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The basic framework

Regression methods is one of the most widely used methods to cope with data
analysis.

Definition

The multiple linear regression model is the model

Yi = Xi,1β
0
1 + Xi,2β

0
2 + · · ·+ Xi,pβ

0
p − ei = XT

i β
0 − ei i = 1 . . . n.

or in the matrix notation
Y = Xβ0 − e,

Where

Yi is a random sequence of response variables,

Xi=(Xi,1,Xi,2, . . . ,Xi,p)
T is a random sequence of explanatory variables,

β0=(β0
1 , β

0
2 , . . . , β

0
p)T is a vector of unknown regression coefficients,

ei is a random sequence of unknown errors (disturbances).

Our main goal is to estimate the regression parameters β0.
Note: Random explanatory variables Xi ’s is generally correlated with error
terms ei ’s.
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The basic framework

Ordinary least squares method (OLS)

β̂(OLS) = arg min
β∈Rp

n∑
i=1

(Yi − XT
i β)2 = arg min

β∈Rp
(Y − Xβ)T (Y − Xβ)

β̂(OLS) = (XTX)−1XTY

In the certain conditions OLS is the best linear unbiased estimator
(BLUE) of β0.

In the certain conditions OLS is the best estimator among all unbiased
estimators (ordinary least squares method is best for multiple regression
when the iid errors are normal distributed).

OLS is not robust and consequently often gives false result for real data
(even a single outlier can totally offset the OLS estimator).
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The basic framework

Classical regression methods work well only under strict conditions and
assumptions.

What if

wrong observations in the data set occur?

assumptions are incorrect (e.g. orthogonality condition fails,
E [Xiεi ] 6= 0)?

The classical regression methods can be very misleading and the estimation can
be totally damaged.

Methods, which can deal with outliers and some violation of basic assumptions,
are called robust and they appeared for the first time in 1960s due to the works
of J. W. Tukey , P. J. Huber or F. R. Hampel. Some of the most used robust
regression estimators are M-Estimators, Least Trimmed Squares (LTS) or
Weighted Least Squares (WLS).
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Motivation

An example of outliers in y-direction and OLS estimate.
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Motivation

Data points and OLS estimation for the Hertzsprung-Russell Diagram of the
Star Cluster CYG OB1. The first variable is the logarithm of the effective
temperature at the surface of the star and the second one is the logarithm of
its light intensity.
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Motivation

Hertzsprung-Russell Diagram
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Robust regression

The main aims of robust statistics:

description of the structure best fitting the bulk of the data.

identification of deviating data points (outliers) or deviating substructures
for further treatment.

identification of highly influential data points (leverage points) or at least
warning about them.

deal with unsuspected serial correlations.

Two ways how to deal with regression outliers:

Regression diagnostics: where certain quantities are computed from the
data with the purpose of pinpointing influential points, after which these
outliers can be removed or corrected.

Robust regression: which tries to devise estimators that are not so
strongly affected by outliers.
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Robust regression

Influence function (IF)
Hampel (1968) introduced the approach to robustness based on the IF. The IF
measures the infinitesimal influence of an observation situated at the point x on the
value of the estimator (functional) T and allows to study local robustness properties
(another terms derived from the IF are Gross Error Sensitivity, Local Shift Sensitivity
or Rejection point).

Breakdown point
The breakdown point is a global measure of reliability (tell us when an estimator “still
gives some relevant information”).
Let D = {(X1,1, . . . , X1,p , Y1), . . . , (Xn,1, . . . , Xn,p , Yn)} be a sample of n data points,
and let T be a regression estimator so that β̂ = T (D). Consider all possible corrupted
samples D′ that are obtained by replacing any m of the original data points by
arbitrary values.
Let the maximum bias that can be caused by such a contamination be
bias(m, T , D) = sup

Z ′
‖T (D′)− T (D)‖

The breakdown point of the estimator T at the sample D is defined as

ε∗n(T , D) := min{
m
n

; bias(m, T , D) is infinite}
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Robust estimators

The set of requirements which we demand:

consistency

reasonably high efficiency

scale and regression equivariance

quite low gross-error sensitivity

low local shift sensitivity

finite rejection point

controllable breakdown point

existence of an algorithm with acceptable complexity and reliability of
evaluation
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M-estimators

M-estimators are based on the idea of replacing the squared residuals used in
OLS estimation by another function of the residuals.

