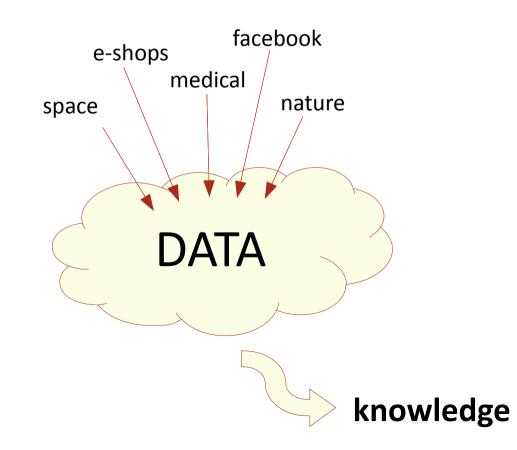
Metalearning in Multi-Agent Systems Designed for Data Mining

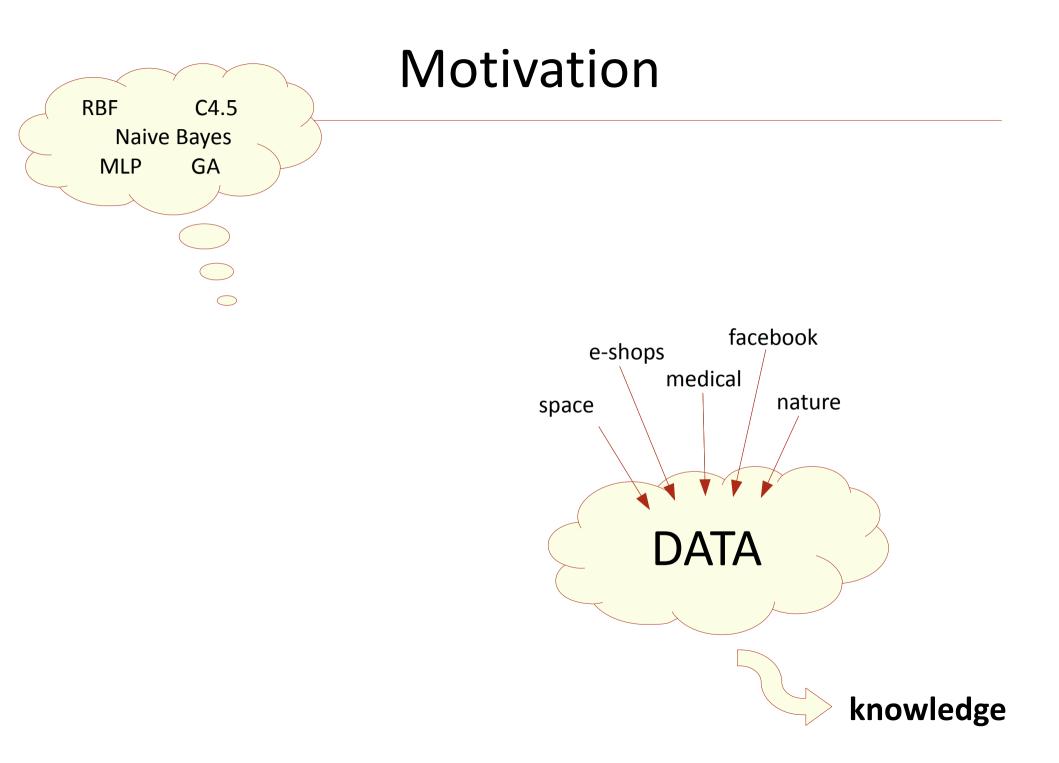
Klára Pešková peskova@braille.mff.cuni.cz

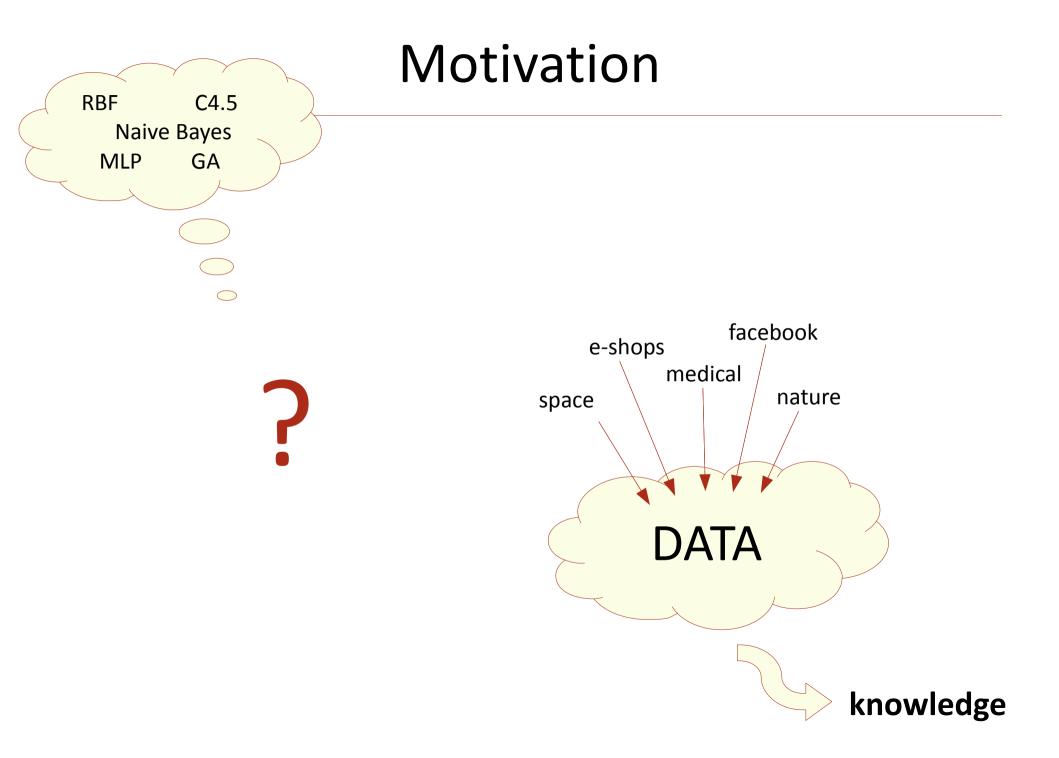
The Czech Academy of Sciences Institute of Computer Science

