Gaussian processes in evolutionary black-box search

Lukáš Bajer^{1,2}, Andrej Kudinov³

¹Faculty of Mathematics and Physics, Charles University, ²Institute of Computer Science, Czech Academy of Sciences, and ³Faculty of Information Technologies, Czech Technical University

Prague, Czech Republic

21. 5. 2015

Contents

- Optimization of expensive black-box functions
 - Model-based methods
 - Gaussian Processes

2 MGSO

- Introduction to MGSO
- Experimental results on Niching functions
- Experimental results on BBOB functions

Surrogate CMA-ES

- CMA-ES
- Surrogate CMA-ES
- Experimental results

Model-based methods Gaussian Processes

Optimization

• optimization (minimization) is finding such $\mathbf{x}^{\star} \in \mathbb{R}^n$ that

$$f(\mathbf{x}^{\star}) = \min_{\forall \mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$

• "near-optimal" solution is usually sufficient

Model-based methods Gaussian Processes

Optimization of black-box functions

black-box functions

 only evaluation of the function value, no derivatives or gradients → no gradient methods available

• we consider continuous domain: $\mathbf{x} \in \mathbb{R}^n$

Optimization of empirical black-box functions

empirical function:

- assessing the function-value via an experiment (measuring, intensive calculation, evaluating a prototype)
- evaluating such functions are expensive (time and/or money)
- search cost \sim the number of function evaluations

EA's for empirical black-box optimization

- evolutionary algorithms (EA's) used in this study
- EA's often manage to escape from local optima
- but usually use many function evaluations (at least in comparison with gradient methods like BFGS)

Johann Dréo (CC)

EA's for empirical black-box optimization

what can help with decreasing the number of function evaluations:

- utilize already measured values

 (at least prevent measuring the same thing twice)
- learn the shape of the function landscape or learn the (global) gradient or step direction & size

Model-based methods Gaussian Processes

Model-based methods accelerating the convergence

several methods are used in order to **decrease** the number of objective function **evaluations** needed by EA's

- Surrogate modelling
- 2 Estimation of Distribution Algorithms (EDA's)
- Efficient Global Optimization (EGO)

Model-based methods Gaussian Processes

Surrogate modelling

Surrogate modelling

- technique which builds an **approximating model** of the fitness function landscape
- the model provides a cheap and fast, but also inaccurate replacement of the fitness function for part of the population
- inaccurate approximating model can deceive the optimizer

from the EUMC presentation "Viscous optimization of bulkers and tankers" (Mattia Brenner, June 17, 2010)

Model-based methods Gaussian Processes

Estimation of Distribution Algorithms (EDA)

Estimation of Distribution Algorithms

- the model represents a distribution of solutions in the input space
- new candidate solutions are generated via sampling the model
- better solutions are selected for being represented by the model in the next generation

Model-based methods Gaussian Processes

Stochastic search of Evolutionary algorithms

Stochastic black box search

initilize distribution parameters θ set population size $\lambda \in \mathbb{N}$ while not terminate

- **1** sample distribution $P(\mathbf{x}|\theta) \rightarrow \mathbf{x}_1, \dots, \mathbf{x}_{\lambda} \in \mathbb{R}^n$
- 2 evaluate $\mathbf{x}_1, \ldots, \mathbf{x}_{\lambda}$ on f
- (a) update parameters θ

(A. Auger, Tutorial CMA-ES, GECCO 2013)

schema of most of the evolutionary algorithms and EDA algorithms

Model-based methods Gaussian Processes

Gaussian Process

GP is a stochastic approximation method based on Gaussian distributions

from infpy documentation

GP can express **uncertainty** of the prediction in a new point **x**: it gives a probability distribution of the output value

