

Machine Learning Projects at IBM Watson Prague

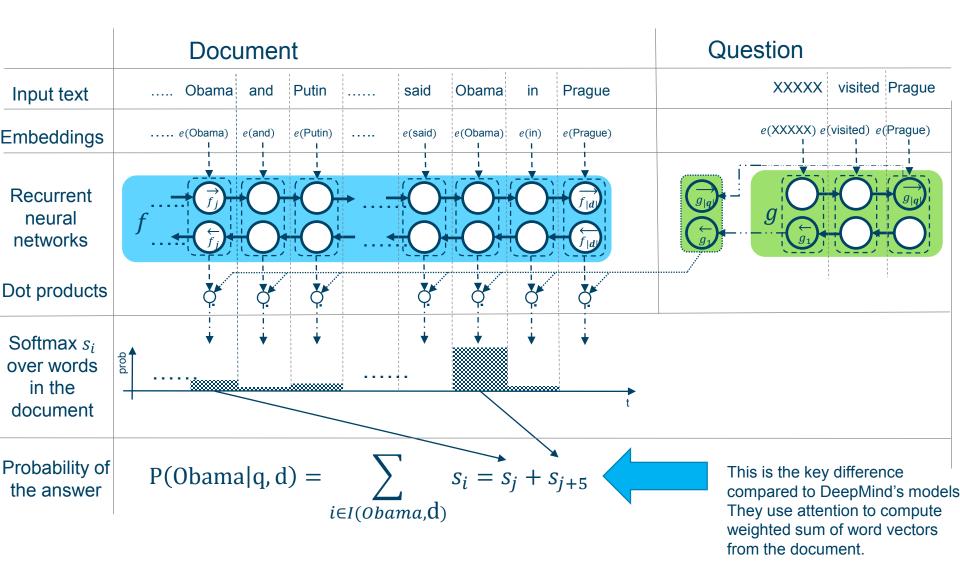
Rudolf Kadlec & Ondrej Bajgar 12/10/2017

Our goal

- Use Machine Learning to improve
 - Question answering
 - QA from text documents
 - Structured knowledge bases
 - Human-machine interaction
 - Dialog systems

Kadlec, R., Schmid, M., Bajgar, O., & Kleindienst, J. (2016). Neural Text Understanding with Attention Sum Reader. *Proceedings of ACL*. <u>https://arxiv.org/abs/1603.01547</u>

Opensourced: https://github.com/rkadlec/asreader


IBM Watson

CNN and Daily Mail (DeepMind)

Original Version	Anonymised Version
Context	
The BBC producer allegedly struck by Jeremy Clarkson will not press charges against the "Top Gear" host, his lawyer said Friday. Clarkson, who hosted one of the most-watched television shows in the world, was dropped by the BBC Wednesday after an internal investigation by the British broad- caster found he had subjected producer Oisin Tymon "to an unprovoked physical and verbal attack."	the <i>ent381</i> producer allegedly struck by <i>ent212</i> will not press charges against the " <i>ent153</i> " host, his lawyer said friday . <i>ent212</i> , who hosted one of the most - watched television shows in the world, was dropped by the <i>ent381</i> wednesday after an internal investigation by the <i>ent180</i> broadcaster found he had subjected producer <i>ent193</i> " to an unprovoked physical and verbal attack ."
Query	
Producer \mathbf{X} will not press charges against Jeremy Clarkson, his lawyer says.	Producer X will not press charges against <i>ent212</i> , his lawyer says.
Answer	
Oisin Tymon	ent193

CNN and Daily Mail dataset

	CNN		Daily	Mail
	valid	test	valid	test
Deep LSTM Reader [†]	55.0	57.0	63.3	62.2
Attentive Reader [†]	61.6	63.0	70.5	69.0
Impatient Reader [†]	61.8	63.8	69.0	68.0
MemNNs (single model) [‡]	63.4	66.8	NA	NA
MemNNs (ensemble) [‡]	66.2	69.4	NA	NA
Att-Sum Reader (single model)	68.6	69.5	74.9	73.7
Att-Sum Reader (avg for top 20%)	68.4	69.9	74.5	73.5
Att-Sum Reader (avg ensemble)	73.9	75.4	78.0	77.1
Att-Sum Reader (greedy ensemble	e) 74.5	74.8	78.5	77.4