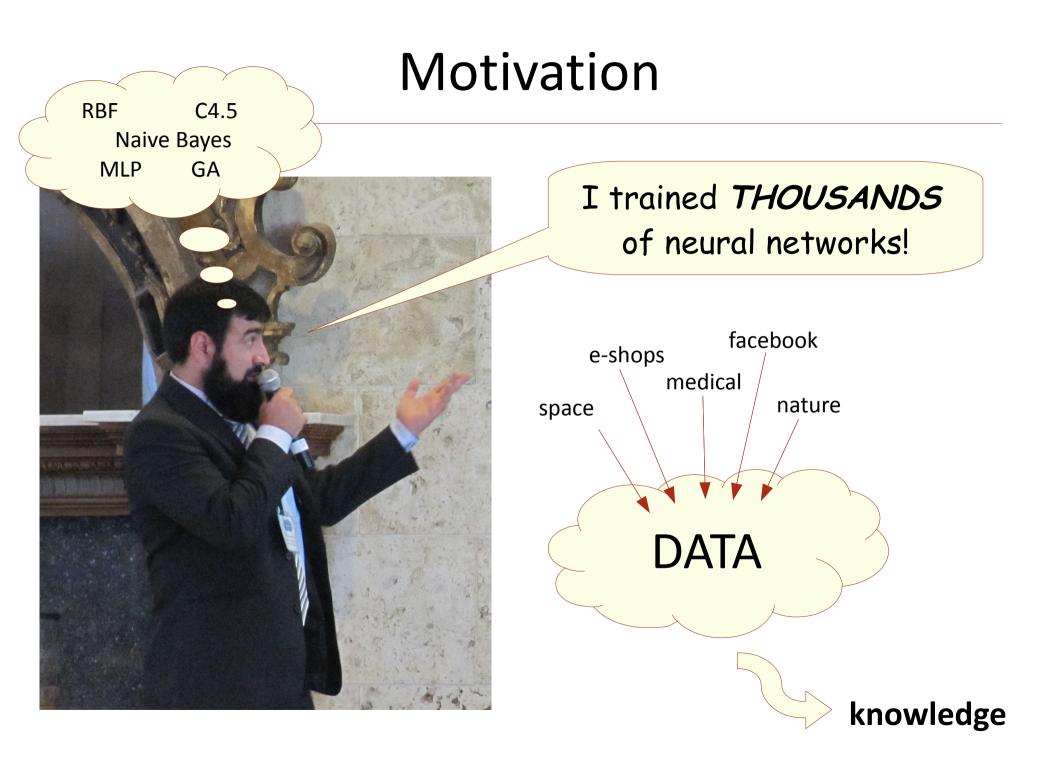
Charles University in Prague, Faculty of Mathematics and Physics Department of Theoretical Computer Science and Mathematical Logic

Motivation

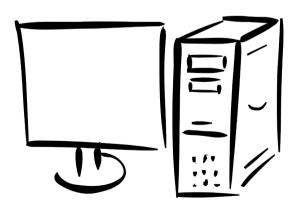




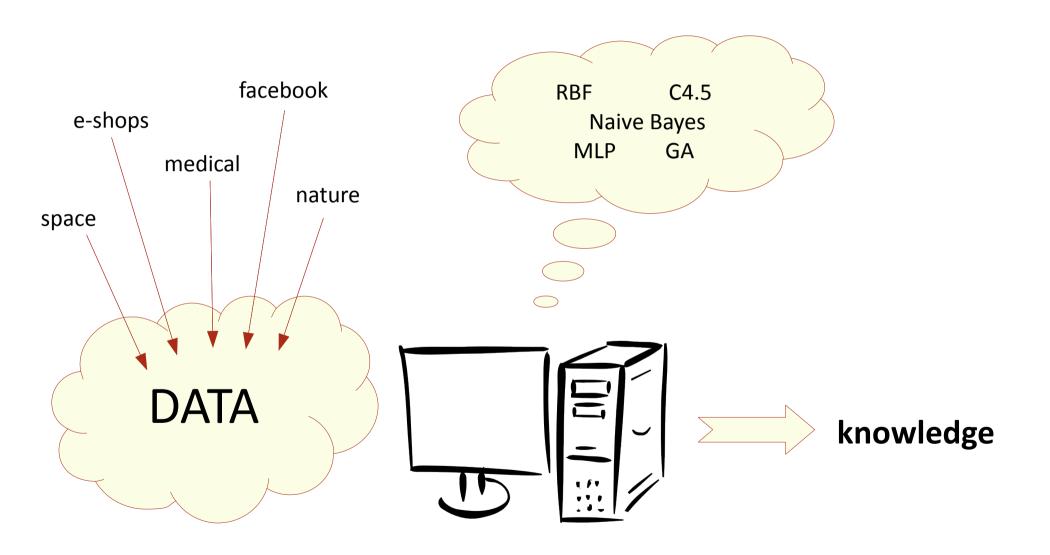




Solution



Solution



• Recommendation of a suitable computational intelligence method for new datasets

