

Rozpoznávání textu ve fotografiích a videu

Ing. Lukáš Neumann Prof. Dr. Ing. Jiří Matas

Problem Introduction

Classical formulation

- Input:
- Output:

Digital image (BMP, JPG, PNG) / video (AVI)

Set of words in the image word = horizontal rectangular bounding box + text content

Problem Introduction

Our extended formulation

- Input:
- Output:

Digital image (BMP, JPG, PNG) / video (AVI)

- Set of displays in the image display = ordered set of words
- word = straight/curved baseline with letter height+ text content

Problem Introduction

Real scene image

Recognition rate ~54% [2]

- Text localization
- Varying background
- Low text density, irregular layout
- Shadows, reflections, occlusions, perspective distortion, ...
- Many different fonts

Printed documents (OCR)

Recognition rate >99% [1]

Lectu	re 1
Bayesia	n statistical decision making
1.1 Introd	fuction to the analysis of the Bayesian task
The Bayesian matterical par- imers, forced in- most importa- generally lace of dore he saws foot automatic in only Albone Senerone was with a pareous with a pareous with a pareous with a pareous with a pareous them is conse- maining, being to which can and A recommand- value of a ma- maining lastic with a farmer in in the later in	these balances in the solution grade solution with a lensel in the solution of
1.2 Form	elation of the Bayesian task
Let an object observable as parameter 2 parameter. T will be anned	be described by two parameters x and k . The first parameter is the first parameter of the second is thefau, i.e., numerisable in distribution. The will be called a feature of an edge to a electrostice or observables to feature x assumes a value from a set X . The record parameter is notice for a soft of the object or a holder parameter. Let us denote by the
	7

- High-contrast solid background
- High text density, structured text
- Only rotation and brightness adjustment

Text Localization

- Can be computationally very expensive, generally in an image of N pixels generally any of the 2^N subsets can correspond to text
- Two different approaches widely used in the literature
 - Sliding Window based methods
 - Connected–Component (CC) based methods

Sliding Window methods

- Slide a window (of different sizes) across the image and let a classifier decide for each position whether the window contains the desired object (in our case either a character or a whole word)
- Successfully applied in many detection tasks (faces, pedestrians,...) for real-time detection
- <u>BUT</u> for text detection, there are much more window parameters to consider (aspect, skew, rotation) which makes such methods very slow (between 10⁶ and 10⁸ windows to classify for each image)

Connected-Component methods

- Recently more popular approach where individual characters are localized as connected components (CCs) based on local properties – color, intensity, stability (MSER), stroke width (SWT), "characterness" (CSER)
- Very fast because number of CCs is linear in the number of pixels and characters of all scales and orientations can be detected in a single pass
- <u>BUT</u> the assumption that a character is a connected component is very brittle and prone to noise – a change of intensity of a single pixel can disconnect a perfectly "nice" character, causing its disposal as clutter (now there are two connected components where neither of them look like a character)

Method Description Stages Overview

ER detection Character and non-character classification Text line formation formalization Character recognition

Method Description Extremal Region

- Let image I be a mapping I: $Z^2 \rightarrow S$
- ▶ Let S be a totally ordered set, e.g. <0, 255>
- Let A be an adjacency relation (e.g. 4-neigbourhood)
- Region Q is a contiguous subset w.r.t. A
- (Outer) Region Boundary δQ is set of pixels adjacent but not belonging to Q
- Extremal Region is a region where there exists a threshold θ that separates the region and its boundary

 $\exists \theta : \forall p \in Q, \forall q \in Q : I(p) < \theta \le I(q)$

Method Description ER Detection

Input image (PNG, JPEG, BMP)

Extremal regions with threshold t (t=50, 100, 150, 200)

Method Description ER Inclusion

Method Description ER Detection

- p(r|character) estimated at each threshold for each region
- Only regions corresponding to local maxima selected by the detector
- Incrementally computed descriptors used for classification [3]
 - Aspect ratio
 - Compactness
 - Number of holes
 - Horizontal crossings
- Trained AdaBoost classifier with decision trees calibrated to output probabilities
- Real-time performance (300ms on an 800x600px image)

3. J. Matas and K. Zimmermann. A new class of learnable detectors for categorisation. In Image Analysis, volume 3540 of LNCS, pages 541-550. 2005.

ER Detection

Region

Classification

Line

Formation

Geometrical Normalization

Character Recognition

Method Description Incrementally Computed Descriptors

Horizontal Crossings Examples

Method Description Robustness to blur, noise and low contrast

Examples from Street view dataset. All "false positives" in the images are caused by embedded watermarks

Method Description Multiple projections (channels)

- Multiple projections can be used
- Trade-off between recall and speed (although can be easily parallelized)
- Standard channels (R, G, B, H, S, I) of RGB / HSI color space
- 85,6% characters detected in the Intensity channel, combining all channels increases the recall to 94,8%

Source Image

Intensity Channel

Red Channel

Method Description Multiple projections (channels)

- Gradient projections can be used \rightarrow edges induce ERs
- Intensity gradient projection ∇ appears to be orthogonal to standard channels (combination of Intensity, Hue and ∇ yields 93,7% recall, only 1% lower compared to all 6 standard channels combined)

Source Image

Intensity projection (no threshold for letters "OW")