Children's Book Test

		Name	d entity	Comm	on noun
		valid	test	valid	test
	Humans (query) (Hill et al., 2015) Humans (context+query) (Hill et al., 2015)	NA NA	52.0 81.6	NA NA	64.4 81.6
	LSTMs (context+query) (Hill et al., 2015)	51.2	41.8	62.6	56.0
	Memory Networks (Hill et al., 2015)	70.4	66.6	64.2	63.0
	AS Reader (single model) AS Reader (avg ensemble) AS Reader (greedy ensemble)	73.8 74.5 76.2	68.6 70.6 71.0	68.8 71.1 72.4	63.4 68.9 67.5
Models based on IBM's ASReader	GA Reader (ensemble) (Dhingra et al., 2016) EpiReader (ensemble) (Trischler et al., 2016b) IA Reader (ensemble) (Sordoni et al., 2016) AoA Reader (single model) (Cui et al., 2016a)	76.9	71.9 71.8 72.0 72.0	72.1 73.6 74.1 72.2	69.4 70.6 71.0 69.4

Summary

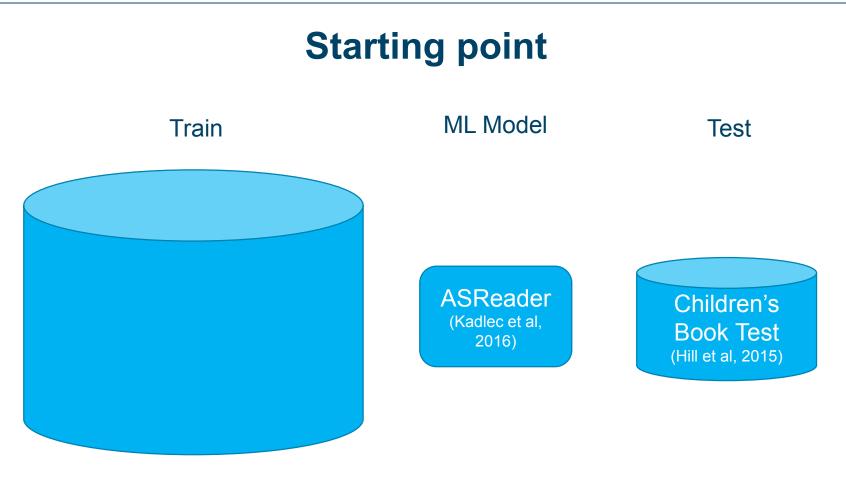
- Easy to implement
- Trains faster than attention blending NNs (e.g., Stanford's system)

Finding a Jack-of-All-Trades: An Examination of Transfer Learning in Text Comprehension

Kadlec, R., Bajgar, O., Hrinčár, P., Kleindienst, J. IBM Watson, Prague lab

Generalization is the key

IBM Watson


Cloze style questions Children's Book Test (Hill et al 2015)

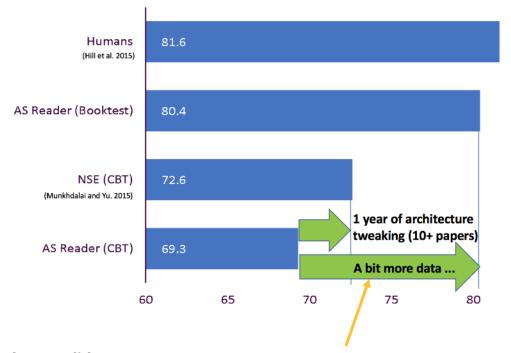
4 He 's started in with a spite at you on general principles , and the boys know it . 5 They know he 'll back them up in secret , no matter what they do , just to prove his opinions . 6 Cropper is sly and slippery , and it is hard to corner him . '' 7 `` Are the boys big ? '' 8 queried Esther anxiously . 9 `` Yes .
10 Thirteen and fourteen and big for their age . 11 You ca n't whip 'em that is the trouble . 12 A man might , but they 'd twist you around their fingers .
13 You 'll have your hands full , I 'm afraid . 14 But maybe they 'll behave all right after all . '' 15 Mr. Baxter privately had no hope that they would , but Esther hoped for the best.
16 She could not believe that Mr. Cropper would carry his prejudices into a personal application . 17 This conviction was strengthened when he overtook her walking from school the next day and drove her home . 18 He was a big , handsome man with a very suave , polite manner . 19 He asked interestedly about her school and her work , hoped she was getting on well , and said he had two young rascals of his own to send soon . 20 Esther felt relieved .
Q: She thought that Mr had exaggerated matters a little . C: Baxter, Cropper, Esther, course, fingers, manner, objection, opinion, right, spite. a: Baxter