Model-based methods Gaussian Processes

Gaussian Process

from infpy documentation

• given a set of *N* training points $\mathbf{X}_N = (\mathbf{x}_1 \dots \mathbf{x}_N)^\top$, $\mathbf{x}_i \in \mathbb{R}^d$, and measured values $\mathbf{y}_N = (y_1, \dots, y_N)^\top$ of a function *f* being approximated

$$y_i = f(\mathbf{x}_i), \quad i = 1, \ldots, N$$

GP considers vector of these function values as a sample from *N*-variate Gaussian distribution

$$\mathbf{y}_N \sim \mathbf{N}(\mathbf{0}, \mathbf{C}_N)$$

Model-based methods Gaussian Processes

Gaussian Process

$$\mathbf{X} = (\mathbf{x}_1 \dots \mathbf{x}_N)^\top, \ \mathbf{x}_i \in \mathbb{R}^d$$
$$\mathbf{y} = (y_1, \dots, y_N)^\top, \ y_i = f(\mathbf{x}_i)$$

N training data points measured function values

 $y \in \mathbb{R}^N$ considered to be a realisation of a N-dimensional Gaussian distribution with a covariance matrix C_N and zero mean

 $\mathbf{y} \sim \mathbf{N}(\mathbf{0}, \mathbf{C}_N)$

Covariance C_N is determined by

- covariance function $cov(\mathbf{x}_i, \mathbf{x}_j)$ and its hyperparameters
- training data points **X**_N

forming the density of the Gaussian $p(\mathbf{y}|\mathbf{X}_N)$

Model-based methods Gaussian Processes

Gaussian Process covariance

covariance C_N is given by

$$\mathbf{C}_N = \mathbf{K} + \sigma^2 \mathbf{I}$$

where **K** is a matrix of **covariance function** values and σ^2 is the signal noise.

Covariance functions are defined on pairs from the input space

$$(\mathbf{K})_{ij} = cov(\mathbf{x}_i, \mathbf{x}_j), \quad \mathbf{x}_{i,j} \in \mathbb{R}^d$$

expressing the degree of correlations between two points' values; typically decreasing functions on two points distance

Model-based methods Gaussian Processes

Gaussian Process covariance

The most frequent covariance function is squared-exponential

$$(\mathbf{K})_{ij} = cov^{\mathrm{SE}}(\mathbf{x}_i, \mathbf{x}_j) = \frac{\theta}{\theta} \exp\left(\frac{-1}{2\ell^2}(\mathbf{x}_i - \mathbf{x}_j)^\top (\mathbf{x}_i - \mathbf{x}_j)\right)$$

with the parameters (usually fitted by MLE)

- θ signal variance (scales the correlation)
- ℓ characteristic length scale

Model-based methods Gaussian Processes

Gaussian Process covariance

Another usual option is *Matérn covariance*, which is for $r = (\mathbf{x}_i - \mathbf{x}_j)$

$$(\mathbf{K})_{ij} = cov_{\nu=5/2}^{\text{Matern}}(r) = \theta \left(1 + \frac{\sqrt{5}r}{\ell} + \frac{5r^2}{3\ell^2}\right) \exp\left(-\frac{\sqrt{5}r}{\ell}\right)$$

with the parameters (same as for squared exponential)

- θ signal variance
- ℓ characteristic length scale

Model-based methods Gaussian Processes

Gaussian Process covariance

from Michael Osborne: An Introduction to Fitting Gaussian Processes to Data (presentation)

Model-based methods Gaussian Processes

Gaussian Process prediction

Making predictions

Prediction y^* in a new point \mathbf{x}^* is made by adding this new point to the matrix \mathbf{X}_N and vector \mathbf{y}_N .

