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Complex Systems: neither random nor fully ordered




Brain: complex function, structure, dynamics
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Characterizing brain state: Functional Connectivity
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Characterizing brain state: Functional Connectivity

m Functional connectivity (FC): statistical dependence
between activity of remote brain areas

m Typically measured by correlation of time series

m Can be measured both during resting state or a task

m In fMRI, FC is supported by LFF

m Resting networks correspond to functional brain networks



Dependence: how to measure?

cov(X,Y) _ E[(X—px)(Y—py)]

Pearson’s correlation px,y = =7~ P



Dependence: how to measure?

Pearson’s correlation py,y = <21 — ElCmd(Yopv)]
Independence(X, Ylndependent) p(X Y)= ( )p(Y)

Mutual information: I(X; Y) = 3 cy 3 ,cx P(X, ¥) log (p(g;a))
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Pearson’s correlation py,y = <21 — ElCmd(Yopv)]
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Practical problem

m linear correlation

m widely used, simple concept
m generally effective
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Practical problem

m linear correlation
m widely used, simple concept
m generally effective
m BUT ... neuronal and hemodynamic processes nonlinear!

= nonlinear methods proposed for FC
m HOWEVER ... nonlinear methods also have problems!

m robustness
m implementation
m interpretation

= Is linear correlation sufficient for fMRI FC?



Assumption: Gauss-
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Assumption: Gaussianity

m for bivariately normal distributions (“linear dependence”):

m linear correlation py,y fully captures the dependence
m mutual information between variables is
I(X,Y) = lgauss(px,y) = _%/09(1 - pg(,Y)
m for general bivariate distribution (under marginal
normality):
m linear correlation is not sufficient to capture the dependence
m mutual information between variables is
I(X,Y) > ~Llog(1 - i )
m = we can quantify the extra dependence (mutual
information) that is not captured by linear correlation:

lextra = I(X, Y) - /Gauss(PX,Y)



Strategy vizualization
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Example: brain activity dependence network (fMRI)

m 24 fMRI sessions (3T, TR=2000 ms, 3 x 3 x 3.5 mm?3, 300
volumes), standard data preprocessing

m AAL based parcellation to 90 regions
m each region represented by average activity time series

m 90-by-90 matrices of linear and nonlinear connectivity
m difference between linear and nonlinear connectivity
m quantified
m tested
m mutual information estimated using the equiquantal method

B gauss(rx,v) is estimated by computing mutual information on linearized
version of the data (Fast Fourier Transform surrogates) as finite sample
estimates of linear correlation and mutual information have different
properties (such as bias and variance)



Results
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Nonlinear coupling in climate recordings

m Nonlinear interactions in (monthly) temperature data?
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Nonlinear coupling in climate recordings

m Nonlinear interactions in (monthly) temperature data?
m nonlinear interaction: deviation from linear interaction



Nonlinear coupling in climate recordings

m Nonlinear interactions in (monthly) temperature data?
m nonlinear interaction: deviation from linear interaction

m existence

strength

localization
sources/form/origin

relevance for specific analysis
treatment



Data and methods

Data: NCEP/NCAR reanalysis dataset
m surface air temperatures
m monthly data (years 1948 - 2007; 720 timepoints)
m global grid 73 x 144 points (2.5 deg x2.5 deg sampling)
m yearly cycle removed (anomalies)




Results: Existence

MI in data (bits)
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Results: Existence

MI in data (bits)

0 05 1 15
MI in surrogate data (bits)

Eyeball method: not much nonlinearity
Statistical testing: 15% links above 95th percentile
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Localization of nonlinear contributions

mean MI of a node
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Localization of nonlinear contributions

mean extraMI of a node

mean MI of a node mean extraMI of a node (relative to meanMI)
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Form/origin

m introduce conservative preprocessing: month-wise
variance equalization



Form/origin

m introduce conservative preprocessing: month-wise
variance equalization

MI in data (bits)
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Form/origin

m introduce conservative preprocessing: month-wise
variance equalization

MI in data (bits)
M in data (bits)
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MI in surrogate data (bits)

0.3 1 15
MI in surrogate data (bits)

Statistical testing against surrogates: 8% links above 95th
percentile



Form/origin
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Temperature anomalies:

mean extraMI of a node
mean Ml of a node mean extraMI of a node (relative to meanMI)
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After additional normalization of variance:
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What about remaining ‘non-linearities’?