~ 200k examples (CN+NE)

Hill, F., Bordes, A., Chopra, S., & Weston, J. (2015). The Goldilocks Principle: Reading Children's Books with Explicit Memory Representations

BookTest (Bajgar et al, 2016) 14M examples CBT dev/test 2k examples

Bajgar, O., Kadlec, R., & Kleindienst, J. (2016). Embracing data abundance: BookTest Dataset for Reading Comprehension. http://arxiv.org/abs/1610.00956



BookTest

	Named entity		Common noun	
	valid	test	valid	test
Humans (context+query) (Hill et al., 2015)	NA	81.6	NA	81.6
AS Reader (ensemble) (Kadlec et al., 2016)	76.2	71.0	72.4	67.5
GA Reader (ensemble) (Dhingra et al., 2016)	75.5	71.9	72.1	69.4
EpiReader (ensemble) (Trischler et al., 2016b)	76.6	71.8	73.6	70.6
IA Reader (ensemble) (Sordoni et al., 2016)	76.9	72.0	74.1	71.0
AoA Reader (single model) (Cui et al., 2016a)) 77.8	72.0	72.2	69.4

Embracing data abundance

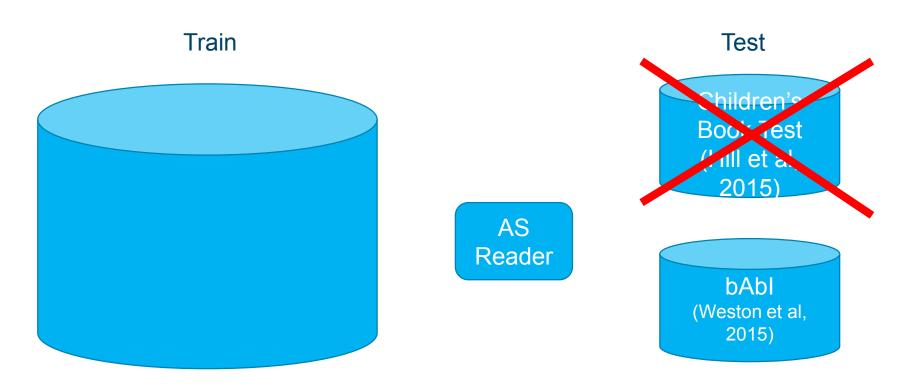
What we did: We took the successful **AS Reader** model (Kadlec et al. 2016) and examined how big an improvement more data can bring by training it on BookTest and evaluating it on CBT which allows us to compare it to the many models previously tested on CBT

BookTest

Is there potential for further growth?

Human study

- Performed on the ~20% of examples where AS Reader failed


Dataset	% correct answers
Named Entities	66%
Common Nouns	82%

There's still plenty of space for improvement!

opportunity for other teams to improve on BookTest

Transfer learning?

BookTest (Bajgar et al, 2016) 14M examples

IBM Watson Simple testing tasks: bAbl tasks

Task 1: Single Supporting Fact

Mary went to the bathroom. John moved to the hallway. Mary travelled to the office. Where is Mary? A:office

Task 3: Three Supporting Facts

John picked up the apple. John went to the office. John went to the kitchen. John dropped the apple. Where was the apple before the kitchen? A:office

Task 5: Three Argument Relations

Mary gave the cake to Fred. Fred gave the cake to Bill. Jeff was given the milk by Bill. Who gave the cake to Fred? A: Mary Who did Fred give the cake to? A: Bill

Task 2: Two Supporting Facts

John is in the playground. John picked up the football. Bob went to the kitchen. Where is the football? A:playground

