
USING THE AC4FT-MINER PROCEDURE IN THE MEDICAL DOMAIN

Viktor Nekvapil

About the author

- VŠE: IT 4IQ, 2. semestr
- Bachelor thesis:
 Using the Ac4ft-Miner
 procedure in the medical
 domain

Published

Viktor Nelvapil

Data Mining in the Medical Domain Using the Ac4ft-Miner Procedure

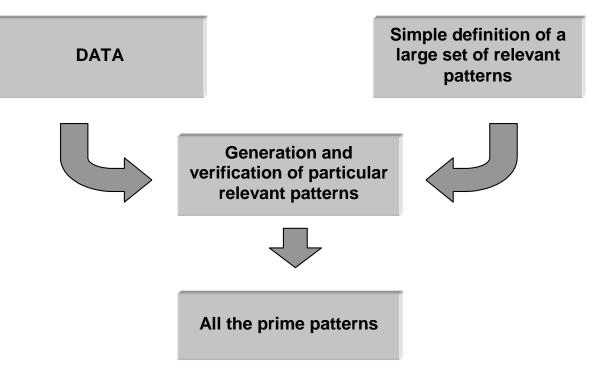
About the Ac4ft-Miner

- 3
- Mines for rules that express which actions should be performed to improve the defined state
- Newest procedure of the LISp-Miner System
- Authors: Doc. RNDr. Jan Rauch, CSc., Ing. Milan Šimůnek, Ph.D.
- Implementation of the GUHA method
- Mines for G-action rules
- Expressed by two 4ft-association rules
- Inspired by action rules according to [Ras,Wieczorkowska, 2000]

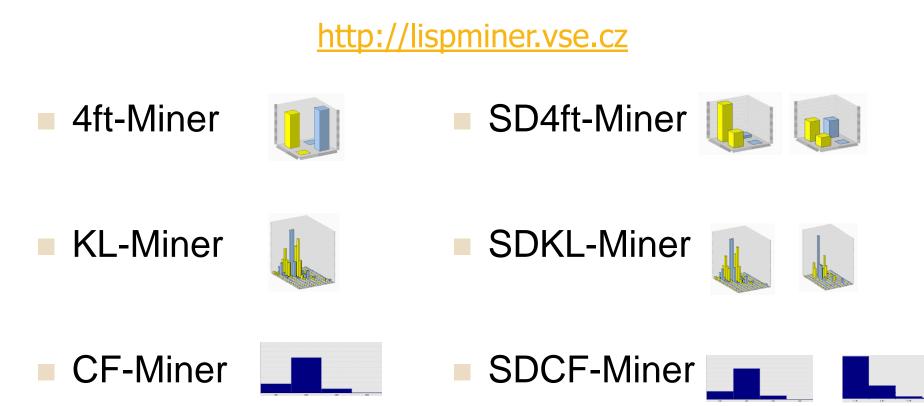
Contents

1. GUHA method and LISp-Miner

- 2.4ft-Miner
- 3. Action rules
- 4. G-action rules
- 5. Input and output in Ac4ft-Miner
- 6. Case study
- 7. Conclusions


Contents

1. GUHA method and LISp-Miner


- 2.4ft-Miner
- 3. Action rules
- 4. G-action rules
- 5. Input and output in Ac4ft-Miner
- 6. Case study
- 7. Conclusions

GUHA Method

- Offers all interesting patterns true in given data
- Method of exploratory data analysis
- Implemented by GUHA procedures

LISp-Miner, 7 GUHA procedures

Ac4ft-Miner

Source: [Rauch, Šimůnek, c2011]

Data representation in LISp-Miner

8

 \square One database table formes data matrix \mathcal{M}

 \Box Data matrix \mathcal{M} \blacksquare Boolean attributes(literals)

object i.e. row	columns of \mathcal{M} i.e. attributes				examples of literals		
of \mathcal{M}	A_1	A_2	•••	A_{50}	$A_1(1,2)$	$\neg A_{50}(6)$	
01	1	4		4	T	T	
O_2	4	3		6	F	F	
03	2	6	•••	7	T	T	
:	•	:	•.	•	•	:	
O_n	3	1	•	36	$\overset{\cdot}{F}$	\dot{T}	

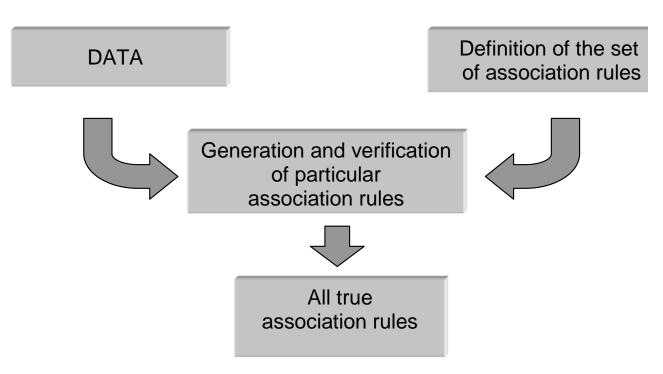
Data representation in LISp-Miner (example)

Objects	Attributes							
Patient	Sex	Age	Typeof	Success	Genetic	City		
			therapy		predisposition			
1	male	42	none	no	no	Prague		
2	female	61	diet	yes	no	Čáslav		
3	female	24	surgery	no	yes	Čáslav		
4	male	54	medicaments	yes	no	Prague		
632	female	57	medicaments	yes	no	Prague		

9

Objects	Basic Boolean attributes		Derived Boolean attributes				
Patient	Sex (male)	Type of therapy (surgery)	Sex (male)∨ success (yes)	Genetic predisp. (no) ∧ Age (50,60)	Sex (male) ∧ (Type of therapy (diet) ∨ Type of therapy (medicaments)) ∧ ¬Age (50,60)		
1	true	false	true	false	false		
2	false	false	true	false	true		
3	false	true	false	false	false		
4	true	false	true	true	false		
632	false	false	true	true	false		

Contents

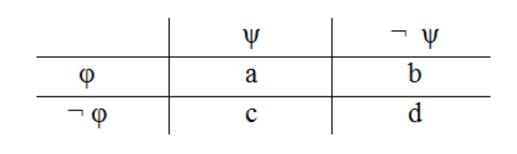

1. GUHA method and LISp-Miner

- 2.4ft-Miner
- 3. Action rules
- 4. G-action rules
- 5. Input and output in Ac4ft-Miner
- 6. Case study
- 7. Conclusions