This gives an (N + 1)-dimensional Gaussian with density

$$p(\mathbf{y}_{N+1} | \mathbf{X}_{N+1}) = \frac{1}{\sqrt{(2\pi)^{N+1} \det(\mathbf{C}_{N+1})}} \exp(-\frac{1}{2} \mathbf{y}_{N+1}^{\top} \mathbf{C}_{N+1}^{-1} \mathbf{y}_{N+1})$$

where C_{N+1} is the covariance matrix

$$\mathbf{C}_{N+1} = \left(\begin{array}{cc} \mathbf{C}_N & \mathbf{k} \\ \mathbf{k}^\top & \kappa + \sigma \end{array}\right)$$

which is C_N extended with

- k covariances between x* and X_N
- *κ* + *σ* variance of the new point itself (with added signal noise)

Model-based methods Gaussian Processes

Gaussian Process prediction

Making predictions

Because \mathbf{y}_N is known and the inverse \mathbf{C}_{N+1}^{-1} can be expressed using inverse of the training covariance \mathbf{C}_N^{-1} ,

the density in a new point marginalize to 1D Gaussian density

$$p(y^* | \mathbf{X}_{N+1}, \mathbf{y}_N) \propto \exp\left(-\frac{1}{2} \frac{(y^* - \hat{y}_{N+1})^2}{s_{y_{N+1}}^2}\right)$$

with the mean and variance given by

$$\hat{y}_{N+1} = \mathbf{k}^{\top} \mathbf{C}_{N}^{-1} \mathbf{y}_{N}, s_{\mathbf{y}_{N+1}}^{2} = \kappa - \mathbf{k}^{\top} \mathbf{C}_{N}^{-1} \mathbf{k}.$$

Model-based methods Gaussian Processes

Efficient Global Optimization (EGO)

EGO

- needed: specific kind of surrogate model which can express uncertainty of the prediction in a new point
- EGO uses Kriging / Gaussian processes (GP)
- for any given input x, it gives a probability distribution of the output value

Model-based methods Gaussian Processes

Efficient Global Optimization (EGO)

- the resulting output for a specified input x is a 1-D Gaussian with
 - mean at the predicted value
 - standard deviation expressing uncertainty of this prediction

• probability of improvement (PoI) is the probability that the function value will be lower than a specified target *T*

$$\operatorname{PoI}_{T}(\mathbf{x}) = \Phi\left(\frac{T - \hat{f}(\mathbf{x})}{\hat{\sigma}(\mathbf{x})}\right) = \operatorname{P}(\hat{f}(\mathbf{x}) \leq T)$$

Model-based methods Gaussian Processes

Efficient Global Optimization (EGO)

EGO

- I dataset D ← generate a random initial sample and evaluate it
- 2 build a GP/Kriging model \hat{f} using D
- **3** $\mathbf{x}_{max} \leftarrow maximize PoI(\mathbf{x})$ (from the GP model)
- evaluate x

$$D = D \cup \{\mathbf{x}\}$$

repeat from step 2

maximizing the PoI is a way of balancing between exploration of the input space and exploitation of the local optima

Introduction to MGSO Experimental results on Niching functions Experimental results on BBOB functions

Model Guided Sampling Optimization

main idea of MGSO:

- consider the PoI(x) to be a function proportional to a probability density
- sample this density to get a population of candidate solutions (like EDAs)

motivation: not getting trapped in local minima while exploring the search space

Introduction to MGSO Experimental results on Niching functions Experimental results on BBOB functions

Model Guided Sampling Optimization

EGO MGSO

- dataset D ← generate a random initial sample and evaluate it
- 2 build a GP model \hat{f} using D
- **3** $\mathbf{x}_{max} \leftarrow maximize PoI(\mathbf{x})$ (from the GP model)
- **(**)
- Sample the $PoI(\mathbf{x})$ resulting in a new population *P*
- **6** find the minimum $\mathbf{x}_{\min} = \arg \min \hat{f}(\mathbf{x})$ of the GP and add to *P*
- evaluate x
- $D = D \cup \{\mathbf{x}\}$
- **(a)** evaluate all $\mathbf{x} \in P$
- $\bigcirc D = D \cup \mathbf{P}$
- repeat from step 2

Introduction to MGSO Experimental results on Niching functions Experimental results on BBOB functions