Task 4: Two Argument Relations

The office is north of the bedroom. The bedroom is north of the bathroom. The kitchen is west of the garden. What is north of the bedroom? A: office What is the bedroom north of? A: bathroom

Task 11: Basic Coreference

Daniel was in the kitchen. Then he went to the studio. Sandra was in the office. Where is Daniel? A:studio

Task 13: Compound Coreference

Daniel and Sandra journeyed to the office. Then they went to the garden. Sandra and John travelled to the kitchen. After that they moved to the hallway. Where is Daniel? A: garden

Task 15: Basic Deduction

Sheep are afraid of wolves. Cats are afraid of dogs. Mice are afraid of cats. Gertrude is a sheep. What is Gertrude afraid of? A:wolves

Task 12: Conjunction

Mary and Jeff went to the kitchen. Then Jeff went to the park. Where is Mary? A: kitchen Where is Jeff? A: park

Task 14: Time Reasoning

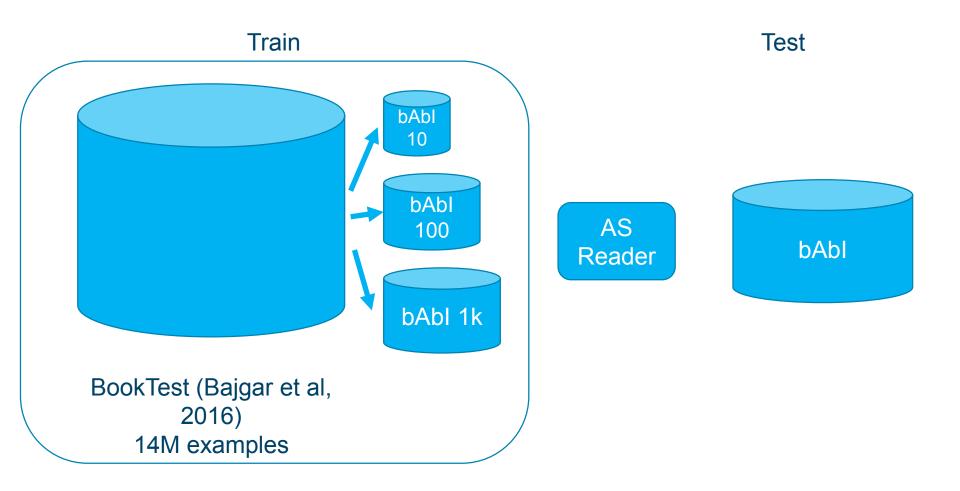
In the afternoon Julie went to the park. Yesterday Julie was at school. Julie went to the cinema this evening. Where did Julie go after the park? A:cinema Where was Julie before the park? A:school

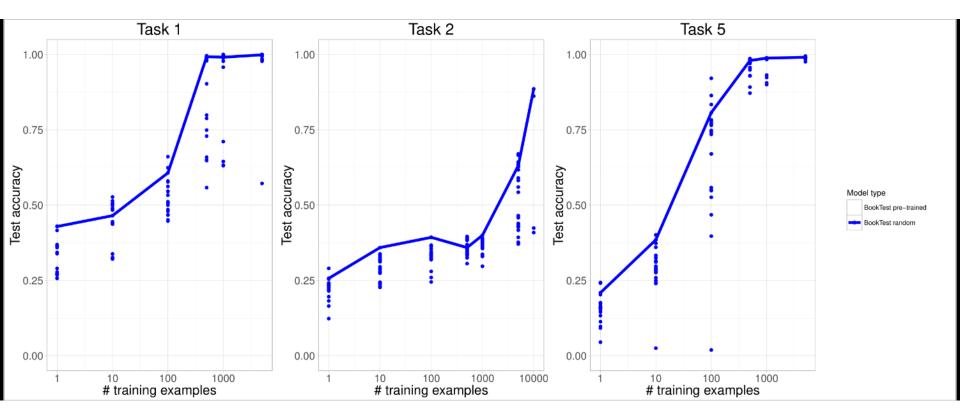
Task 16: Basic Induction

Lily is a swan. Lily is white. Bernhard is green. Greg is a swan. What color is Greg? A:white