GUHA method and Association rules – 4ft-Miner

11

Mines for enhanced association rules = not just implication


Source: [Rauch, Šimůnek, c2011]

4ft-Miner procedure

12

φ	≈	Ψ	
---	---	---	--

- φ antecedent
- Ψ succedent
- ≈ 4ft-quantifier

	Attributes				Boolean attributes				
object	A ₁	A_2		A _K	A ₁ (6)	A ₂ (1,4)	$A_2(1,4) \wedge A_K(2,7)$		
0 ₁	6	4		2	1	1	1		
0 ₂	9	3		5	0	0	0		
0 _n	4	1		3	0	1	0		

Bit-string approach to mine association rules

Apriori algorithm is not used

object i.e. row	columns of \mathcal{M} i.e. attributes				examples of literals		
of \mathcal{M}	A_1	A_2	•••	A_{50}	$A_1(1,2)$	$\neg A_{50}(6)$	
01	1	4		4	T	T	
O_2	4	3		6	F	F	
O_3	2	6	•••	7	T	T	
:	:	:	•.	•	•	:	
	. 3	1	•	36	$\cdot F$	\dot{T}	
O_n	3	1	• • •	50	\mathbf{L}^{\dagger}		

Source: [Rauch, Šimůnek, 2005]

Bit-string approach to mine association rules (2)

□ Attribute A_1 with 4 categories (1, 2, 3, 4)

		row		С	ards of cate	gories of 2	4_1	
		of \mathcal{M}	A_1	$A_1[1]$	$A_{1}[2]$	$A_{1}[3]$	$A_{1}[4]$	_
		01	1	1	0	0	0	-
		O_2	4	0	0	0	1	
		03	2	0	1	0	0	
		:	•	•		:	•	
		O_n	3	0	0	1	0	
	bit-v	vise Bool	ean oper	ations	$\mathcal{C}(arphi$,	$\wedge \psi) =$	$\mathcal{C}(arphi)$.	$\dot{\wedge} \mathcal{C}(\psi)$
		À,	$\dot{\lor}$		$\mathcal{C}(arphi)$	$\vee \psi) =$	$: \mathcal{C}(arphi)$	$\dot{ee} \mathcal{C}(\psi)$
($\mathcal{C}(A)$	$_{1}(1,2))$	$= A_1$	$[1] \mathrel{\dot{\vee}} A$	$_{1}[2]$	$\mathcal{C}(\neg \varphi$	() = -	$\dot{\neg} \ \mathcal{C}(\varphi)$

Source: [Rauch, Šimůnek, 2005]

Bit-string approach to mine association rules (3)

4ft-table $4ft(\varphi, \psi, \mathcal{M})$ of φ and ψ on \mathcal{M}

${\cal M}$	ψ	$ eg \psi$
arphi	a	b
$\neg \varphi$	c	d

$$a = Count(\mathcal{C}(\varphi) \land \mathcal{C}(\psi))$$
$$b = Count(\mathcal{C}(\varphi)) - a$$
$$c = Count(\mathcal{C}(\psi)) - a$$
$$d = n - a - b - c$$

$$Count(\xi) =$$

= number of "1" in ξ

Source: [Rauch, Šimůnek, 2005]

4ft-quantifiers

16

		Ψ	$\neg \psi$
φ ≈ ψ	φ	а	b
	¬φ	с	d

$$\varphi \Rightarrow_{p,Base} \psi \qquad \frac{a}{a+b} \ge p \land a \ge Base$$

$$\varphi \Leftrightarrow_{p,Base} \psi \qquad \frac{a}{a+b+c} \ge p \land a \ge Base$$

$$\varphi \equiv_{p,Base} \psi \qquad \frac{a+d}{a+b+c+d} \ge p \land a \ge Base$$

$$\varphi \Rightarrow_{p,Base}^{+} \psi \qquad \frac{a}{a+b} \ge (1+p) \frac{a+c}{a+b+c+d} \land a \ge Base$$

... and many other possibilities

Contents

1. GUHA method and LISp-Miner

- 2. 4ft-Miner
- 3. Action rules
- 4. G-action rules
- 5. Input and output in Ac4ft-Miner
- 6. Case study
- 7. Conclusions

Action rules according to [Ras,Wieczorkowska, 2000]

- suggest a change in behaviour that can bring us an advantage
- Two sets of attributes: stable and flexible

Action rules – support and confidence

R:
$$(A_1 = \omega_1) \land \ldots \land (A_Q = \omega_Q) \land$$

 $(B_1, \alpha_1 \rightarrow \beta_1) \land \ldots \land (B_P, \alpha_P \rightarrow \beta_P) \Rightarrow (D, k_1 \rightarrow k_2)$

- n: the total number of objects in the database
- □ CPL(R): the number of objects matching $(\omega_1, ..., \omega_Q, \alpha_1, ..., \alpha_P, k_1)$
- □ CPR(R): the number of objects matching $(\omega_1, ..., \omega_Q, \beta_1, ..., \beta_P, k_2)$
- □ CVL(R): the number of objects matching $(\omega_1, ..., \omega_Q, \alpha_1, ..., \alpha_P)$
- **CVR(R)**: the number of objects matching $(\omega_1, ..., \omega_Q, \beta_1, ..., \beta_P)$

Action rules - example

20

R: Sex (female) \land Age $\langle 50,60 \rangle \land$ Type of therapy (diet \rightarrow medicaments) \Rightarrow Success (no \rightarrow yes)

□ n = 632

 $\Box \quad CPR(R) = 74$

- There are 632 patients in a database
- $\Box CPL(R) = 42$ (female, $\langle 50; 60 \rangle$, diet, no)
 - (female, <50; 60), medicaments, yes)
- $\Box \quad CVL(R) = 90 \qquad (female, \langle 50; 60 \rangle, diet)$
- CVR(R) = 105

(female, $\langle 50; 60 \rangle$, alet) (female, $\langle 50; 60 \rangle$, medicaments)


□ Sup(R) = LeftSup(R) =
$$\frac{CPL(R)}{n} = \frac{42}{632} = 0.07$$

□ Conf(R) = $\frac{CPL(R)}{CVL(R)} * \frac{CPR(R)}{CVR(R)} = \frac{42}{90} * \frac{74}{105} = 0.33$