M-estimators

β̂(M) = arg min
β∈Rp

n∑
i=1

ρ(ri (β)),

where ρ is a symmetric function with a unique minimum at zero.

Differentiating this expression with respect to the regression coefficients yields:

M-estimators
n∑

i=1

ψ(ri )Xi = 0,

where ψ is the derivative of ρ. The M-estimate is obtained by solving this
system of p equations.
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M-estimators

OLS , L1 are also M-estimators with ψ(t) = t for OLS and ψ(t) = sgn(t)
for L1 estimate.

M-estimators are unfortunately not scale equivariant even if they are
regression equivariant. Hence one has to studentizate the M-estimators
by an estimate of scale of disturbances σ̂ necessarily.

β̂(M) = arg min
β∈Rp

n∑
i=1

ρ

(
ri (β)

σ̂

)
,

One possibility is to use the median absolute deviation (MAD):

σ̂ = C median
i

(∣∣∣∣ri −median
j

(rj)
∣∣∣∣) ,

where C is a correction factor which depends on the distribution. For normally
distributed data C = 1.4826.
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M-estimators

The influence function with respect of Y0 can by bounded by choice of ψ , but
the influence function of M-estimators is unbounded in respect of X0. The
breakdown point of M-estimators is 0% due to the vulnerability to leverage
points.

Maronna and Yoahai (1981) showed, under certain conditions, that
M-estimators are consistent and asymptoticly normal.
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M-estimators

Huber minimax M-estimator

ψ(t) =

{
t if t < b
b sgn(t) if t ≥ b

where b is a constant.

Andrew M-estimator

ψ(t) =

{
sin(t) if − π ≤ |t| < π

0 otherwise

Tukey M-estimator

ψ(t) =

t
(
1−

( t
c

)2
)2

if |t| < c

0 otherwise

where c is a constant.

Hampel M-estimator

ψ(t) =


t if |t| < a
a sgn(t) if a ≤ |t| < b
c−|t|
c−b sgn(t) if b ≤ |t| < c
0 otherwise

where a, b and c are constants.
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M-estimators
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GM-estimators

Generalized M-estimators are introduced in order to bounding the influence
function of outlying Xi ’s by means of some weight function w .

GM-estimators

β̂(GM) = arg min
β∈Rp

n∑
i=1

w(Xi )
ρ(ri (β))

σ̂

The definition can be rewrite to
n∑

i=1

w(Xi )ψ
( ri
σ̂

)
Xi = 0.

Unfortunately Maronna, Buston and Yohai (1979) showed that the breakdown
point of GM-estimators can be no better than a certain value that decrease as
a function of p−1, where p is the number of regression coefficients.
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GM-estimators

The algorithm of Iteratively reweighted least squares with GM-estimates based
on some ψ function is following.

1 The first elementary estimate β̂(OLS) of β0.

2 Count the residuals ri (β̂) = Yi − Ŷi = Yi − XT
i β̂ i = 1 . . . n.

3 Count the estimate σ̂ of σ.

(e.g. MAD: σ̂ = 1.4826 median
i

(∣∣∣∣ri −median
j

(rj )
∣∣∣∣) )

4 Count the weights wi .

(e.g. Andrew’s ψ function: wi =
ψ(

ri
σ̂ )

ri
σ̂

)

5 Update the estimate β̂ by performing a weighted least squares with the
weights wi

Calculate β̂(WLS) = (XTWX)−1XTWY
6 Go back to item 2 and iterate until convergence
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Another robust estimators

R-estimation: procedure based on the ranks of the residuals.

S-estimators: procedure derived from a scale statistic in an implicit way.

MM-estimators: high-breakdown and high-efficiency estimators, where
the initial estimate is obtained with an S-estimator, and it is then
improved with an M-estimator.

Least median of squares (LMS): probably the first really applicable 50%
breakdown point estimator introduced by Rousseeuw (1984).