• Recommendation of a suitable computational intelligence method for new datasets

• Providing (the best) parameters for the chosen method

• Recommendation of a suitable computational intelligence method for new datasets

• Providing (the best) parameters for the chosen method

• Generating workflow graphs

- Recommendation of a suitable computational intelligence method for new datasets
 - Metadata with suitable metrics
 - History of experiments (method, dataset, results)
 - Computational intelligence methods on metadata
- Providing (the best) parameters for the chosen method

• Generating workflow graphs

- Recommendation of a suitable computational intelligence method for new datasets
 - Metadata with suitable metrics
 - History of experiments (method, dataset, results)
 - Computational intelligence methods on metadata
- Providing (the best) parameters for the chosen method
 - History of experiments
 - Search parameter spaces
- Generating workflow graphs

- Recommendation of a suitable computational intelligence method for new datasets
 - Metadata with suitable metrics
 - History of experiments (method, dataset, results)
 - Computational intelligence methods on metadata
- Providing (the best) parameters for the chosen method
 - History of experiments
 - Search parameter spaces
- Generating workflow graphs
 - Standard approach: ontology based
 - Typed genetic programming

Agent-Based Approach

- requirements on system:
 - intelligent, autonomous behavior, distributed and parallel nature, extensibility
 - large number of methods, data, users...
- **definition of** *agent* (Wooldridge, 1995)*:
 - autonomy
 - social ability
 - reactivity
 - pro-activity

- other traits:
 - truthfull
 - mobile
 - ability to learn

* Wooldridge M., Jennings N. (1995) Intelligent agents: theory and practice. Knowledge Engineering Review 10 (2).

Communication Between Agents

- FIPA specification (Interaction Protocol, Communicative Acts*, Content Languages)
- ontology
 - formal representation of knowledge domain for automatic processing
 - concepts types of objects
 - instances instances of objects
 - attributes properties of objects
 - restrictions
 on attributes
 - relations among objects
- extensibility, hybrid nature

* Austin, 1962, How to Do Things with Words

Our Data-Mining Multi-Agent System

- classification and regression tasks
- encapsulation of computational intelligence methods
- searching the parameter space
- recommendation
- metadata
- using previous experience
- JADE, Weka

Agent Group Role (AGR) Model

- group structures
- agent enters the group by playing a role from a group structure
- agents interact according to communication protocol defined for their roles
- agent can play more than one role

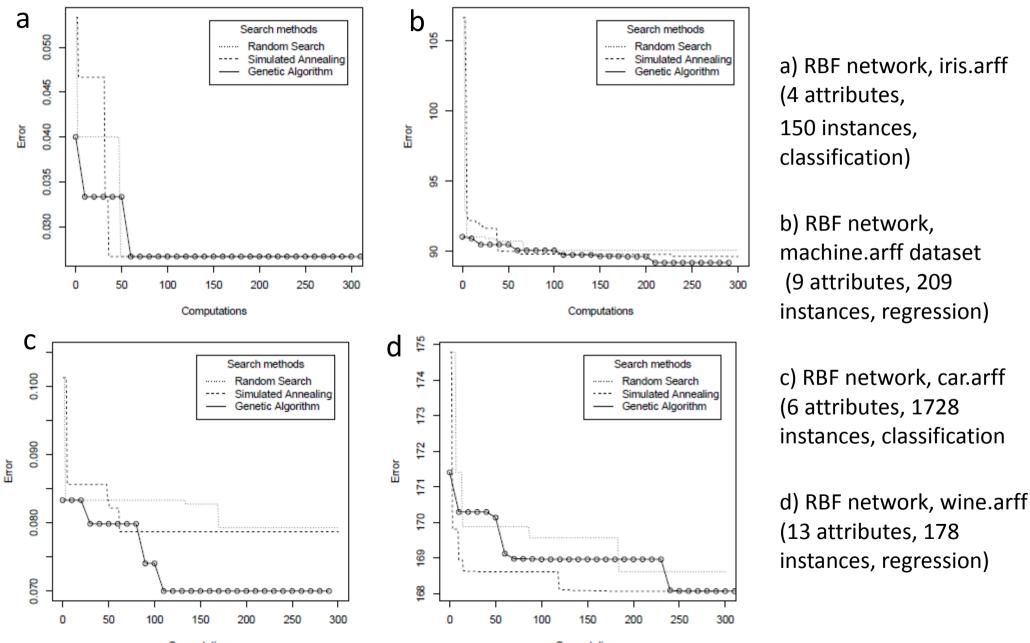
Group Structures



Searching the parameter space

- goal: to optimize the parameters of the method
- side-effect: database of experiments with different parameters settings -> can be used for recommendation
- methods used:
 - random search
 - grid search
 - simmulated annealing
 - genetic algorithm