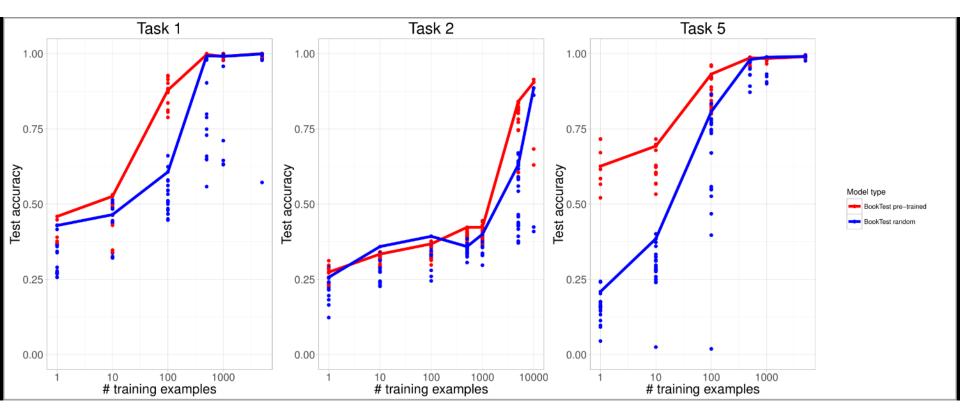
Can it generalize what it learned? Not really ...

	Model:	Random	Rnd cand.	MemN2N (single) (PE LS RN)	MemN2N (single) (PE LS LW RN)	DMN+ (single)		ASReader
	Train dataset Test dataset	not trained	bAbI 10k	bAbI 1k	bAbI 10k	bAbI 10k	bAbI 10k	BookTest 14M
1	Single supporting fact	7.80	31.20	100.00	100.00	100.00	100.00	37.30
2	Two supporting facts	4.40	26.96	91.70	99.70	99.70	91.90	25.80
3	Three supporting facts	3.40	19.14	59.70	97.90	98.90	86.00	22.20
4	Two-argument relations	10.50	33.58	97.20	100.00	100.00	100.00	50.30
5	Three-argument relations	4.40	21.42	86.90	99.20	99.50	99.80	67.60
11	Basic coreference	6.20	30.42	99.10	99.90	100.00	100.00	33.00
12	Conjunction	6.70	27.25	99.80	100.00	100.00	100.00	30.40
13	Compound coreference	5.60	27.73	99.60	100.00	100.00	100.00	33.80
14	Time reasoning	5.00	27.82	98.30	99.90	99.80	95.00	27.60
15	Basic deduction	5.20	37.20	100.00	100.00	100.00	96.70	39.90
16	Rasic induction	7.50	45.65	98 70	48 20	54 70	50.30	15 10