Contents

1. GUHA method and LISp-Miner

- 2. 4ft-Miner
- 3. Action rules
- 4. G-action rules
- 5. Input and output in Ac4ft-Miner
- 6. Case study
- 7. Conclusions

GUHA method and G-action rules – Ac4ft-Miner

Source: [Rauch, Šimůnek, 2009]

G-action rules

23

	M	Stab	le		Flex	ible	
		attrik	outes		attril	outes	
	object	A ₁		A_Q	B ₁		B _P
$\varphi_{St} \land \varphi_{Chg} \approx^* \psi_{St} \land \Psi_{Chg}$	0 ₁	6		4	2		9
TSLATE CHY TSLATE CHY	0 ₂	9		8	3		7
	0 _n	4		3	5		6

 ϕ_{St} the stable antecedent (or antecedent stable part)

- Φ_{Chg} the change of antecedent (or antecedent flexible part)
- ψ_{St} the stable succedent (or succedent stable part),
- Ψ_{Chg} the change of succedent (or succedent flexible part) \approx^* Ac4ft-quantifier

G-action rule

24

Ac4ft-quantifiers

 Ψ_I

a_I

 c_I

25

$$\Rightarrow \frac{F > I}{q, B_I, B_F} \qquad \frac{a_F}{a_F + b_F} - \frac{a_I}{a_I + b_I} \ge q \land a_I \ge B_I \land a_F \ge B_F$$
$$\Rightarrow \frac{I > F}{q, B_I, B_F} \qquad \frac{a_I}{a_I + b_I} - \frac{a_F}{a_F + b_F} \ge q \land a_I \ge B_I \land a_F \ge B_F,$$

$$B_I, B_F \qquad \frac{a_I}{a_I + b_I} - \frac{a_F}{a_F + b_F} \ge q \land a_I \ge B_I \land a_F \ge B_F,$$

$$\left|\frac{a_I}{a_I + b_I} - \frac{a_F}{a_F + b_F}\right| \ge q \land a_I \ge B_I \land a_F \ge B_F$$

... and many other possibilities ϕ_I

 $\neg \phi_I$

 $\Rightarrow \frac{I \lneq F}{q, B_I, B_F}$

$\neg \psi_I$		Ψ_F	$\neg \psi_F$
b _I	ϕ_F	a_F	\mathbf{b}_F
\mathbf{d}_I	$\neg \phi_F$	c _F	\mathbf{d}_F

G-action rule – example

26

R: Sex (female) \land Age $\langle 50; 60 \rangle \land$ Type of therapy (diet \rightarrow medicaments) $\Rightarrow F > I$ $_{0.386, 17, 25}$ Success (yes)

Initial rule

R_/: Sex (female) ∧ Age (50; 60) ∧ Type of therapy (diet) $\Rightarrow_{0.607,17}$ Success (yes)

	Success (yes)	¬ Success (yes)
Sex (female) \wedge Age \langle 50; 60) \wedge Type of therapy (diet)	17	11
¬ (Sex (female) \land Age \langle 50; 60) \land Type of therapy (diet))	205	398

$$p = \frac{17}{17+11} = 0.607 \qquad B = 17$$

G-action rule – example (2)

R: Sex (female) \land Age $\langle 50; 60 \rangle \land$ Type of therapy (diet \rightarrow medicaments) $\Rightarrow F > I$ _{0.386, 17, 25} Success (yes)

Final rule

 $\begin{array}{l} \mathsf{R}_{\textit{F:}} \, \mathsf{Sex} \, (\mathsf{female}) \land \mathsf{Age} \, \langle 50; \, 60 \rangle \land \mathsf{Type} \, \mathsf{of} \, \mathsf{therapy} \, (\mathsf{medicaments}) \\ \Rightarrow_{0.893,25} \, \mathsf{Success} \, (\mathsf{yes}) \end{array}$

	Success (yes)	¬ Success (yes)
Sex (female) ∧ Age (50; 60) ∧ Type of therapy (medicaments)	25	3
¬ (Sex (female) ∧ Age (50; 60) ∧ Type of therapy (medicaments))	267	382
$p = \frac{25}{25+3} = 0.893 B = 25$		

G-action rule - interpretation

R: Sex (female) \land Age $\langle 50; 60 \rangle \land$ Type of therapy (diet \rightarrow medicaments) $\Rightarrow \frac{F > I}{0.386, 17, 25}$ Success (yes)

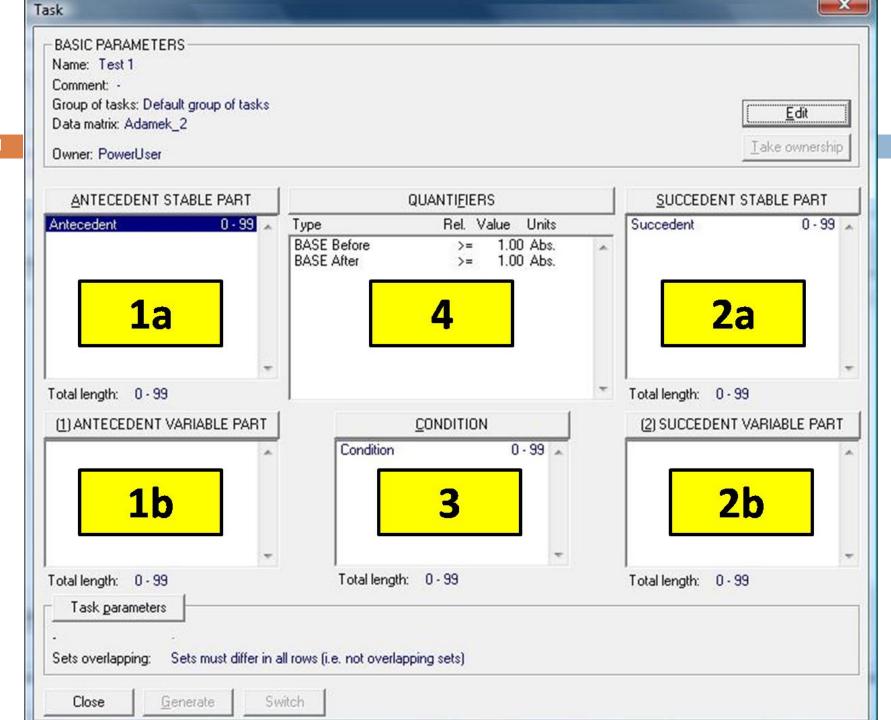
 $q = p_F - p_I = 0.893 - 0.607 = 0.386$

"If the therapy is changed from diet to medicaments among female patients between the ages of 50 and 60, the probability of successful treatment increases by 38.6 percentage points."