Probability of improvement

PoI of 2D Rastrigin, N = 40

$$\operatorname{PoI}_{T}(\mathbf{x}) = \Phi\left(\frac{T - \hat{f}(\mathbf{x})}{\hat{\sigma}(\mathbf{x})}\right) = \operatorname{P}(\hat{f}(\mathbf{x}) \leq T)$$

• no explicit formula for

 $PoI(\mathbf{x}, \mathbf{T}, \hat{f})$

- improvement in a new point x is probable when
 - not many samples around, i.e. large σ at x
 - promising area is searched, i.e. low *f*(**x**)
- different way of generating new points
 - EGO: find the maximum of $PoI \rightarrow$ **one** solution
 - MGSO: sample the PoI
 → multiple solutions

Introduction to MGSO Experimental results on Niching functions Experimental results on BBOB functions

Implementation issues

Numerical instability

- adding a new sampled point (x', f(x')) can cause the Gaussian process' covariance matrix be close to semi-positive indefinite
- such points are rejected already during sampling and new points are sampled instead

Introduction to MGSO Experimental results on Niching functions Experimental results on BBOB functions

Implementation issues

Degeneration of Pol

- PoI degenerates close to a discrete distribution in later phases of the optimization
- happens when the input space is well explored
- partially solved by cropping the input space to a region around the so-far optimum and rescaling the input space to get better numerical resolution for sampling

Optimization of expensive black-box functions MGSO Surrogate CMA-ES MGSO Experimental results on BBOB functions Experimental results on BBOB functions

[... to be continued ...]

Introduction to MGSO Experimental results on Niching functions Experimental results on BBOB functions

Experimental results on BBOB

 MGSO was also tested on three benchmark functions from the BBOB testbed

- three dimensionalities: 2D, 5D, 10D
- compared to CMA-ES and Tomlab's EGO implementation

Introduction to MGSO Experimental results on Niching functions Experimental results on BBOB functions

Results in 2-D

medians and quartiles of the best-found fitness from 15 runs MGSO, CMA-ES, EGO, older MGSO without ARD

Introduction to MGSO Experimental results on Niching functions Experimental results on BBOB functions

Results in 5-D

medians and quartiles of the best-found fitness from 15 runs MGSO, CMA-ES, EGO, older MGSO without ARD

Introduction to MGSO Experimental results on Niching functions Experimental results on BBOB functions

Results in 10-D

medians and quartiles of the best-found fitness from 15 runs MGSO, CMA-ES, EGO, older MGSO without ARD

CMA-ES Surrogate CMA-ES Experimental results

Stochastic search of Evolutionary algorithms

Stochastic black box search

initilize distribution parameters θ set population size $\lambda \in \mathbb{N}$ while not terminate

- **③** sample distribution $P(\mathbf{x}|\theta) \rightarrow \mathbf{x}_1, \dots, \mathbf{x}_{\lambda} \in \mathbb{R}^n$
- 2 evaluate $\mathbf{x}_1, \ldots, \mathbf{x}_{\lambda}$ on f
- **3** update parameters θ

(A. Auger, Tutorial CMA-ES, GECCO 2013)

- schema of most of the evolutionary strategies (and EDA algorithms)
- as well as CMA-ES (Covariance Matrix Adaptation ES)
 current state of the art in continuous optimization

The CMA-ES

Input: $\mathbf{m} \in \mathbb{R}^{n}, \sigma \in \mathbb{R}_{+}, \lambda \in \mathbb{N}$ **Initialize**: $\mathbf{C} = \mathbf{I}$ (and several other parameters) **Set** the weights $w_{1}, \ldots, w_{\lambda}$ appropriately

while not terminate

- **2** $\mathbf{m} \leftarrow \sum_{i=1}^{\mu} w_i \mathbf{x}_{i:\lambda} = \mathbf{m} + \sigma \mathbf{y}_w$ where $\mathbf{y}_w = \sum_{i=1}^{\mu} w_i \mathbf{y}_{i:\lambda}$ update mean
- update C
- update step-size σ