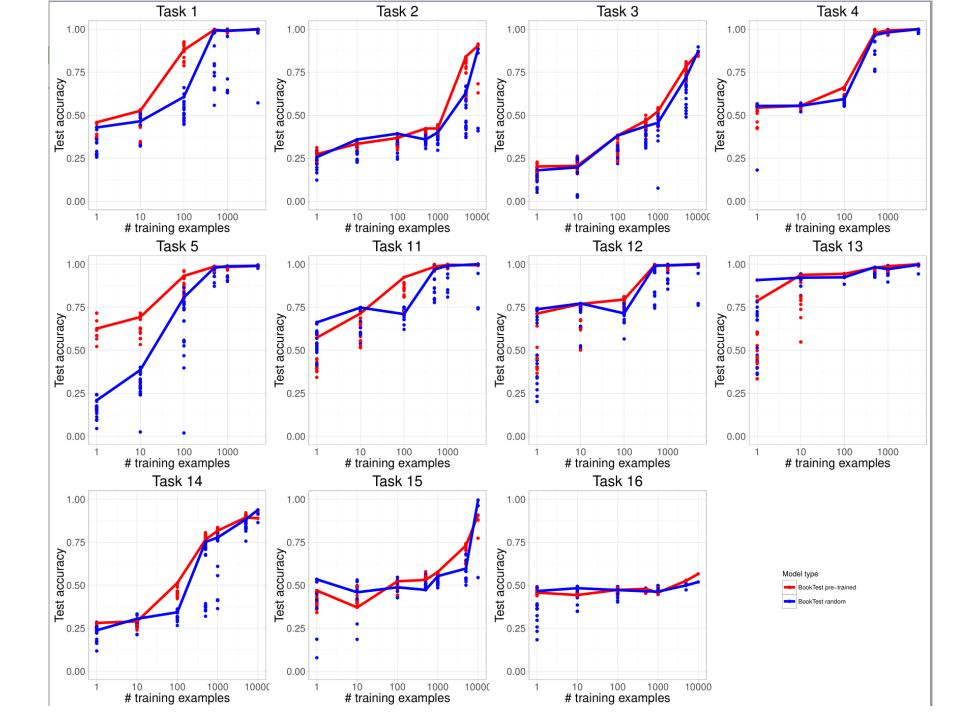

BA

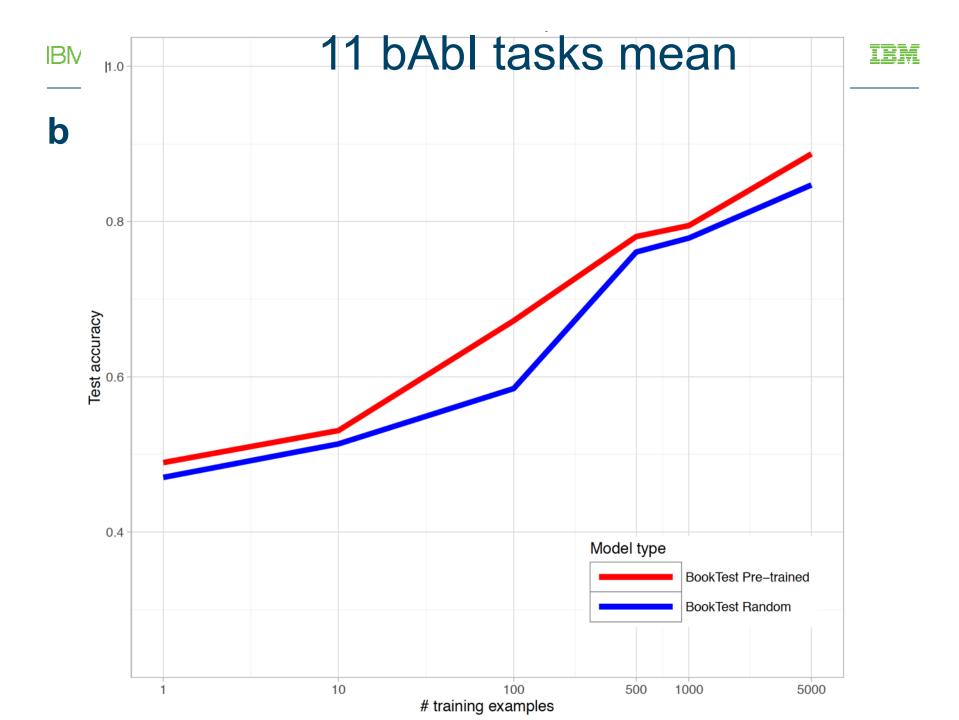

19

Finetuning - bAbl



2nd periment: It does better with target-adjustment!




IEM

2nd Experiment: It does better with target-adjustment!

T

Knowledge Base Completion

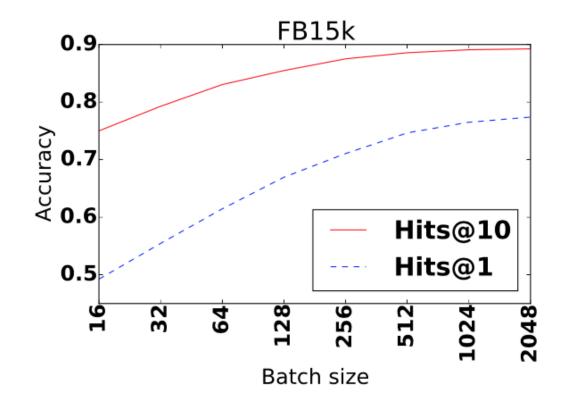
Kadlec, R., Bajgar, O., & Kleindienst, J. (2017). Knowledge Base Completion: Baselines Strike Back. *Repl4NLP Workshop at ACL 2017*.