Contents

1. GUHA method and LISp-Miner

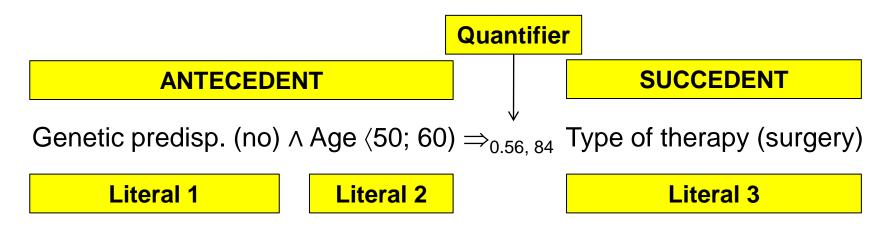
- 2. 4ft-Miner
- 3. Action rules
- 4. G-action rules


5. Input and output in Ac4ft-Miner

6. Case study

7. Conclusions

Input in Ac4ft-Miner


- Data matrix
- Definition of a set of relevant rules
 - 1. Entering a set of relevant antecedents
 - a. Antecedent stable part
 - b. Antecedent variable part
 - 2. Entering a set of relevant succedents
 - a. Succedent stable part
 - b. Succedent variable part
 - 3. Entering a set of relevant conditions
 - 4. Entering an Ac4ft-quantifier

Composition of a rule

32

- Antecedent or succedent or condition = cedent
- Cedent = conjunction or disjunction of literals
- Literal = basic Boolean attribute or negation of basic Boolean attribute

Entering a set of relevant literals

33

For each attribute we should define:

- 1. Minimum and maximum length of a literal.
 - Number of categories each literal has
 - Type of therapy (diet, medicaments)....length = 2
- The type of coefficient subsets, intervals, cyclical intervals, left cuts, right cuts, cuts, one particular value
- 3. One of the following options:
 - Generate only positive literals no literals with negation are created
 - Generate only negative literals only literals with negation are created
 - Generate both positive and negative literals

Type of coefficients of literals

- Subsets: Type of therapy {diet, medicaments, surgery, none}, length: min 1, max 2
 - Tot(diet), Tot(medicaments), Tot(surgery), Tot(none), Tot(diet, medicaments), Tot (diet, surgery), Tot (diet, none), Tot (medicaments, surgery), Tot (medicaments, none), Tot(surgery, none)
- Intervals: Age {(20; 30), (30; 40), (40; 50), (50; 60), (60; 70)}, length: min 2, max 3
 - Age [(20; 30), (30; 40)], Age [(30; 40), (40; 50)], Age [(40; 50), (50; 60)], Age [(50; 60), (60; 70)], Age [(20; 30), (30; 40), (40; 50)], Age [(30; 40), (40; 50)], Age [(30; 40), (40; 50)], Age [(40; 50), (50; 60)], (50; 60)]
 - Age (20; 40), Age (30; 50), Age (40; 60), Age (50; 70), Age (20; 50), Age (30; 60), Age (40; 70)
- One particular value: Type of therapy {diet, medicaments, surgery, none} containing only surgery:
 - Type of therapy (surgery)
- Cyclical intervals, Left cuts, Right cuts, Cuts

Output in Ac4ft-Miner

M Adamek.LMMB.mdb MB - LISp-Miner Action4ft-Result module
Data <u>s</u> ource <u>T</u> ask description <u>H</u> ypotheses Help
Task: Test 3 - Action4ft-Task Comment: Show all hypotheses C Show hypotheses just from group:
Group of tasks: Default group of tasks Data matrix: Adamek_Tretina Task run
Start: 3.10.2009 16:35:19 Total time: 0h 0m 2s
Number of verifications: 23760 Number of hypotheses: 8 Add group Del group Edit group
Actual group of hypotheses: All hypothesis
Number of hypotheses in the group: 8 Number of actually shown hypotheses: 8 Nr. Id Sum B:Conf_A:Conf_Hypothesis Id Id Sum B:Conf_A:Conf_Hypotheses Id
1 20 1.000 0.500 Rod(rozvedený) & PsychZat(mírná, střední) : (Koureni(kuřák) -> Koureni(exkuřák, nekuřák)] +++ Chol([5:5.5)(6:6.5)] 2 8 20 1.000 0.500 Rod(rozvedený) & PsychZat(mírná, střední) : (Koureni(kuřák), příležitostný kuřák) -> Koureni(exkuřák, nekuřák)] +++ Chol([5:5.5)(6:6.5)] 3 2 30 0.917 0.519 Rod(rozvedený) : (Koureni(kuřák) -> Koureni(nekuřák)] +++ Chol([5:5.5)(6:6.5)] 4 3 30 0.917 0.519 Rod(rozvedený) : (Koureni(kuřák) -> Koureni(nekuřák)) +++ Chol([5:5.5)(6:6.5>) 5 30 0.917 0.519 Rod(rozvedený) : (Koureni(kuřák, příležitostný kuřák) +> Koureni(nekuřák)) +++ Chol([5:5.5)(6:6.5>) 5 30 0.917 0.519 Rod(rozvedený) : (Koureni(kuřák, příležitostný kuřák) -> Koureni(nekuřák)) +++ Chol([5:5.5)(6:6.5>) 6 30 0.917 0.519 Rod(rozvedený) : (Koureni(kuřák, příležitostný kuřák) -> Koureni(nekuřák)) +++ Chol([5:5.5)(6:6.5>) 7 44
Detail Go to ID Copy Remove Filter Sorting Output

Contents

1. GUHA method and LISp-Miner

- 2. 4ft-Miner
- 3. Action rules
- 4. G-action rules

5. Input and output in Ac4ft-Miner

6. Case study

7. Conclusions

Case study

□ Aim

- testing
- formulation of analytical questions
- interpretation (graphics)
- Data
 - Real medical data set ADAMEK
 - Cardiological patients
 - 1395 rows (patients)
 - 37 columns (properties of patients)
- Entering a set of relevant rules rules containing risk factors of atherosclerosis