β̂(LMS) = arg min
β∈Rp

(
med

i
(r2

i (β))
)
.
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LTS-estimator

Least trimmed squares estimator - Rousseeuw (1984)

β̂(LTS) = arg min
β∈Rp

=
h∑

i=1

r2
(i)(β),

where r2
(1) ≤ . . . ≤ r2

(n) are the ordered squared residuals.

There always exists a solution for the LTS-estimator.

The LTS estimator is regression equivariant , scale equivariant and affine
equivariant.

If p > 1, h = [n/2] + [(p + 1)/2] then the breakdown point of the
LTS-estimator is

ε∗ := ([n − p]/2 + 1)/n.

The LTS can be very sensitive to a very small change of data or to a
deletion of even one point from data set (i.e. small change of data can
really cause a large change of the estimate).
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Implicit weighting and Least weighted squares (LWV)

For any β ∈ Rp define the ith rank residual as ri (β) = Yi − XT
i β and r2

(h)(β)
denotes the h-th order statistic among the squared residuals:

Method of the Least Weighted Squares (LWS) - Víšek (2000)

β̂(LWS,w,n) = arg min
β∈Rp

n∑
i=1

wi r2
(i)(β) = arg min

β∈Rp

n∑
i=1

w
(

i − 1
n

)
r2
(i)(β),

where weights wi are defined by the weight function w : 〈0, 1〉 → 〈0, 1〉, which
is absolutely continuous, w(0) = 1 and non-increasing with the derivative w ′(t)
bounded from below by the constant (−L).
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Implicit weighting and Least weighted squares (LWV)

For any i ∈ {1, . . . , n} let’s denote by π(β, i) the random rank of the i-th
residual as

π(β, i) = j ∈ {1, . . . , n} ⇔ r2
i (β) = r2

(j)(β)

Method of the Least Weighted Squares (LWS)

β̂(LWS,w,n) = arg min
β∈Rp

n∑
i=1

w
(
π(β, i)− 1

n

)
r2
i (β).

Normal equations for the Least Weighted Squares
n∑

i=1

w
(
π(β, i)− 1

n

)
Xi (Yi − XT

i β) = 0.

The problem, how to find the LWS estimator β̂(LWS,w,n), is equal to the
problem, how to find ”the best” classical weighted least squares β̂(WLS,w(best),n)

among n! possibilities.
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The basic framework

In econometrics, the explanatory variables are frequently assumed to be
correlated with the random errors p lim

( 1
nXTe

)
6= 0

If we now apply LS, LTS or LWS estimators, we get an inconsistent estimate.

Model in which the explanatory variables are measured with a random error

We suppose that Yi = Y0i − εi , Xi = X0i − θi
and that there exists β0 ∈ Rp×1 such that Yi + εi = (Xi + θi )β

0, i = 1 . . . n.

Assuming usually that E [εi ] = 0, E
[
ε2i

]
= σ2 ∈ (0,∞) and E [θi ] = 0,

E
[
θiθ

T
i

]
= Σθ nonsingular and E [θiεi ] = 0. If we consider now classical

regression model

Yi = X0iβ
0 − εi = (Xi + θi )β

0 − εi = Xiβ
0 + θiβ

0 − εi = Xiβ
0 + ei ,

we can easily find out that orthogonality condition is broken.

E [Xiei ] = E
[
(X0i − θi ) ·

(
θiβ

0 − εi
)]

= −Σθβ
0.

There are two possibilities how to cope with such a cases when the
orthogonality condition is broken and in addition the data set contains outliers.
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Instrumental variables (IV)

In econometrics, the explanatory variables X are usually assumed to be correlated with
the random error e, (i.e. p lim

( 1
nXT e

)
6= 0).

Suppose there are some variables Z, called instruments, that are uncorrelated with e
(E [Zi ei ] = 0) and the matrix of correlations between the variables in X and the
variables in Z is of maximum possible rank (E

[
ZiXT

i
]

= ΣXZ , rank(ΣXZ ) = p).

β̂(IV ) = (ZTX)−1ZTY = β0 +

(
1
n

n∑
i=1

ZiXT
i

)−1(
1
n

n∑
i=1

Zi εi

)
P−−−−→

n→∞
β0.

Normal equations for the Instrumental variables

n∑
i=1

Zi (Yi − XT
i β) = 0.