Nonstationarity ... and detecting brain states
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Nonstationarity .

and detecting brain states

FIGURE 4 | Time series of SL networks. (A) Each row in the SL matrix

comesponds to an individual network (examples are shown in theinserts at the
left). These networks axhibit periods of relative topological invarianca (top two
inserts), abrupt transitions (third insart from the top), and racurrences (bottom
insert). (B) Normalized cosine similarity matrix between all pairs of SL vectors
for the recording paried shown in A. Hot colors represent pairs of highly simitar
networks, codl colors reprasent dissimilarity. The presence of block structura

along the diagenal of the matrix suggest periods of quasi-stability and rapid
intermittent transitions. “Hot" off-diagonal patches suggest recurrences of
networks. (C), Cross-comelation matrix of adge time series reorderad to
reveal clustars of edge communities, as detactad in the epoch shown in panal
A. D). Plots show topographic representations of edges constituent to the
communities shown at the left. As such, each edge community is the set of
edges whosa time courses are strongly comalatad with ane anather



Detecting brain states: [Betzel et al,1
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FIGURE 6 | ) similarity matrix from one recording epoch (compara with Figura 4B) with state boundariss
‘overlaid. (B) Cumulative distributions of state durations.(in millseconds) aggregated across all recording epochs and frequency bands.
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Detecting brain states: [Betzel et al;12],[JH et al., ’

A B
1
09-
08
07
<08
%
Aos
% 04
03
Y # broadband
y A theta
0. © alpha
7 beta
10 200 00 400 500

X (ms)

FFIGURE 6 | Network states and durations. (A) Representztive similzrity matrix from one racording epoch (campars with Figure 4B) with state boundaries
‘overlaid. (B) Cumulative distributions of state durations (in millsaconds) aggregated across all recording epochs and fraquency bands.
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The network theory bet for real systems




The network theory bet for real systems
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The network invasion into neuroscience

Keyword count in neuroscience (according to Scopus):
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The network invasion into neuroscience
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Small-world property

Regular

Small-world

p=0 ———————————————————> p=1
Increasing randomness

[Watts and Strogatz, 1998]
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Small-world property

Regular Small-world Random

% G

P

o — 5 p=1
Increasing randomness

[Watts and Strogatz, 1998]
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Small-world in the brain

The brain correlation matrix is a small world:

MR van den Heuvel et o/ Newrolma g 42 (2008) 528539
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The brain is a small
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The brain is a small world...

and randomly connected system also...

Xt = AXi—1 + €



The brain is a small world...

and randomly connected system also...

Xt = AXi—1 + €




The brain is a small world...

and randomly connected system also...

Xt = AXi—1 + €

Ls=2.157,LF = 2.308, Cg = 0.1081, Cr = 0.2355, \ =
1.07,~ = 2.1778, = 2.0353. [JH et al., 2012, Chaos]
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How strong is the effect?
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How strong is the effect?
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Is this the explanation for small-world in real data?

Problem: choice of the null hypotheses?
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Solution: a size and coupling-distribution-matched linear vector
autoregressive process



Is this the explanation for small-world in real data?

Problem: choice of the null hypotheses?
Solution: a size and coupling-distribution-matched linear vector
autoregressive process

m Small-world indices were computed in the same way for
data and for 'scrambled interaction’ time series. This was
modeled by fitting an vector autoregressive (VAR) process
of order 1 to the BOLD time series:

Xt =c+ AXi_1 + ey, (1)

(where cis a N x 1 vector of constants, Aisa N x N
matrix and e; is a N x 1 vector of error terms) and
subsequently randomly scrambling A.

m To control for the effects of approximation by a VAR
process, a realization of the fitted VAR model with
scrambling omitted was also analyzed.