Risk factors of atherosclerosis

- Sex male
- Age over 45 for the male and 55 for the female
- Positive family case history
- Smoking
- Lack of physical activity
- Diabetes mellitus
- Arterial hypertension blood pressure over 140/90 mm Hg
- Hypercholesterolemia cholesterol over 5 mmol/l
- HDL cholesterol less than 1.1 mmol/l (men), less than 1.3 mmol/l (women)
- LDL cholesterol over 3 mmol/l
- Hypertriglyceridemia triglycerides over 2 mmol/l
- Overweight BMI over 25
- Waist circumference over 94 cm with men and over 80 cm with women
- Blood sugar over 6 mmol/l
- Uric acid

Sex, age and positive family case history – stable attributes Other attributes – stable or flexible

Grouping of attributes

Group		Attribute					
No	Abb.	Name	No	Name	Name of column in database	Туре	Categories
	OSB	Personal	1	Age	Vek	R	
1	(3)	data	2	Sex	Pohl	Ν	woman / man
	(5)	uata	3	Outpatient department	М	Ν	Čáslav / Prague
			4	Marital status	Rod	Ν	divorced / single / widow(er)/ married
			5	Lives alone	Sam	Ν	yes / no
2	SCA (5)		6	Education	Vzd	0	primary / secondary / university
			7	Mental load	PsychZat	0	none / low / medium / high
			8	Smoking	Koureni	Ν	Non-smoker/ ex-smoker/ occasional smoker / smoker
3	AKT (2)	Activities	9	Workload	FyzZat	Ν	unemployed / none/ low / medium / high
	(2)		10	Physical activity	TelAkt	0	none / low / medium / high
			11	Weight	Hmotnost	R	
			12	Height	Vyska	R	
	MRY	Personal	13	Waist circumference	Pas	R	
4	(7)	measureme	14	Hip circumference	Boky	R	
		nts	15	BMI	BMI	R	
			16	WHR	WHR	R	
			2	Sex	Pohl	Ν	woman / man

Grouping of attributes (2)

Group			Attribute				
No	Abb.	Name	No	Name	Name of column in database	Туре	Categories
			17	Hyperlipoproteinemia	Hlp	Ν	yes / no
	RFK		18	Diabetes mellitus	DM	Ν	yes / no
5	(4)	Risk factors	19	Hypertension	HT	Ν	yes / no
	(4)		20	Positive family case history	Ra_f	Ν	yes / no
			21	Breathlessness	Dusnost	0	none / due to activity/ while inactive
6	OBT (5)	Complaints	22	Chest pain	Bolesthrud	0	none / due to activity/ while inactive
			23	Palpitation	Palpitace	Ν	yes / no
			24	Swelling	Otoky	Ν	yes / no
			25	Claudication	Klaudikace	Ν	yes / no
7	KTL	Blood	26	Systolic	ST	R	
· /	(2)	pressure	28	Diastolic	DT	R	
	EKG		29	Pulse rate	TepFrek	R	
8	(3)	EK (†	30	PQ_int	PQ_int	R	
	(5)		31	QRS_int	QRS_int	R	
			32	Total Cholesterol	Chol	R	
9	CHL	Laboratory	33	HDL Cholesterol	HDL	R	
	(4)	Cholesterol	34	LDL Cholesterol	LDL	R	
			35	Triacyglycerols	Tgl	R	
10	GKM	Laboratory	36	Blood sugar	Glyk	R	
10	(2)	GKM	37	Uric acid	Kmoc	R	

Three-level formulation of analytical questions

- 1. "Intuitive formulation"
- 2. "More formal formulation"
- 3. Input in Ac4ft-Miner

Antecedent stable part – green Antecedent variable part – red Succedent stable part – blue Condition – orange

"Intuitive formulation"

- 42
- For which properties of patients (group 1) does the change of other properties (group 2) cause a change in the incidence of other properties (group 3)?
- For which personal measurements does a change of activities cause a change in the incidence of risk factors?

"More formal formulation"

For which combinations of properties from group 1 does the relative frequency of combinations of properties from group 3 change by at least q by changing the combinations of properties from group 2.

"More formal formulation" (2)

For which combinations of BMI and/or Waist circumference and/or Hip circumference does the relative frequency of Hyperlipoproteinemy and/or Hypertension change by at least 0.3 by changing Physical activity at work and/or Physical activity (and the number of objects satisfying both initial antecedent and initial succedent is at least 30 and the number of objects satisfying both final antecedent and final succedent is at least 30).

"Formal definition"

- 45
- The formal definition consists of the definition of the antecedent stable part (group 1), the antecedent variable part (group 2), the succedent stable part (group 3), and the definition of quantifier - the quantifier Founded implication $\Rightarrow_{q,B_I,B_F}^{I \leq F}$, which is defined as

$$\left|\frac{a_I}{a_I + b_I} - \frac{a_F}{a_F + b_F}\right| \ge q \land a_I \ge B_I \land a_F \ge B_F$$

where $0 < q \le 1$, > 0 and > 0.

Analytical tasks

46

Analytical	Main idea
task	
1	Too strict formal definition
2	A detailed demonstration of the rule founded and selected
3	Use of condition, all the rules presented in detail, various ways of presenting rules
4	Loose definition but no rules found
5	Loose definition, many insignificant rules found, long duration of the procedure

Analytical tasks

47

Analytical	Main idea
task	
1	Too strict formal definition
2	A detailed demonstration of the rule founded and selected
3	Use of condition, all the rules presented in detail, various ways of presenting rules
4	Loose definition but no rules found
5	Loose definition, many insignificant rules found, long duration of the procedure

ANALYTICAL QUESTION 1

Intuitive formulation

For which personal measurements does a change of activities cause a change in the incidence of risk factors?

More formal formulation

For which combinations of BMI and/or Waist circumference and/or Hip circumference does the relative frequency of Hyperlipoproteinemy and/or Diabetes mellitus and/or Hypertension and/or Positive family case history change by at least 0.4 by changing Physical activity at work and/or Physical activity (and the number of objects satisfying both initial antecedent and initial succedent is at least 40 and the number of objects satisfying both final antecedent and final succedent is at least 40.