Intensity gradient Projection ∇

Detected ERs in Intensity gradient projection

Region Classification

feedback loops

17/29

ER Detection

Region

- All neighboring region triplets exhaustively enumerated
- Text line typographical parameters (top line, middle, line, base line, bottom line) estimated by RANSAC
- Invalid triplets disregarded

Line formation

- Triplets are clustered by agglomerative grouping into text lines
- Conflicting text lines removed (by preference for longer text in given direction)
- Feedback loop to revisit initial region classification

Proceed with caution Height when raised 115mm (4 2)

Final stage of agglomerative grouping

Conflicting text lines removed

ER Detection Region Classification Line Formation Geometrical Normalization Character Recognition

Geometrical Normalization

Fitting top and bottom line to find horizontal

Creating inverse projection matrix

Input image

vanishing point

Detected text area

Top and bottom

Normalized text area

Character Recognition

- Each region is normalized to a 20x20px matrix (while preserving aspect ratio)
- Chain code is generated on the region boundary
- Chain code direction bitmaps created for each direction (smoothed by Gaussian blur)

Character Recognition

- Approximate Nearest Neighbor classifier (namely FLANN) assigns (several) character labels to each region by finding K neighbors
- Recognition confidence given by ratio of equal labels in K neighbors
- Trained using synthetic data (Windows fonts)

0 1 2 3 4 5 6 7 8 9 () A B C D E F G H I J K L M N O P Q R S T U V W X Y Z a b c d e f g h i j k l m n o p q r s t u v w x y z

0123456789() ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz

0 1 2 3 4 5 6 7 8 9 () A B C D E F G H I J K L M N O P Q R S T U V W X Y Z a b c d e f g h i j k l m n o p q r s t u v w x y z

Character Recognition

- Multiple segmentations & label hypotheses for text line
- Cost function combines unary (OCR confidence) and pair-wise terms (threshold overlap, character pair frequency from a language model)
- Lowest cost found by Dynamic Programming
- Optimal weight setting / normalization still an open problem

Gaussian Scale Space

Combining multiple segmentations

Gaussian Scale Space

Characters formed of multiple small regions

Method Description Optimal sequence selection

3.9 0.75 Accommodation 3.6 5.8 N 4.2 O 0.27 0.065 0.32 3.2 3.6 0.96 0.048 0.32 0.3 5.8 a 4.2 C 0.0 0.31 0.31 4.1 0.73 0.3 3.4 0.04 0.63 0.7 d 0.56 4.2 5.9 A 0.3 0.88 0.56 0.66 5.5 O 0.034 3.2 5.2 C 0.82 5.5 2.8 3.3 0 0.27 5.8 c1 3.9 0.0 5.1 C 0.031 0.3 0.54 5.8 M 3.2 410 3.B 3.9 \Box 0.34 3.3 4.1 C 0.3 5.6 m 5.3 O

Optimal Sequence Selection 🧟 🖻

- The final region sequence of each text line is selected as an optimal path in the graph, maximizing the total score
- Unary terms
 - Text line positioning (prefers regions which "sit nicely" in the text line)
 - Character recognition confidence
- Binary terms (regions pair compatibility score)
 - Threshold interval overlap (prefers that neighboring regions have similar threshold)
 - Language model transition probability (2nd order character model)

Sample Results ICDAR 2011 Dataset

Osborne Garages AKES Campus Shop

ROUTE

Sample Results ICDAR 2011 Dataset

SALOON

Sample Results

Street View Dataset

KFC	TADA
131	RESTAURANT

LIQUID AGENCY

m p

Limitations Straight base line

Limitations At least 3 characters in a text line

Sample Applications

Automatic Translator

Photos taken by standard camera, downloaded from *http://www.flickr.com* and translated using *http://translate.google.com*; trained using synthetic font

DANGER FORTS COURANTS BAIGNADE TRAVERSEE INTERDITE NEBEZPEČÍ Silný Proudy KOUPALIŠTĚ PŘECHOD ZAKÁZÁN

ВНИМАНИЕ Т В ЗОНЕ ПЕШЕХОДНОГО ТОННЕЛЯ ВЕДЕТСЯ КРУГЛОСУТОЧНОЕ ВИДЕОНАБЛЮДЕНИЕ С ЗАПИСЬЮ UPOZORNĚNÍ T ZÓNA Pěší tunely Nonstop Video pozorování S záznam

Sample Applications Searching in image databases

Google Street View Application

Input image

Sample Applications

Assistant to visually impaired

Photos taken using standard mobile phone (5Mpix camera)

Tamiflu 75 mg tvrde tobolky Oseltamivirurm

> TWININGS EARL GREY **rfA BA CS**

Achieved Results

- State-of-the-art results on most cited datasets (Chars74k, ICDAR 2011)
- Real-time processing
- Publications
 - Neumann L., Matas J.: Scene Text Localization and Recognition with Oriented Stroke Detection, IEEE International Conference on Computer Vision (ICCV 2013), 2013, Sydney, Australia
 - Neumann L., Matas J.: On Combining Multiple Segmentations in Scene Text Recognition, ICDAR 2013 (Washington D.C., USA)
 [Best Student Paper Award]
 - Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012 (Providence, Rhode Island, USA)

LIVE DEMO