CMA-ES Surrogate CMA-ES Experimental results

Covariance matrix adaptation

- eigenvectors of the covariance matrix C are the principle components the principle axes of the mutation ellipsoid
- CMA-ES learns and updates a new Mahalanobis metric
- successively approximates the inverse Hessian on quadratic functions
 - transforms ellipsoid function into sphere function
 - it somehow holds for other functions, too (up to some degree)

CMA-ES Surrogate CMA-ES Experimental results

Is CMA-ES the best for everything?

- CMA-ES is state-of-the-art optimization algorithm, especially for rugged and ill-conditioned objective functions
- however, not the fastest if we can afford only very few objective function evaluations
- what we have already seen: use a surrogate model!
- however, original evaluated solutions are available only along the search path
- solution: construct local surrogate models

CMA-ES Surrogate CMA-ES Experimental results

The Surrogate CMA-ES

Input: $\mathbf{m} \in \mathbb{R}^{n}, \sigma \in \mathbb{R}_{+}, \lambda \in \mathbb{N}$ **Initialize**: $\mathbf{C} = \mathbf{I}$ (and several other parameters) **Set** the weights w_1, \ldots, w_{λ} appropriately

while not terminate

sampling

evaluate with the original fitness & build a model

- evaluate with the model fitness
- \bigcirc update $\mathbf{m}, \mathbf{C}, \sigma$

CMA-ES Surrogate CMA-ES Experimental results

The Surrogate CMA-ES

Input: g (generation), $f_{\mathcal{M}}$ (model), \mathcal{A} (archive), n_{BFO} , σ , λ , **m**, **C** 1: $\mathbf{x}_k \sim \mathcal{N}(\mathbf{m}, \sigma^2 \mathbf{C})$ $k = 1, \dots, \lambda$ {CMA-ES sampling} 2: if g is original-evaluated then 3: $y_k \leftarrow f(\mathbf{x}_k)$ $k = 1, \dots, \lambda$ {fitness evaluation} 4: $\mathcal{A} = \mathcal{A} \cup \{(\mathbf{x}_k, \mathbf{y}_k)\}_{k=1}^{\lambda}$ 5: if $|\mathbf{X}| > n_{\mathsf{BFO}}$ then 6: $\mathbf{X} \leftarrow \text{TransformToTheEigenvectorBasis}(\mathbf{X}, \sigma, \mathbf{C})$ 7: $f_{\mathcal{M}} \leftarrow \text{trainModel}(\mathbf{X}, \mathbf{y})$ 8. end if 9: **else** 10: $\mathbf{X} \leftarrow \text{TransformToTheEigenvectorBasis}(\mathbf{X}, \sigma, \mathbf{C})$ 11: $y_k \leftarrow f_{\mathcal{M}}(\mathbf{x}_k)$ $k = 1, \dots, \lambda$ {model evaluation} 12: end if

Optimization of expensive black-box functions MGSO Surrogate CMA-ES Experimental results

[... to be continued ...]

CMA-ES Surrogate CMA-ES Experimental results

Experimental results on BBOB (5 D)

CMA-ES Surrogate CMA-ES Experimental results

Experimental results on BBOB (10 D)

CMA-ES Surrogate CMA-ES Experimental results

Experimental results on BBOB (20 D)

CMA-ES Surrogate CMA-ES Experimental results

The best results on subset of BBOB (5 D)

CMA-ES Surrogate CMA-ES Experimental results

The best results on subset of BBOB (20 D)

CMA-ES Surrogate CMA-ES Experimental results

Results on #3 Rastrigin separable

CMA-ES Surrogate CMA-ES Experimental results

Results on #8 Rosenbrock

CMA-ES Surrogate CMA-ES Experimental results

Results on #10 Ellipsoid function

CMA-ES Surrogate CMA-ES Experimental results

Thank you! bajer@cs.cas.cz

Tested approaches:

- Model Guided Sampling Optimization (MGSO),
- CMA-ES with Gaussian process as a surrogate model (S-CMA-ES).