INPUT

	Antece	dent	Succedent			
Stable part	BMI (int. per 1, int. max length 6) Waist (int. per 5 cm, int. max length 3) Hip (int. per 5cm, int. max length 3)		Hyperlipoproteinemy (subset max length 1) Diabetes mellitus (subset max length 1) Hypertension (subset max length 1) Positive family case history (subset max length 1)			
Variable part	Physical activity at length 1) Physical activity (in					
Quantifier	$\Rightarrow_{q,B_I,B_F}^{I \ \leq F}$	$\left \frac{a_I}{a_I+b_I}-\frac{a_F}{a_F+b_F}\right \ge 0.4 \land a_I \ge 40 \land a_F \ge 40$				

Output analytical task 1

49						
OUTPUT						
Number of hypotheses (rules) found: 0	Number of hypotheses (rules) found:0Number of verifications:18,951,486					
Duration at PC with 2 GHz and 895 MB RAM	Duration at PC with 2 GHz and 895 MB RAM 0h 34m 45s					
Interpretation	•					
There are no combinations of BMI and/or Waist circumference and/or Hip circumference for which the relative frequency of Hyperlipoproteinemy and/or Diabetes mellitus and/or Hypertension and/or Positive family case history change by at least 0.4 by changing Physical activity at work and/or Physical activity.						
COMMENT						
Both the absolute difference of the quantifier values, B_I , and also B_F were defined relatively high. This may be due to not finding any rules. It is possible to try to lower q, B_I and B_F and see if it brings any						

results (see Analytical question 2).

Analytical tasks

50

Analytical	Main idea
task	
1	Too strict formal definition
2	A detailed demonstration of the rule founded and selected
3	Use of condition, all the rules presented in detail, various ways of presenting rules
4	Loose definition but no rules found
5	Loose definition, many insignificant rules found, long duration of the procedure

ANALYTICAL QUESTION 2

Intuitive formulation

For which personal measurements causes a change of activities a change in the incidence of risk factors?

More formal formulation

For which combinations of BMI and/or Waist circumference and/or Hip circumference does the relative frequency of Hyperlipoproteinemy and/or Diabetes mellitus and/or Hypertension and/or Positive family case history change by at least 0.3 by changing Physical activity at work and/or Physical activity (and the number of objects satisfying both initial antecedent and initial succedent is at least 30 and the number of objects satisfying both final antecedent and final succedent is at least 30).

INPUT

	Antecedent	Succedent		
Stable part	BMI (int. per 1, int. max length 6) Waist (int. per 5 cm, int. max length 3) Hip (int. per 5 cm, int. max length 3)	Hyperlipoproteinemy (subset max length 1) Diabetes mellitus (subset max length 1) Hypertension (subset max length 1) Positive family case history (subset max length 1)		
Variable part	Physical activity at work (subset max length 1) Physical activity (int. max length 2)			
Quantifier	$\Rightarrow_{q,B_I,B_F}^{I \leq F} \qquad \left \frac{a_I}{a_I + b_I} - \frac{a_I}{a_I + b_I} - \frac{a_I}{a_I + b_I} \right $	$\frac{a_F}{a_F + b_F} \bigg \ge 0.3 \land a_I \ge 30 \land a_F \ge 30$		

OUTPUT					
Number of hypotheses (rules) found: 80	Num	Number of verifications: 46,648,080			
Duration at PC with 2 GHz and 895 MB RAM:	1h 2	1m 54s			
One of the founded rules: Waist(70; 85) \land Hip (95; 110) \land Physical activity at work (low \rightarrow unemployed) \land Physical activity (low, medium					
\rightarrow none, low) \Rightarrow 0.302,43,31 Hypertension (no) Initial rule					
Waist(70; 85) ∧ Hip (95; 110) ∧ Physical activity at work (low) ∧ Physical activity (low, medium) ⇒0.935,43 Hypertension (no)					
		Hypertension (no)	■ Hypertension (no)		
Waist (70; 85) Hip (95; 110) Physical activity at wo (low) Physical activity (low, medium)	ĸ	43	3		
¬ (Waist (70; 85) ∧ Hip (95; 110) ∧ Physical activity at wo (low) ∧ Physical activity (low, medium))		908	441		
Confidence = $\frac{a}{a+b} = \frac{43}{43+3} = 0.935$					
Interpretation of initial rule					
There are 43 patients with waist circumference between 70 and 85 centimetres, hip circumference between 95 and 110 centimetres, with low physical activity at work and low or medium physical activity, who represent 93.5 % of all patients with waist circumference between 70 and 85 centimetres, Hip circumference between 95 and 110 centimetres, with low physical activity at work and low or					

medium physical activity, who do not have hypertension.

Final rule

Waist(70; 85) \land Hip (95; 110) \land Physical activity at work (unemployed) \land Physical activity (none, low) \Rightarrow 0.633,31 Hypertension (no)

	Hypertension (no)	¬ Hypertension (no)		
Waist(70; 85) ^ Hip (95; 110) ^ Physical activity at work (unemployed) ^ Physical activity (none, low)	31	18		
¬ (Waist(70; 85) ∧ Hip (95; 110) ∧ Physical activity at work (unemployed) ∧ Physical activity (none, low))	920	426		
Confidence = $\frac{a}{a+b} = \frac{31}{31+18} = 0.633$				
Interpretation of final rule				
There are 31 patients with waist circumference between 70 and 85 centimetres hip circumference				

There are 31 patients with waist circumference between 70 and 85 centimetres, hip circumference between 95 and 110 centimetres, unemployed, with none or low physical activity, who represent 63.3 % of all patients with waist circumference between 70 and 85 centimetres, hip circumference between 95 and 110 centimetres, unemployed, with none or low physical activity, who do not have hypertension.

Interpretation of the whole action rule

If the physical activity at work is changed from low to unemployed and physical activity from low or medium to none or medium among the patients with waist circumference between 70 and 85 centimetres and hip circumference between 95 and 110 centimetres, the incidence of patients not having hypertension decreases by 30.2 percentage points.

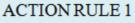
Analytical tasks

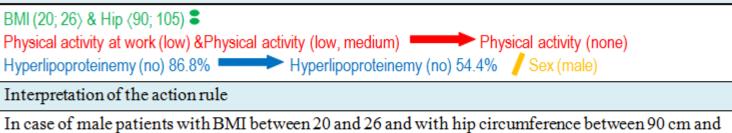
54

Analytical	Main idea
task	
1	Too strict formal definition
2	A detailed demonstration of the rule founded and selected
3	Use of condition, all the rules presented in detail, various ways of
	presenting rules
4	Loose definition but no rules found
5	Loose definition, many insignificant rules found, long duration of the
	procedure

Intuitive formulation

For which personal measurements causes a change of activities a change in the incidence of risk factors in male patients?


