the release scenario (wind speed and
direction, magnitude of release etc.)

I Twin model is not included in the prior pre-ensemble

I From the initial pre-ensemble of size 5000 we select members
which are in best accordance with the measurements in time
t = 0

I This performs spatial localization of the release given and
accounts for the uncertainty in the parameters of the release
scenario



Selection of the prior ensemble

Weights of pre-ensemble members



Selection of the prior ensemble



Late phase - numerical experiment
Weights f (θt) = − log det St − 1

2(vT
t S−1

t vt) of all particle filter
members in all time steps. Each single line denotes one Ensemble
KF.



Late phase - numerical experiment



Late phase - numerical experiment



Late phase - numerical experiment



Late phase - numerical experiment



Late phase - numerical experiment



Late phase - numerical experiment



Late phase - numerical experiment



Late phase - numerical experiment



Late phase - numerical experiment



Late phase - numerical experiment



Late phase - numerical experiment



Late phase - numerical experiment



Late phase - numerical experiment



Thank you