How to find proper instruments?
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Instrumental weighted variables (IWV)

Method of the Instrumental weighted variables (IWV) - Víšek (2007)

Let Z be any array of proper instrumental variables, then the instrumental weighted
variables estimator β̂(IWV ,w,n) is defined by the solution of normal equations

NEZ ,n(β) =
n∑

i=1

w
(

π(β, i)− 1
n

)
Zi

(
Yi − XT

i β
)

= 0,

If we compute all permutations π ∈ Pn

β̂(WIV ,n,W (π)) = (ZTW(π)X)−1ZTW(π)Y,

and we find the permutation πbest defined as

πbest = arg min
π∈Pn

n∑
i=1

w
(

πi − 1
n

)(
Yi − XT

i β̂(WIV ,n,W (π))
)2

then it holds

β̂(IWV ,n,w) = β̂(WIV ,n,W (πbest )) = (ZTW(πbest)X)−1ZTW(πbest)Y.

Let basic conditions be fulfilled. Then the sequence
{

β̂(IWV ,n,w)
}+∞

n=1
of the solutions

of normal equations NEZ ,n(β) = 0 is weakly consistent. Proof: Víšek (2007), another
approach Franc (2009).
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Selection of weighting function

The example of different regression lines β̂(IWV ,n,W (h)), for varying parameter
h = n

2 , . . . , n.
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Global minimum of weighted instrumental variables

Convex curves (120 different parabolas) that show the dependence of the cost
function (sum of weighted squared residuals) on parameter β ∈ R for certain
weights with minima in β̂(WIV ,n,W (π)).
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Algorithms

Classical algorithm is based on the idea of iterative re-weighting. The j + 1th
iteration of the IWV estimator is obtained as:

β̂

(
IWV ,n,W

(
β̂

(IWV ,n)
(j)

))
(j+1) = (ZTW

(
β̂

(IWV ,n)
(j)

)
X)−1ZTW

(
β̂

(IWV ,n)
(j)

)
Y,

where as the initial estimate β̂(IWV ,n)
(0) we can consider the simple OLS estimator

of p randomly picked different observations and

W (β) = diag {w1,w2, . . . ,wn} s wi = w
(
π(β, i)− 1

n

)
.

Another types of algorithms are based on on theory of simulated annealing and
use Metropolis-Hastings algorithm for Markov Chain - Monte Carlo (MCMC) or
on genetic algorithms.

The quality of the estimation consists not only in the choice of Instruments.
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Total Least Squares

The Total Least Squares method is viewed as a tool for deriving approximate linear
static models and is sometimes called Orthogonal Regression or Errors-in-variables
model.
Given an overdetermined set of n linear equations Y ≈ Xβ in p unknowns β.

the Ordinary Least Squares problem seeks to

β̂(OLS,n) = min
β∈Rp ,ε∈Rn

‖ε‖2 subject to Y + ε = Xβ.

the Data Least Squares problem seeks to

β̂(DLS,n) = min
β∈Rp ,Θ∈Rn×(p)

‖Θ‖F subject to Y = (X + Θ)β.

the Total Least Squares problem seeks to

β̂(TLS,n) = min
β∈Rp ,[ε,Θ]∈Rn×(p+1)

‖[ε, Θ]‖F subject to Y + ε = (X + Θ)β.

The norm ‖ ‖F is called the Frobenius norm

‖X‖F =

√√√√ n∑
i=1

p∑
i=1

x2
ij =

√
trace(XTX) =

√√√√min{n,p}∑
i=1

σ2
i =

√√√√rank(X)∑
i=1

σ2
i ,

where σi ’s are the singular values of the matrix X.
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LS x DLS x TLS fitting

The comparison of OLS, DLS and TLS estimate.
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Total Least Squares

TLS minimizes the sum of the squared orthogonal distances from the data
points to the fitting hyperplane.