More formal formulation


In case of male patients, for which combinations of BMI and/or Waist circumference and/or Hip circumference does the relative frequency of Hyperlipoproteinemy and/or Hypertension change by at least 0.3 by changing Physical activity at work and/or Physical activity (and the number of objects satisfying both initial antecedent and initial succedent is at least 30 and the number of objects satisfying both final antecedent is at least 30).

	Antecedent	Succedent		
Stable part	BMI (int. per 1, int. max length 6) Waist (int. per 5 cm, int. max length 3) Hip (int. per 5cm, int. max length 3)	Hyperlipoproteinemy (subset max length 1) Hypertension (subset max length 1)		
Variable part	Physical activity at work (subset max length 1) Physical activity (int. max length 2)			
Condition	Sex (one category-(male))			
Quantifier	$\Rightarrow_{q,B_I,B_F}^{I \ \leq F} \qquad \left \frac{a_I}{a_I + b_I} - \frac{a_F}{a_F + b_I} \right $	$\frac{1}{F} \ge 0.3 \land a_I \ge 30 \land a_F \ge 30$		

Output analytical task 3

OUTPUT			
Number of hypotheses (rules) found:	6	Number of verifications:	598,064
Duration at PC with 2 GHz and 895 MB RAM:		0h 1m 14s	
Note: In this analytical question, different approaches of presenting founded rules are introduced. All the rules founded are presented. The text in orange indicates the condition.			

105 cm, IF we change low physical activity at work and low or medium physical activity TO none physical activity, probability of not having hyperlipoproteinemy decreases FROM 86.8 % TO 54.4 %.

ACT	TON	DT	LE2
AC.	TUN	RU	LEZ

BMI (23; 28) \land Hip (75; 90) \land Physical activity (medium \rightarrow none) $\Rightarrow_{0.311,30,30}$ Hyperlipoproteinemy (no) / Sex (male)

Interpretation of the action rule

In case of male patients with BMI between 23 and 28 and with hip circumference between 75 cm and 90 cm, **IF** we change physical activity **FROM** medium **TO** none, the incidence of not having hyperlipoproteinemy decreases **BY** 31.1 percentage points.

Initial rule

BMI (23; 28) \land Hip (75; 90) \land Physical activity (medium) $\Rightarrow_{0.811,30,30}$ Hyperlipoproteinemy (no) / Sex (male)

	Hyperlipoproteinemy (no)	NOT Hyperlipoproteinemy (no)
BMI (23; 28) ^ Hip (75; 90) ^ Physical activity (medium)	30	7
NOT [BMI (23; 28) ^ Hip (75; 90) ^ Physical activity (medium)]	305	241

Interpretation of initial rule

There are 30 male patients with BMI between 23 and 28, hip circumference between 75 and 90 centimetres with medium physical activity, who represent 81.1 % of all male patients with BMI between 23 and 28, hip circumference between 75 and 90 centimetres with medium physical activity,

Final rule

BMI (23; 28) \land Hip (75; 90) \land Physical activity (none) $\Rightarrow_{0.500, 30}$ Hyperlipoproteinemy (no) / Sex (male)

	Hyperlipoproteinemy (no)	NOT Hyperlipoproteinemy (no)
	20	20

Output analytical task 3, rule 3

ACTION RULE 3

BMI (22; 28) \land Hip (75; 90) \land Physical activity (medium \rightarrow none) $\Rightarrow_{0.300,32,32}$ Hyperlipoproteinemy (no) / Sex (male)

Interpretation of the action rule:

In case of male patients with BMI between 22 and 28 and with hip circumference between 75 cm and 90 cm, IF we change physical activity FROM medium TO none, the incidence of not having hyperlipoproteinemy decreases BY 30 percentage points.

ACTION RULE 4			
	IN PATIENTS WITH		
Antecedent stable part	BMI (20; 26) & Hip (90; 105)		
	WHO ARE		
Condition	Sex (male)		
	IF WE CHANGE		
Ant. variable part - from	Physical activity (none)		
Proposed change	ТО		
Ant .variable part - to	Physical activity at work (low) & Physical activity (low, medium)		
	FOLLOWING PROPERTY		
Succedent stable part	Hyperlipoproteinemy (no)		
	WILL INCREASE IN ITS INCIDENCE BY		
Difference of quantifier values	0.324		
	MULTIPLE 100 PERCENTAGE POINTS		

ACTION RULE 5

BMI (23; 28) \land Hip (75; 90) \land Physical activity (none \rightarrow medium) \Rightarrow 0.311,30,30 Hyperlipoproteinemy (no) / Sex (male)

Interpretation of the action rule:

In case of male patients with BMI between 23 and 28 and with hip circumference between 75 cm and 90 cm, **IF** we change physical activity **FROM** none **TO** medium, the incidence of not having hyperlipoproteinemy increases **BY** 31.1 percentage points.

ACTION RULE 6

BMI (22; 28) \land Hip (75; 90) \land Physical activity (none \rightarrow medium) $\Rightarrow_{0.300,32,32}$ Hyperlipoproteinemy (no) / Sex (male)

Interpretation of the action rule:

In case of male patients with BMI between 22 and 28 and with hip circumference between 75 cm and 90 cm, **IF** we change physical activity **FROM** none **TO** medium, the incidence of not having hyperlipoproteinemy increases **BY** 30 percentage points.

COMMENT

In this analytical question, the condition was used. Only the columns containing the attribute Sex (male) were included in the four-fold tables

The "opposite" rules were founded. Rules 1 and 4; 2 and 5; 3 and 6 are "opposite". One rule from the pair suggests an action from the state X to the state Y while the succedent decreases in its incidence; the other rule from the pair suggests an action from the state Y to the state X while the succedent increases in its incidence. Both antecedent and succedent of the "opposite" rules are the same.

Analytical tasks

61

Analytical	Main idea	
task		
1	Too strict formal definition	
2	A detailed demonstration of the rule founded and selected	
3	Use of condition, all the rules presented in detail, various ways of	
	presenting rules	
4	Loose definition but no rules found	
5	Loose definition, many insignificant rules found, long duration of the	
	procedure	

ANALYTICAL QUESTION 4

Intuitive formulation

For which age groups and/or which sex and/or which weight of patients does a change of BMI cause the cholesterol to change?