Knowledge base completion

- Goal
 - Understand structured data
 - Given KG train NN model that can predict missing information
 - Entity prediction:
 - given query (subject, predicate, ?)
 - predict the correct object

KBC: Our work

- We evaluated performance of baseline models on standard datasets
 - FB15k (derived from Freebase)
 - WN18 (derived from WordNet)
- To our surprise a simple baseline --- DistMult model (Yang et al. 2015) with proper training objective scored competitively


IBM Watson

Our work: Results

• DistMult is in top 3 results for 4 out of 6 commonly reported metrics!

	Filtered						Extra	
Method		WN18	8		FB15	ĸ	Extra	
	MR	H10	MRR	MR	H10	MRR	EX	
SE (Bordes et al., 2011)	985	80.5	-	162	39.8	-		
Unstructured (Bordes et al., 2014)	304	38.2	-	979	6.3	-		
TransE (Bordes et al., 2013)	251	89.2	-	125	47.1	-		
TransH (Wang et al., 2014)	303	86.7	-	87	64.4	-		
TransR (Lin et al., 2015b)	225	92.0	-	77	68.7	-		
CTransR (Lin et al., 2015b)	218	92.3	-	75	70.2	-		
KG2E (He et al., 2015)	331	92.8	-	59	74.0	-		
TransD (Ji et al., 2015)	212	92.2	-	91	77.3	-	0	
lppTransD (Yoon et al., 2016)	270	94.3	-	78	78.7	-	None	
TranSparse (Ji et al., 2016)	211	93.2	-	82	79.5	-	\mathbf{z}	
TATEC (Garcia-Duran et al., 2016)	-	-	-	58	76.7	-		
NTN (Socher et al., 2013)	-	66.1	0.53	-	41.4	0.25		
HolE (Nickel et al., 2016)	-	94.9	0.938	-	73.9	0.524		
STransE (Nguyen et al., 2016)	206	93.4	0.657	69	79.7	0.543		
ComplEx (Trouillon et al., 2017)	-	94.7	<u>0.941</u>	-	84.0	0.692		
ProjE wlistwise (Shi and Weniger, 2017)	-	-	-	<u>34</u>	88.4	-		
IRN (Shen et al., 2016)	249	95.3	-	38	<u>92.7</u>	-		
RTransE (García-Durán et al., 2015)	-	-	-	50	76.2	-		
PTransE (Lin et al., 2015a)	-	-	-	58	84.6	-		
GAKE (Feng et al., 2015)	-	-	-	119	64.8	-	Path	
Gaifman (Niepert, 2016)	352	93.9	-	75	84.2	-		
Hiri (Liu et al., 2016)	-	90.8	0.691	-	70.3	0.603		
R-GCN+ (Schlichtkrull et al., 2017)	-	<u>96.4</u>	0.819	-	84.2	0.696		
NLFeat (Toutanova and Chen, 2015)	-	94.3	0.940	-	87.0	0.822		
TEKE_H (Wang and Li, 2016)	114	92.9	-	108	73.0	-	Text	
SSP (Xiao et al., 2017)	156	93.2	-	82	79.0	-	F	
DistMult (orig) (Yang et al., 2015)	-	94.2	0.83	-	57.7	0.35		
DistMult (Toutanova and Chen, 2015)	-	-	-	-	79.7	0.555		
DistMult (Trouillon et al., 2017)	-	93.6	0.822	-	82.4	0.654	None	
Single DistMult (this work)	655	94.6	0.797	42.2	89.3	0.798	z	
Ensemble DistMult (this work)	457	95.0	0.790	35.9	90.4	0.837		

KBC: Our work - Implications

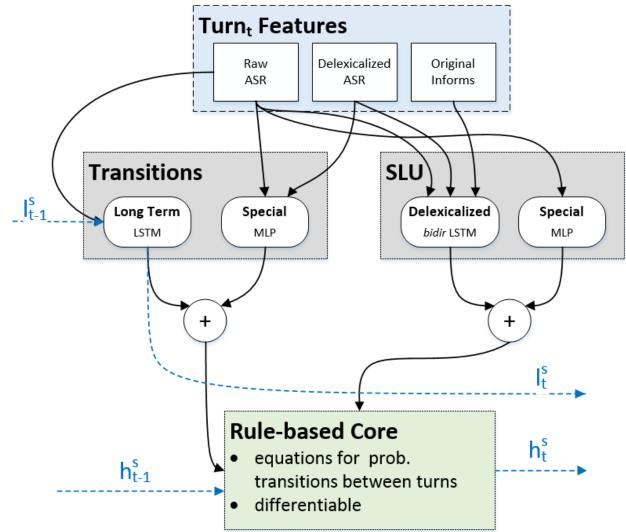
- DistMult assumes all relations are symmetric!
- =>
- Either