Data

10 minutes, 240 volumes of resting state fMRI (BOLD)
84 (48 males, mean age + SD: 30.83 + 8.48) healthy
volunteers

3T Siemens Trio scanner (GE-EPI, TR/TE=2500/30 ms,
voxel=3x3x3mm)

A 3D high-resolution T1-weighted image was used for
anatomical reference.

slice-timing correction, motion correction, spatial
normalization to MNI

90 parcels from the Automated Anatomical Labeling (AAL)
atlas

orthogonalized wrt motion parameters, white matter and
CSF signal

linear detrending, band-pass filtering (Butterworth filter
0.01 - 0.08 Hz)

FC matrix computed by correlation and binarized to 20
percent density



Result: Brain is as 'small-world’ as if randomly rewired




Result: Brain is as 'small-world’ as if randomly rewired

Brain is as 'small-world’ as ...
a size&density-matched randomly coupled linear AR(1) system.
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And what about the climate?
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Detecting causality and measuring information flow

m Granger causality - a variable is considered causal with
respect to some target variable, if its inclusion in a model
improves the prediction of the target

m Bivariate Granger causality model

ot ) .t ) oo .
Xt=> aX . +n  X= bX_,+) c:X_ +6
=1 T=1

=1

m Granger causality index

o var (1)
FX/—>X’ = lnvar(¢t)




Causality - linear and nonlinear

m Granger causality: X ‘Granger causes’ Y iff including the
past of Y in a (linear) model of X improves the model fit

- var (1)
FX/—)X’ = lnvar(¢t) O




Causality - linear and nonlinear

m Granger causality: X ‘Granger causes’ Y iff including the
past of Y in a (linear) model of X improves the model fit

- var (1)
FX/—>X’ = lnvar(¢t) O

m Transfer entropy: the difference of entropies of Y;4
conditioned on only Y; or also on X;:

Txoy = I(Xt, Y1 Ye) = H(Yea | Ye) = H(Yera | Ye Xo).



Causality - linear and nonlinear

m Granger causality: X ‘Granger causes’ Y iff including the
past of Y in a (linear) model of X improves the model fit

- var (1)
FX/—>X’ = lnvar(¢t) 0

m Transfer entropy: the difference of entropies of Y;4
conditioned on only Y; or also on X;:

Txoy = I(Xt, Y1 Ye) = H(Yea | Ye) = H(Yera | Ye Xo).

m for stationary linear Gaussian processes GC and TE

equivalent
1
Tx—y = EFX%Y



a) Indirect causality b) Spurious causality
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Multivariate causal models

a) Indirect causality b) Spurious causality

m Multivariate Granger causality model

400 n +oo n
X=>" 3 deo Xt X =)D e X+
=1 k=1,k#j =1 k=1

m Multivariate model is necessary to distinguish between
direct and indirect causality, bivariate model may also lead
to detection of spurious links



Advantages of causality analysis

m provides directional information

m takes care of indirect connections (if mediating variables
included)

m but: estimation more difficult due to higher dimensionality
of variables
m proposed solutions:
m reducing dimensionality in time and space
m iterative estimation of conditional independence structure
(Runge, PRL, 2012; Sun, Physica D, 2014; Kugiumtzis,
2012; see Hlinka et al, 2018, arxiv for comparative review)



Example: climate (temperature) interaction network
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Example: climate (temperature) interaction network

Data: daily surface temperature anomalies from NCEP/NCAR
reanalysis dataset on a geodesic grid
Methods: correlation vs. Granger causality



Example: climate (temperature) interaction network

Data: daily surface temperature anomalies from NCEP/NCAR
reanalysis dataset on a geodesic grid
Methods: correlation vs. Granger causality




Remainder: Climate interactions (non)linearity

= we can quantify the extra dependence (mutual information /)
that is not captured by linear correlation p:

lextra(X, Y) = Ix.y — %/09(1 - Pg(,y)

MI in data (bits)
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[JH et al., Climate Dynamics, 2014]



Stability of causality estimators

Nonlinear causality estimators might pay for generality with
instability: linear Granger vs. estimates of transfer entropy.