Results



Computations

Recommendation

• goal: to recommend a method for new dataset

- based on similarity of datasets
 - metadata
 - metrics

- single method / several methods ranking
 - results of experiments

Metadata

Narrow

- categorical
- attributes:
 - number of attributes
 - number of instances
 - data type
 - missing values

Wide

- numerical, data complexity
- Simple measures:
 - categorical ratio
 - integer ratio
 - real ratio
 - ratio of missing values (of the two most significant attributes)
- Information theoretic measures

Wide metadata – Information Theoretic Measures

- discretization of real values
- Entropy of the two most significant attributes

$$H(X) = -\sum_{i} q_i \log_2 q_i,$$

 Joint entropy of class and attribute → two most significant attributes

$$H(A,C) = -\sum_{v \in Val(A)} \frac{n(A(v))}{n}$$
$$\sum_{t \in Val(C)} \frac{n_t(A(v))}{n(A(v))} \log_2 \frac{n_t(A(v))}{n(A(v))},$$

Metric

 distance between datasets - weighted sum of distances between metadata attributes

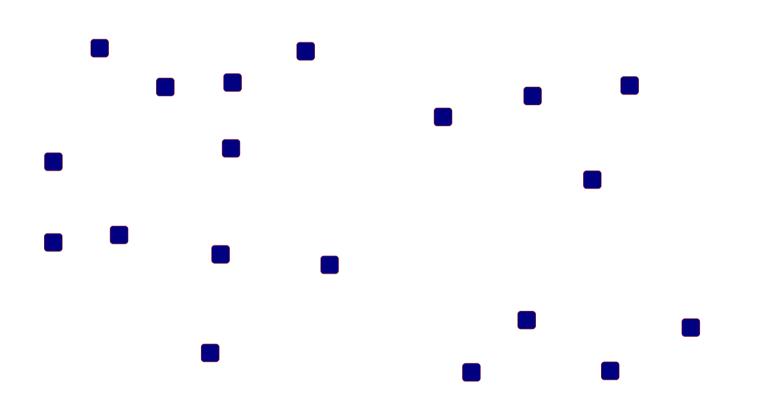
$$d(m_1, m_2) = \sum_{i=1}^n w_i \cdot d_i(m_1[i], m_2[i])$$

- attribute distance
 - boolean, categorical:

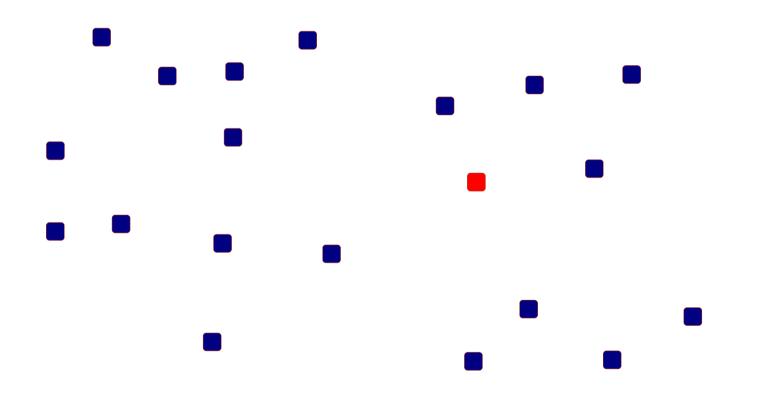
 $d_i(v_1, v_2) = \begin{cases} 0, & \text{if } v_1 = v_2; \\ 1, & \text{otherwise.} \end{cases}$

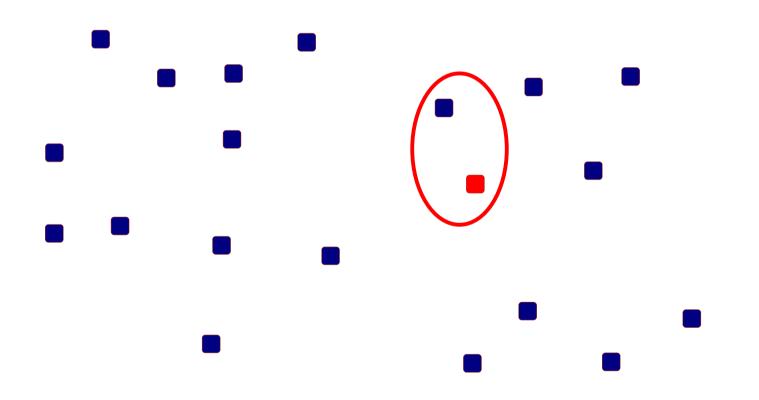
• else:
$$d_i(v_1, v_2) = \frac{|v_1 - v_2|}{max(v)_{v \in V[i]} - min(v)_{v \in V[i]}}$$