β̂(TLS,n) = arg min
β∈Rp

n∑
i=1

∣∣νT (A− pi )
∣∣2

‖ν‖2 = arg min
β∈Rp

n∑
i=1

∣∣∣∣[βT ,−1
] [

Xi

Yi

]∣∣∣∣2
‖[βT ,−1]‖2

= arg min
β∈Rp

1
1 + ‖β‖2

n∑
i=1

|Yi − Xiβ|2 = arg min
β∈Rp

‖Y − Xβ‖√
1 + ‖β‖2

.

where A is arbitrary point from the fitting hyperplane ρ and ν =
[
βT ,−1

]T
is

the normal vector of ρ.
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SVD

Singular Value Decomposition Theorem
Let us consider X ∈ Rn×p, rank(X ) = r then there exist orthonormal matrices
U = [u1, . . . , ur ] ∈ Rn×r and V = [v1, . . . , vr ] ∈ Rp×r such that

X = UΣVT , Σ = diag {σ1, . . . , σr} ∈ Rr×r ,

where σ1 ≥ σ2 ≥ . . . ≥ σr > 0.

The dyadic expansion (decomposition) of the matrix X is following

X =
r∑

i=1

σiuivT
i

Numbers σ1 ≥ σ2 ≥ . . . ≥ σr > 0 are square roots of nonzero eigenvalues of
matrices XTX and XXT related to eigenvectors {u1, . . . , ur} and {v1, . . . , vr}.
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Golub-Van Loan Theorem

Suppose that the matrix [Y,X] has full column rank.

Theorem

Let the singular value decomposition of [X,Y] =
r∑

i=1
σiuivT

i and σmin(X) be the

smallest singular value of X. If σmin(X) > σp+1, then the TLS solution

β̂(TLS,n) = − 1
vp+1,p+1

[v1,p+1, . . . , vp,p+1]
T

exists and is the unique solution to Y0 = X0β and the corresponding TLS
correction matrix is given by

[ε,Θ] = σp+1up+1vT
p+1.

Since singular vectors vi ’s are eigenvectors of the matrix [Y,X]T [Y,X], then
β̂(TLS,n) satisfies

β̂(TLS,n) = (XTX− σ2
p+1I)

−1XTY
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Golub-Van Loan Theorem

Suppose that the matrix [Y,X] has full column rank.

Theorem

Let the singular value decomposition of [X,Y] =
r∑

i=1
σiuivT

i and σmin(X) be the

smallest singular value of X. If σmin(X) > σp+1, then the TLS solution

β̂(TLS,n) = − 1
vp+1,p+1

[v1,p+1, . . . , vp,p+1]
T

exists and is the unique solution to Y0 = X0β and the corresponding TLS
correction matrix is given by

[ε,Θ] = σp+1up+1vT
p+1.

Since singular vectors vi ’s are eigenvectors of the matrix [Y,X]T [Y,X], then
β̂(TLS,n) satisfies

β̂(TLS,n) = (XTX− σ2
p+1I)

−1XTY
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Golub-Kahan bidiagonalization

The computational stability and speed can by improved by using the
Golub-Kahan bidiagonalization to the matrix [X,Y]. This concept is called core
problem and has been developed by Paige and Strakoš (2006). The idea is to
find by the help of GKB two orthonormal matrices P,Q such that

PT [Y,XQ] =

[
b1 A11 0
0 0 A22

]
where the matrix A11 is lower bidiagonal with nonzero bidiagonal elements, has
full column rank, its singular values are simple and has minimal dimensions,
A22 has maximal dimensions and the first elements of all left singular vectors of
A11, are nonzero. These properties guarantee that the subproblem b1 ≈ A11β11

has minimal dimensions and contains all necessary and sufficient information
for solving the original problem Y ≈ Xβ. All irrelevant and redundant
information is contained in A22.
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Total Least Trimmed Squares (TLTS)

TLTS minimizes the sum of the h smallest squared orthogonal distances of
data points pi ’s from the pth dimensional fitting hyperplane ρ(β).
The j-th orthogonal distances is denoted by dj and defined by

dj =
|Yj − Xjβ|2

1 + ‖β‖2 .

Total Least Trimmed Squares

β̂(TLTS,n) = arg min
β∈Rp

h∑
i=1

d2
(i),

where h is an optional parameter satisfying n
2 ≤ h ≤ n and d2

(i) is the i-th least
squared orthogonal distance, i.e. for any β ∈ Rp

d2
(1)(β) ≤ d2

(2)(β) ≤ . . . ≤ d2
(n)(β).
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Total Least Weighted Squares (TLWS)

The infinite local sensitivity of TLTS can be improved by adding some
continuous weighting function and multiply the distances by a weights from
〈0, 1〉.