Stability of causality estimators

Nonlinear causality estimators might pay for generality with
instability: linear Granger vs. estimates of transfer entropy.
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Causalities in climate

600 strongest Granger causalitites
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Winds - detail

Wind field at 1000hPa level and temperature field
TOTAL

min speed - 0.07ms "', max speed - 9.90ms ", average speed - 3.63ms "
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Causalities in climate - detail

Strongest Granger causalities for each grid point

3 hP:
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s TOT
7 link(s) longer than 2400km
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[JH et al, 2017, Chaos]
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Advanced application: causal climate network
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Summary
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Challenges/generalizations

large network estimation
nonlinear interaction estimation
event-like data

oscillatory signals

chaotic systems

higher-order dependences
nonstationarity
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Result: Brain is as 'small-world’ as if randomly rewired




Result: Brain is as 'small-world’ as if randomly rewired

Brain is as 'small-world’ as ...
a size&density-matched randomly coupled linear AR(1) system.
Different atlas (AAL, 90 regions):
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Detailed results
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Left: relative clustering (median, quartiles, extremes, outliers)
for data, VAR model and randomized VAR model.
Right: relative mean path length.

The small-world property is driven by the clustering coefficient



Modelling perturbation of epileptic dynamics

The dynamics of neural population activity is modeled by:
av/dt = —1(v® + v — a),

Dynamics of the population excitability parameter a are
modelled as

da/dt = ta(tanhc(h — v) — 0.5),
We set 7o =1, 75, = 0.001, ¢ = 1000 and h = —-0.44 + 1.6a.



A Bifurcation
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B Phase plane diagram
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Do perturbations cause or delays seizures?
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[Chang et al., submitted]
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'Realistic’ Epileptor model [Jirsa et al, 2014]

4 =y — f1(@1,22,2) — 2 + Leann
% =c—dz? —yl
§2 =rfa(s(x1 — m0) +uz)
422 — gy + @5 — @ + Lpsz +0.0029 — 0.3(z — 3.5)
1
de = Z (v + fa(w2))
da — _0.01(g - 0.12y),
fi(z1,20,2) = (I'T’:l; - bm% ifz; <0
B —(slope — zg + 0.6(z — 4)?)z; if 21 >0
0 if 2y < —0.25
falen) = {azm +0.25) if 2y > —0.25.

Here, the x; and y; variables constitute a subsystem
responsible for fast oscillations, the xy and y; variables
constitute a second subsystem involved in spike wave events.
The slow permittivity variable is z.



Similar dual effect in modified Epileptor

Left: phase space visualization; Right: modelled time series
Top: unperturbed model dynamics; Middle: increased seizure
rate (A=1.8, P=0.0006); Bottom: decreased seizure rate
(A=1.2, P=0.00018)



Why I(X,Y) > —Llog(1 — p% y)?

Maximum entropy distributions:
m (0,1): uniform
m R: does not exist, but:
mR,o(X)=c N(u, o?)
mR2 Cov(X)=X%: N(i, X)
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Why I(X,Y) > —Flog(1 — p% y)?

Maximum entropy distributions:

m (0,1): uniform

m R: does not exist, but:

B R, o(X)=c N(u, ?)

mR2 Cov(X)=X%: N(i, X)

m What about minimal information distribution?
m/(X;Y)=HX)+H(Y)-H(X,Y)
m argmin [(X) £ N (u, T)
[ Ye;( if we fix H(X) and H(Y) by marginal normalization...
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