- A - E - M

Testing was performed on 20 versions of 12 multimodal fitness functions from CEC 2013 competition:

- Characterized by a high number of local optima;
- Some functions high-dimensional (up to 20D).
- \rightarrow difficult optimalization task

Testing

MGSO

Part I

MGSO testing

Andrej Kudinov, Lukáš Bajer Investigation of Gaussian Processes in the Context of Black-Box

→ < Ξ → <</p>

э

Examined parameters

Two covariance functions:

- \mathbf{K}_{SE}^{iso} isometric squared exponential,
- K^{ard}_{SE} squared exponential with automatic relevance determination.

Observations

- Both covariance functions had similar effect on the performance.
- MGSO achieved better results than CMA-ES in a vast majority of functions.
- The considerable performance was achieved in the case of most low-dimensional (2D-5D) functions.
- In the case of high-dimensional functions (10D-20D), the speed-up was comparable to CMA-ES.

MGSO

Andrej Kudinov, Lukáš Bajer

Investigation of Gaussian Processes in the Context of Black-Box

MGSO

Andrej Kudinov, Lukáš Bajer

Investigation of Gaussian Processes in the Context of Black-Box

Part II

S-CMA-ES testing

Andrej Kudinov, Lukáš Bajer Investigation of Gaussian Processes in the Context of Black-Box

- ∢ ≣ ▶

э

Examined parameters

Four covariance functions:

- $\bullet~\textbf{K}_{SE}^{iso}$ isometric squared exponential,
- K^{ard}_{SE} squared exponential with automatic relevance determination,

•
$$\mathbf{K}_{Matérn}$$
 – with $\nu = \frac{5}{2}$

• $\mathbf{K}_{Matérn}$ – with $\nu = \frac{1}{2}$, a.k.a. exponential covariance function.

Evolution control strategies

S-CMA-ES evolution control (EC) strategies:

- individual-based,
- generation-based.

Generation-based EC strategy

Evolution control settings:

- number of consecutive generations evaluated by a model,
- multiplication factor of CMA-ES' step size.

Individual-based EC strategy

Evaluates only a part of the population using the original fitness function:

- Pre-sample some individuals and train the model;
- ② Create the extended population by sampling from the model;
- Evaluate a fraction of the individuals from the extended population using the original fitness function;
- Cluster the rest of the extended population and add best point to the final population;

Individual-based EC strategy

Evolution control settings:

- number of pre-sampled individuals evaluated by the fitness function (used for model training),
- size of the extended population,
- amount of points chosen from the extended population to be evaluated by the fitness function.

S-CMA-ES observations

Individual-based EC strategy:

• peformed worse in the case of all functions.

Generation-based EC strategy:

- showed the performance improvement in the case of almost all functions,
- performed better using more consequent model-evaluated generations, unmodified step size and $\mathbf{K}_{\text{SE}}^{\text{iso}}$ covariance function.

S-CMA-ES

Andrej Kudinov, Lukáš Bajer

Investigation of Gaussian Processes in the Context of Black-Box

S-CMA-ES

Andrej Kudinov, Lukáš Bajer

Investigation of Gaussian Processes in the Context of Black-Box

Part III

S-CMA-ES and MGSO comparison

Andrej Kudinov, Lukáš Bajer Investigation of Gaussian Processes in the Context of Black-Box

< ∃ →

S-CMA-ES and MGSO comparison

Andrej Kudinov, Lukáš Bajer

Investigation of Gaussian Processes in the Context of Black-Box

S-CMA-ES and MGSO comparison

Andrej Kudinov, Lukáš Bajer

Investigation of Gaussian Processes in the Context of Black-Box