Total Least Weighted Squares

β̂(TLWS,w,n) = arg min
β∈Rp

n∑
i=1

w
( i−1

n

)
d2

(i)(β) =

= arg min
β∈Rp

n∑
i=1

w
(
π(β,i)−1

n

)
d2

i (β),

where weights wi are defined by the weight function w : 〈0, 1〉 → 〈0, 1〉, which
is absolutely continuous, w(0) = 1 and non-increasing with the derivative w ′(t)
bounded from below by a constant (−L), where L ≥ 0 and π(β, i) is the
random rank of the i-th residual.
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Mixed LS - TLS

If the linear modeling problem Y ≈ Xβ contains the intercept or some columns
of X are known exactly, the TLS solution does not give the accurate
estimation. The generalization of the TLS approach is called mixed least
squares - total least squares problem.

Y ≈ Xβ, Y ∈ Rn, X ∈ Rn×p, n > p,

partition X =
[
X(1),X(2)

]
X(1) ∈ Rn×p1 , X(2) ∈ Rn×p2

βT =
[
β(1)T , β(2)T

]
β(1) ∈ Rp1 , β(2) ∈ Rp2

and assume that the columns of X(1) are error free and p1 + p2 = p.

LS-TLS problem

β̂(LS−TLS,n) = min
β∈Rp ,[ε,Θ]∈Rn×(p2+1)

‖[ε,Θ]‖F

subject to Y + ε = X(1)β(1) + (X(2) + Θ)β(2).
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Mixed LS - TLS

Let a matrix
[
X(1),X(2)

]
be given, have full column rank and columns of X(1)

are error free. Suppose that 0 < p1 < p and compute the QR factorization of[
X(1),X(2),Y

]
= Q

[
R11 R12 RY1

0 R22 RY2

]
.

Then compute the ordinary TLS solution β̂(TLS,n−p1) of RY2 ≈ R22β which
gives the last p2 components of β̂(LS−TLS,n). The first p1 components we
obtain from the solution of following equation

R11β̂
(LS,p1) = RY1 − R12β̂

(TLS,n−p1).

The mixed LS-TLS solution is β̂(LS−TLS,n) =
[
β̂(LS,p1), β̂(TLS,n−p1)

]
.

Unfortunately this universal estimator is not robust and gives misleading results
when outliers occur.
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Robustified mixed LS - TLS

To compute the robustified mixed LS-TLS estimation we need to identify the
influential points from both parts and downweight them.

Let us compute the squared vertical distances of each data point from the
p1 + 1 dimensional hyperplane given by LS solution and squared orthogonal
distances of each data point from the p2 + 1 dimensional hyperplane given by
TLS solution. Discard n − h outermost points. Compute ordinary mixed
LS-TLS solution only for remaining data points. Repeat these two steps until
convergence. This estimation can be called mixed Least Trimmed Squares -
Total Least Trimmed Squares.
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Present and future work

Verify the properties of Least Trimmed Squares - Total Least Trimmed Squares
and Least Weighted Squares - Total Least Weighted Squares estimation trough
more simulations.

Prove some theoretical properties of these estimators such as consistency.
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Testing on real data set

Data for the Hertzsprung-Russell Diagram of the Star Cluster CYG OB1, which
contains 47 stars in the direction of Cygnus. The first variable is the logarithm
of the effective temperature at the surface of the star and the second one is the
logarithm of its light intensity.

Estimation of Hertzsprung-Russell diagram data set
β̂LS β̂TLS β̂LS−TLS β̂LTS β̂TLTS β̂LTS−TLTS

β1 6.7935 17.1124 35.4293 -7.3095 -26.0518 -19.9323
β2 -0.4133 -2.7973 -7.0574 2.7816 7.0074 5.6710
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Testing on real data set

Data points and various estimation lines for the Hertzsprung-Russell Diagram
of the Star Cluster CYG OB1.
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Thank you for attention.
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