More formal formulation

For which combinations of Age and/or Sex and/or Weight does the relative frequency of Cholesterol change by at least 0.2 by changing BMI (and the number of objects satisfying both initial antecedent and initial succedent is at least 10 and the number of objects satisfying both final antecedent and final succedent is at least 10.

INPUT				
	Antecedent		Succedent	
Stable part	Age (int. per 5 years, int. max length 4) Sex (subset max length 1) Weight (int. per 5kg, int. max length 4)		Total cholesterol (int. per 0.5, int. max length 3)	
Variable part	BMI (int. per 1, int. max length 6)			
Quantifier	$\Rightarrow_{q,B_{I},B_{F}}^{I \leq F} \qquad \left \frac{a_{I}}{a_{I}+b_{I}} \right $	$\frac{1}{a_F} - \frac{a_F}{a_F}$	$1 > 0 / A \alpha > 10 A \alpha > 10$	

Output analytical task 4

63

OUTPUT				
Number of hypotheses (rules) found:	0	Number of verifications:	0	
Duration at PC with 2 GHz and 895 MB RAM 7h 33m 3s				
Interpretation				
There are no combinations of Age and/or Sex and/or Weight for which the relative frequency of Cholesterol changes at least by 0.2 as a consequence of changing BMI.				
COMMENT				
Although the q, B _I and B _F were defined relatively low, there were no rules found. The process of finding rules was relatively long due to many categories of attributes (BMI has 18 categories, Age 11 estagories. Weight 12 estagories. Chalasterel 0 estagories) and also due to the maximum length of				

categories, Weight 12 categories, Cholesterol 9 categories) and also due to the maximum length of intervals of each attribute. There were, therefore, many possible combinations which have to be created and checked.

Analytical tasks

64

Analytical	Main idea
task	
1	Too strict formal definition
2	A detailed demonstration of the rule founded and selected
3	Use of condition, all the rules presented in detail, various ways of presenting rules
4	Loose definition but no rules found
5	Loose definition, many insignificant rules found, long duration of the procedure

ANALYTICAL QUESTION 5

Intuitive formulation

For which risk factors does a change in cholesterol cause a change in the incidence of complaints?

More formal formulation

For which combinations of Hyperlipoproteinemy and/or Diabetes mellitus and/or Hypertension and/or Positive family case history does the relative frequency of Breathlessness and/or Claudication and/or Palpitation change by at least 0.2 by changing Total cholesterol and/or HDL cholesterol and/or LDL cholesterol and/or Triacylglycerols (and the number of objects satisfying both initial antecedent and initial succedent is at least 10 and the number of objects satisfying both final antecedent and final succedent is at least 10).

INPUT

	Antecedent	Succedent		
Stable part	Hyperlipoproteinemy (one category-(yes)) Diabetes mellitus (one category-(yes)) Hypertension (one category-(yes)) Positive family case history (one category-(yes))	Breathlessness (one category-(due to the activity)) Breathlessness (one category-(while inactive)) Claudication (one category-(yes)) Palpitation (one category-(yes))		
Variable part	Total cholesterol (int. per 0.5, int. max length 2) HDL cholesterol (int. per 0.5, int. max length 2) LDL cholesterol (int. per 0.5, int. max length 2) Triacylglycerols (int. per 0.5, int. max length 2)			
Quantifier	$\Rightarrow_{q,B_I,B_F}^{I \leq F} \qquad \left \frac{a_I}{a_I + b_I} - \frac{a_F}{a_F + b_F} \right $	$\geq 0.2 \land a_I \geq 10 \land a_F \geq 10$		

Output analytical task 5

66

~ -		* ***
\square	ΓP	UT
$\mathcal{O}\mathcal{C}$, T T	

Number of hypotheses (rules) found:	437	Number of verifications:	742,569,534
Duration at PC with 2 GHz and 895 MB RAM:		22h 50m 31s Interrupte	ed .

Interpretation:

There were 437 rules found. They are, however, not very significant – the highest confidence of initial rule is only 0.318.

COMMENT

In the input of the antecedent stable part and succedent stable part, in the definition of literals the option "one category" was used. This is because we want to find rules containing risk factors and complaints (we do not want to find rules containing, for example, Palpitation (no)). The generation and verification was interrupted after nearly 23 hours. This example shows that by defining the q, B_I and B_2 too low, we can obtain insignificant rules (they are true for very low number of patients), and it also demonstrates that the run of the Ac4ft-Miner is very long in this case.

Contents

1. GUHA method and LISp-Miner

- 2. 4ft-Miner
- 3. Action rules
- 4. G-action rules
- 5. Input and output in Ac4ft-Miner
- 6. Case study
- 7. Conclusions

Conclusions

- Ac4ft-Miner is a very complex tool
 - Many possibilities of defining input
- Problems with defining analytical questions
 - It proved useful to group attributes
 - Defining too specific questions usually no results
 - Defining too general questions too many rules found

Future work

- Create sophisticated methodology of use
 - How to formulate analytical questions?
 - How to interpret results?
 - How to tune parameters of the procedure?
- Test more Ac4ft-quantifiers

Bibliography

- Nekvapil, V. 2010. Data Mining in the Medical Domain: Using the Ac4ft-Miner Procedure. LAP LAMBERT Academic Publishing GmbH & Co. KG, Saarbrucken, 2010. ISBN 978-3-8383-9818-1
- Ras, Z.; Wieczorkowska, A. 2000. Action-Rules: How to Increase Profit of a Company In: D.A. Zighed, J. Komorowski, and J. Zytkow (Eds.): PKDD 2000, LNAI 1910, Berlin: Springer Verlag, pp. 587-592.
- Rauch, J.; Šimůnek, M. 2005. GUHA Method and Granular Computing. In: HU, X et al. (eds.). Proceedings of IEEE conference Granular Computing, Beijing: IEEE Computer Society.
- Rauch, J.; Šimůnek, M. 2009. Action Rules and the GUHA Method: Preliminary Considerations and Results. Praha 14.09.2009 – 17.09.2009. In: Foundations of Intelligent Systems. Berlin: Springer Verlag, pp. 76–87.
- Rauch, J.; Šimůnek, M. c2011. GUHA Method and the LISp-Miner System [PowerPoint presentation]. [cited 2011 April 20]