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Introduction

Continuous Optimization

@ Seeks a (global) minimum of an arbitrary continuous function

@ The function is usually complex, multimodal and multidimensional
@ Usually an analytical gradient is available, but not always

@ Even less usual is analytical Hessian

@ The function is considered a black box = black-box optimization
@ Many different approaches, exhaustively mapped
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Application Environment

@ Project resulting from M. Hvizdos’ Master’s Thesis
@ Testing and benchmarking of optimization methods
@ Currently contains 18 methods and 33 testing functions

Optimization Library (1.0-SNAPSHOT)

Current value
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Implemented Optimization Techniques

Numerical Optimization Techniques

Gradient Methods

@ Different use of the Hessian matrix:
@ Conjugate Gradient: does not use at all
@ Levenberg-Marquardt: uses and adjusts
© quasiNewton: not directly, approximates

© Orthogonal search — optimization dimension by dimension
@ Powell’s method — improved OS by folding the already taken steps

Covariance Matrix Adaptation Evolution Strategy
@ Sampling of a normal distribution of a multidimensional vector

@ Covariance matrix used to describe dependence between
parameters
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Implemented Optimization Techniques

Nature Inspired Optimization Techniques

Ant Colony Algorithms
@ Directly simulate ant behaviour (CACO, API)
@ Extension of the original algorithm by discretization (AACA)

@ Extension of the original algorithm by probabilistic sampling
(ACO*, DACO)

Genetic Algorithms
@ Differential Evolution (DE, SADE)
@ Vector of probabilities used to sample the population (PBIL)

@ Simulation of a bevy in search of food (PSO)
@ Combined algorithms (HGAPSO)
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Implemented Test Functions

Suite of test functions

@ Unimodal and multimodal functions

@ Multidimensional functions, many of which configurable by
parameters

@ For the most of these analytical gradient and Hessian is available

@ Values of the global minima are known, including their positions

Figure: Examples of implemented test functions.
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Preliminary Work

Early Experiments

Benchmarking

@ 100 runs, limit to 2000 iterations
@ Each parameter tested in it’s full range
@ Success rate and # of iterations recorded
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Figure: PBIL, likelihood of a mutation, step-size 0.05
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Preliminary Work

Recommended Values of Optimization Method Parameters

Benchmarking

@ Recommended values of optimization method parameters
@ Different sets of parameter values for different function types

100%

90%

80%

70% )
o . B [S=

50% |-

40% |-

30% |-

20% [

10% |-

0%

B %R TR %R BR TR BR %R %R TR %R B
APl AACA ACO' DACO PSO PSO-FI PSO-C DE SADE PBIL HGAPSO
= AC == GP EmEE L5 mEEm RO E=3 TR

E==1EA =mmm 3 C—RA ===1DJ

Figure: Comparison of the original and recommended parameter values
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Early Results

Comparison of the Implemented Optimization Methods

Numeric Methods

@ Very precise

@ More effective

@ Poor global convergence
@ Useful for landmarking )

Nature Inspired Methods

@ Although less precise, these can handle hard functions
@ Time demanding computation, more iterations needed
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Meta-Optimization

Basic Principle

Optimization of Optimization

@ Technique of identifying the best algorithm for the given task
@ No free lunch theorem (Wolpert and Macready, 1997)

@ Once identified, optimal parameter values should be supplied as
well

@ Ultimately a repository will be created, storing

e meta-features
e algorithm + parameter values
@ achieved results

@ Optimizing GAME models
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Meta-Optimization

Basic Principle
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Current Stage

Identifying Meta-features

Landmarking

@ Sampling the function value surface either by a grid or by a simple
and fast algorithm

e quasi-Newton method selected

@ Since the function is a black box, no other information can be
collected

@ Aiming to answer which method should be used, with what
parameter values and where is a good starting point

Average Delta Value

@ Average Step Length

@ Number of Different Minima
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Value Difference to Trip Length
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Current Stage

Dynamic Meta-features

Early Data

Continuous (meta-)opt



Current Stage

Dynamic Meta-features

Early Data




Current Stage

Feasibility?

Landmarking

@ More complex functions are needed
e or at least multidimensional functions must be tested

@ Computational cost of finding a symmetry
@ Broader set of static meta-features is yet to be identified
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