$$s(\mathbf{h}, \mathbf{r}, \mathbf{t}) = \mathbf{h}^T \cdot W_{\mathbf{r}} \cdot \mathbf{t} = \sum_{i=1}^N h_i r_i t_i$$

- The datasets are odd, or
- Current standard metrics are improper, or
- Previous models weren't pushed to their limits

Hybrid Dialog State Tracker

M Vodolán, R Kadlec, J Kleindienst EACL 2017


Belief Tracking

- Accumulation of evidence about user goal
- Helps to improve ASR misunderstandings during dialog

	Belief state		
U: I would restaurant with indian food <i>SLU: italian ~ 0.6, indian ~ 0.4</i>	italian ~ 0.6 indian ~ 0.4		
M: What type of food would you like?			
U : Indian <i>SLU: indonesian ~ 0.6, indian ~ 0.4</i>	<i>indian ~ 0.6</i> <i>italian ~ 0.2</i> <i>indonesian ~ 0.2</i>		

HDST with ASR Features – Architecture

HDST with ASR Features – SLU Motivation

Delexicalized unit

I don't want %value% %slot%

Specialized unit

HDST with ASR Features – Results

- ✤ DSTC2 (2014)
 - restaurant search
 - ✤ 2 000 training dialogs

	dstc2_test					
	ASR	Batch ASR	Accuracy	L2	post DSTC	test validated
Hybrid Tracker – this work			.810	.318		
DST2 stacking ensemble [11]		\checkmark	.798	.308		
Hybrid Tracker – this work		\checkmark	.796	.338	\checkmark	
Williams [4]		\checkmark	.784	.735		
Hybrid Tracker – this work			.780	.356		
Williams [4]			.775	.758		
Henderson et al. [5]			.768	.346		
Yu et al. [12]			.762	.436	\checkmark	

Table 1: Joint slot tracking results for various systems reported in the literature. The trackers that used ASR/Batch ASR have $\sqrt{}$ in the corresponding column. The results of systems that did not participate in DSTC2 are marked by $\sqrt{}$ in the "post DSTC" column. The first group shows results of trackers that used dstc test data for validation. The second group lists individual trackers that use ASR and Batch ASR features. The third group lists systems that use only the ASR features.

Quantitave evaluation of Deep Learning models

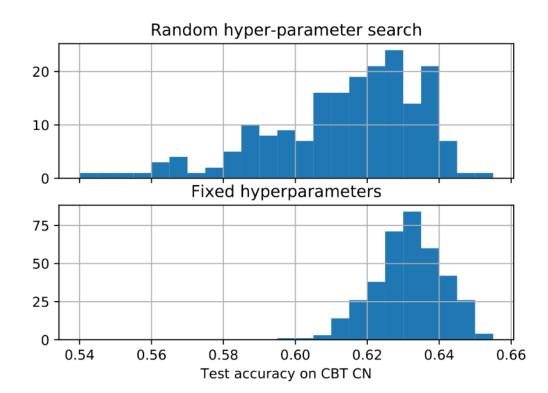
Ongoing work

How do we tell which architecture / algorithm is better?

Quantitative evaluation

- Need to choose:
 - Metric
 - E.g. Accuracy, BLEU, cross-entropy, Hits@10
 - Each covers a different aspect of performance
 - Dataset
 - ImageNet, SQuAD, Penn Treebank
 - Again measures only some subskills
 - Comparison methodology
 - Comparison criterion
 - Statistical technique

Ideally an architecture should be evaluated across multiple datasets/metrics


Current standard in Deep Learning

- 1 metric
- 1 dataset
- sometimes probably cherry-picked from among several

Problems

- Usually the result of the best single model is reported
- Does not account for random variation in metric scores

Thank you! Any questions?