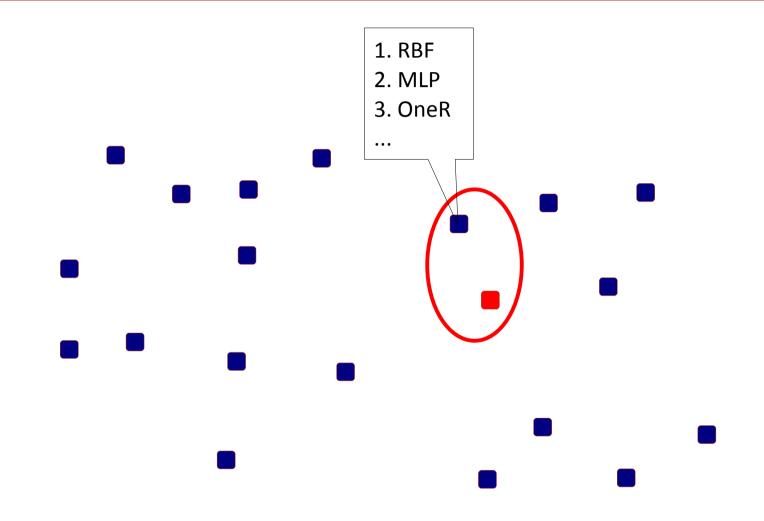
• weights: default value (1.0), evolutionary optimalization



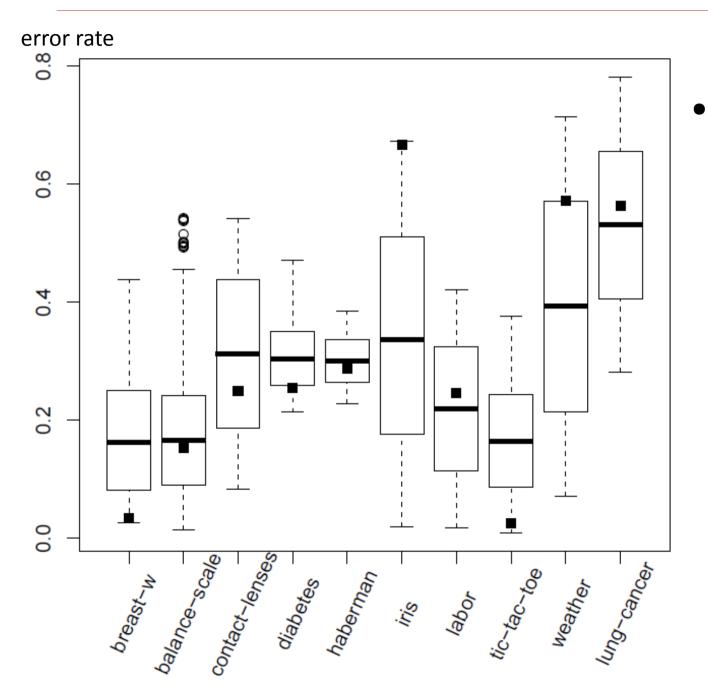
=> new dataset





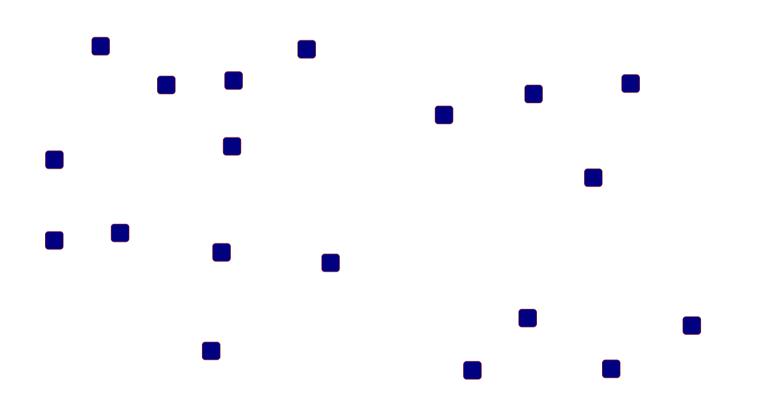


Results

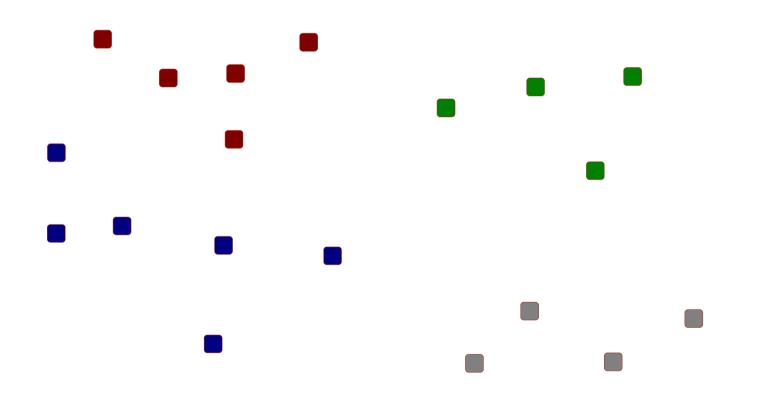


Narrow metadata, default weights (1.0)

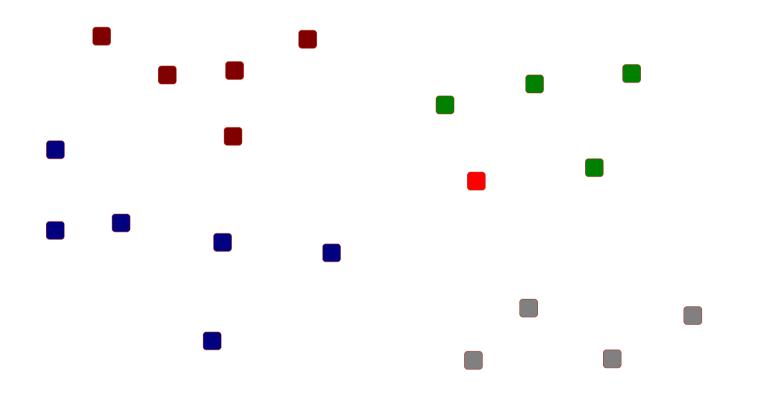
The minimum, quartiles, median, and maximum error rates for given dataset; the error rate of a recommended method is marked by a black square.



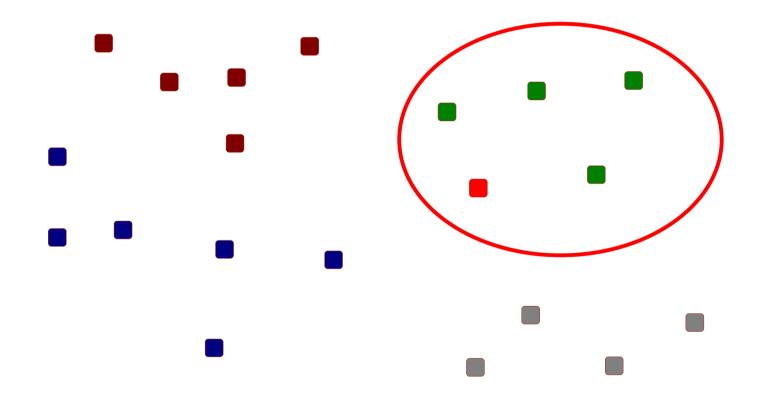
A. Training

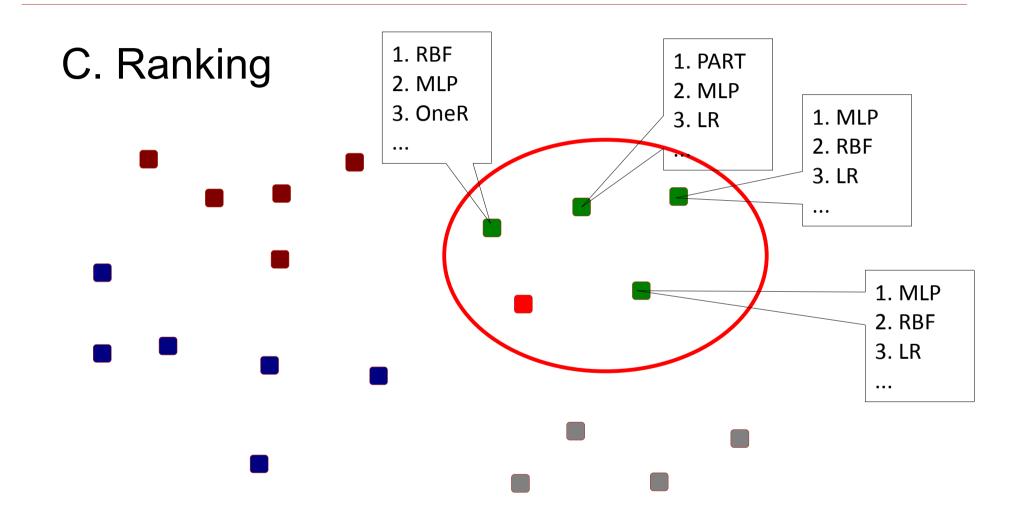


=> new dataset



B. Zooming





Choosing the Method

• comparison of methods:

normalized error rate $e_d(m)$

- best result for each (dataset, method) pair
- results linearly rescaled best 0.0, worse 1.0
 - classification error rate in [0,1]
 - regression mean square error
- ranking:
 - compute average of normalized errors for each method (using datasets from the selected cluster)
 - select the method with the lowest ranking

Use Case

• 14 clusters, new dataset: vowel.arff

TABLE I.Ranking of methods in the cluster no. 13Recommended to the dataset vowel.arff. The results of
Methods for the dataset are shown.

Method	Ranking	Error Rate on vowel	Normalized Error Rate
RBF	0.020	0.077	0.087
MLP	0.029	0.023	0.000
PART	0.097	0.169	0.237
J48	0.106	0.125	0.166
RTree	0.115	0.124	0.164
NNGe	0.295	0.114	0.148
OneR	0.750	0.637	1.000
LReg	NaN	NaN	NaN

Results

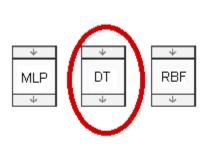
- Experiment setting:
 - 85 datasets, 8 data mining Weka methods, database of ~2 million previous results
- Variable number of clusters
- 2 different metadata types used
- 3 different metadata similarity metrics used in the training phase
- Better results achieved with smaller number of clusters (better generalization)

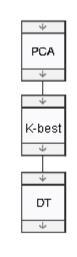
No. of	Narrow flat	Wide flat	Optimized	
Clusters	metric	metric	wide metric	
7	0.103	0.076	0.087	
14	0.074	0.091	0.107	
28	0.213	0.097	0.103	
57	0.132	0.160	0.135	

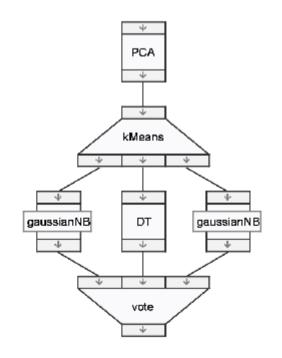
Average Normalized Error on testing data with the recommendation algorithm based on clusters

Generating Workflow Graphs

- recommendation of a single classifier
- chaining several preprocessing methods and a classifier
- generating the complete workflow schemes

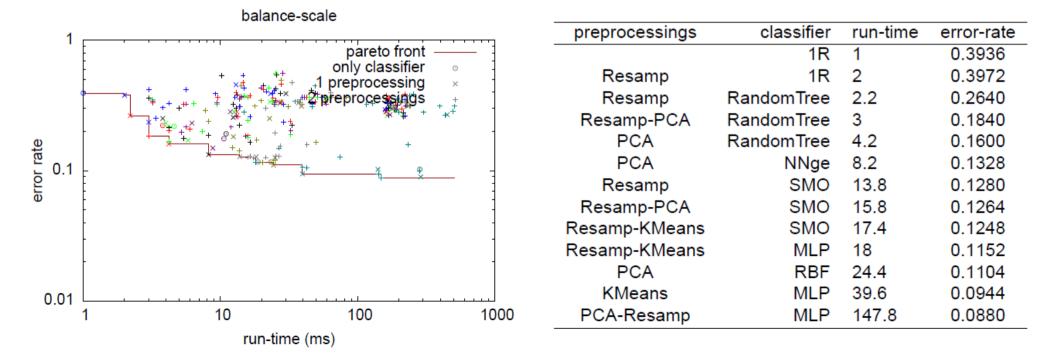






Chaining Preprocessings

- max. 2 preprocessing methods
- full search of all possibilities
- multi-objective optimization (error-rate and time)
- example balance-scale data set:



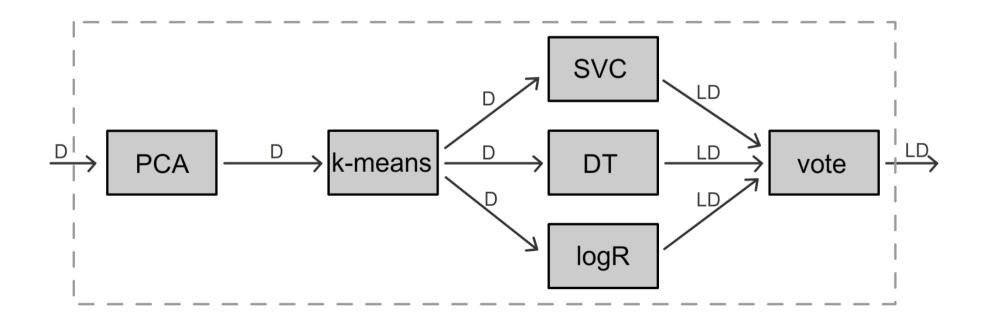
Generating Workflows

- standard approach: ontology based
- our approach: typed genetic programming
- systematically generated trees
- workflows represented as DAGs

**** *** ◈◈◈ঁঁ♥ঁঁ♥ঁ♥ঁ♥ঁ♥ঁ♦ঁ♦ঁ∮ໍ∮∮∮∮∮∮∮∮ ֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎

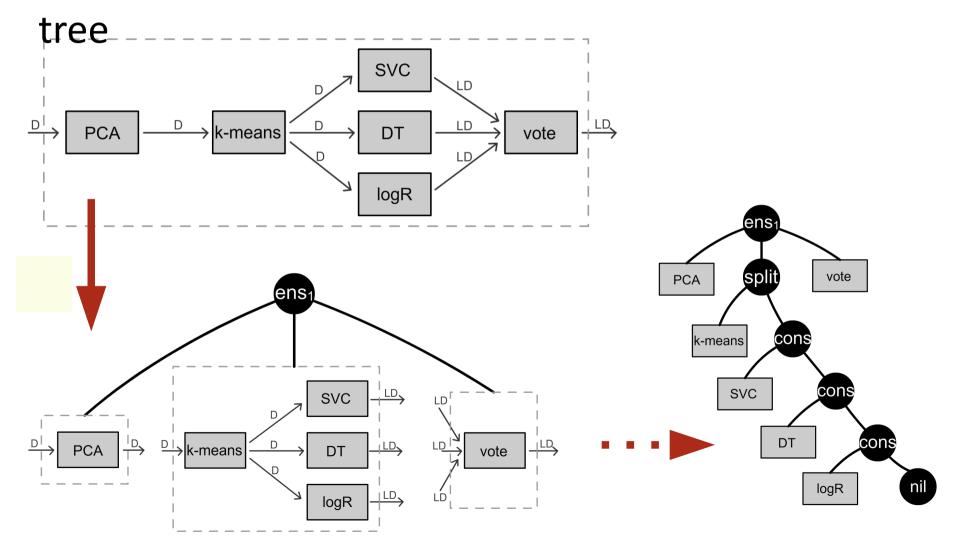
Using Typed GP

 The types ensure that the data flowing in the graph are consistent and that the whole graph makes sense from the data-mining point of view.



DAG to Tree

• example of decomposition of DAG to a syntactic

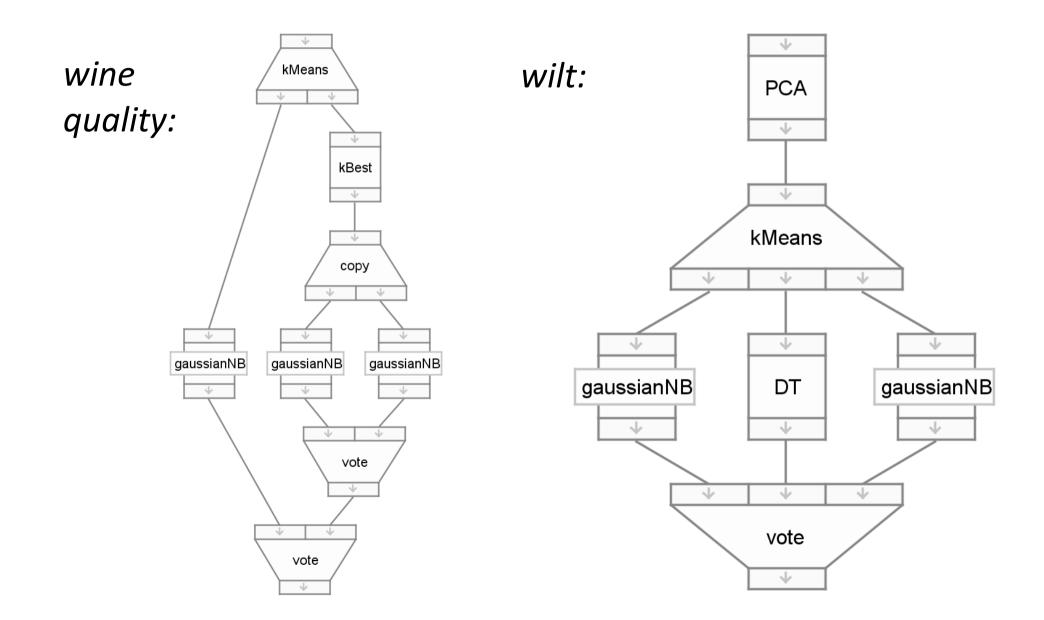


Testing our Workflows

- Two medium size classification problems from UCI repository: winequality-white, wilt
 - Single classifier:
 - parameters tuned using grid search with 5-fold cross-validation
- Workflows:
 - more than 65,000
 different workflows
 generated

- Two experiment settings:
 - default parameters
 - parameters tuned for single classifiers

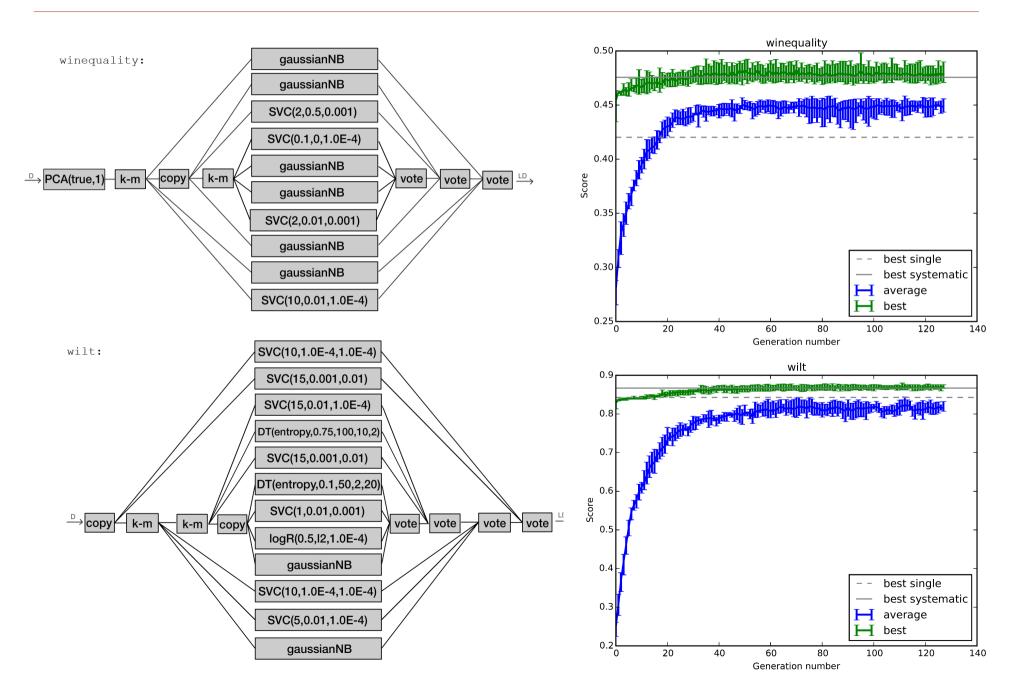
Example of Generated Workflows



Evolving Workflow Graphs

- 128 generations, 256 individuals
- mutation replacing subtree with new subtree of the same size (prob. 0.3, max. 10 nodes)
- simple typed crossover swaping a pair of subtrees with the same type (prob. 0.3, max. 50 nodes)
- fitness: quadratic weighted kappa
- tournament selection (prob. 0.8)
- parameter tuning is part of the genetic programming

Results



Results

dataset	winequality		wilt	
params	default	tuned	default	tuned
SVC	0.1783	0.3359	0.0143	0.8427
LR	0.3526	0.3812	0.3158	0.6341
GNB	0.4202	0.4202	0.2916	0.2917
DT	0.3465	0.4283	0.7740	0.8229
GP	0.4792		0.8702	
systematic	0.4731	0.4756	0.8471	0.8668

Comparison of the classifiers and the workflows. Results were compared using quadratic weighted kappa metric with crossvalidation.

Thank you for your attention

Questions...