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Introduction

Continuous Optimization
Seeks a (global) minimum of an arbitrary continuous function
The function is usually complex, multimodal and multidimensional
Usually an analytical gradient is available, but not always
Even less usual is analytical Hessian
The function is considered a black box =⇒ black-box optimization
Many different approaches, exhaustively mapped
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Application Environment

JCool
Project resulting from M. Hvizdos’ Master’s Thesis
Testing and benchmarking of optimization methods
Currently contains 18 methods and 33 testing functions
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Implemented Optimization Techniques
Numerical Optimization Techniques

Gradient Methods
Different use of the Hessian matrix:

1 Conjugate Gradient: does not use at all
2 Levenberg-Marquardt: uses and adjusts
3 quasiNewton: not directly, approximates

4 Orthogonal search – optimization dimension by dimension
5 Powell’s method – improved OS by folding the already taken steps

Covariance Matrix Adaptation Evolution Strategy
Sampling of a normal distribution of a multidimensional vector
Covariance matrix used to describe dependence between
parameters
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Implemented Optimization Techniques
Nature Inspired Optimization Techniques

Ant Colony Algorithms
Directly simulate ant behaviour (CACO, API)
Extension of the original algorithm by discretization (AACA)
Extension of the original algorithm by probabilistic sampling
(ACO*, DACO)

Genetic Algorithms
Differential Evolution (DE, SADE)
Vector of probabilities used to sample the population (PBIL)

Simulation of a bevy in search of food (PSO)
Combined algorithms (HGAPSO)
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Implemented Test Functions

Suite of test functions
Unimodal and multimodal functions
Multidimensional functions, many of which configurable by
parameters
For the most of these analytical gradient and Hessian is available
Values of the global minima are known, including their positions

Figure: Examples of implemented test functions.
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Preliminary Work
Early Experiments

Benchmarking
100 runs, limit to 2000 iterations
Each parameter tested in it’s full range
Success rate and # of iterations recorded
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Figure: PBIL, likelihood of a mutation, step-size 0.05
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Preliminary Work
Recommended Values of Optimization Method Parameters

Benchmarking
Recommended values of optimization method parameters
Different sets of parameter values for different function types
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Figure: Comparison of the original and recommended parameter values
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Early Results
Comparison of the Implemented Optimization Methods

Numeric Methods
Very precise
More effective
Poor global convergence
Useful for landmarking

Nature Inspired Methods
Although less precise, these can handle hard functions
Time demanding computation, more iterations needed
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Meta-Optimization
Basic Principle

Optimization of Optimization
Technique of identifying the best algorithm for the given task
No free lunch theorem (Wolpert and Macready, 1997)
Once identified, optimal parameter values should be supplied as
well
Ultimately a repository will be created, storing

meta-features
algorithm + parameter values
achieved results

Optimizing GAME models
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Meta-Optimization
Basic Principle
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Current Stage
Identifying Meta-features

Landmarking
Sampling the function value surface either by a grid or by a simple
and fast algorithm

quasi-Newton method selected

Since the function is a black box, no other information can be
collected
Aiming to answer which method should be used, with what
parameter values and where is a good starting point

Average Delta Value
Average Step Length
Number of Different Minima
Value Difference to Trip Length

...
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Current Stage
Dynamic Meta-features

Early Data
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Current Stage
Dynamic Meta-features

Early Data
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Current Stage
Feasibility?

Landmarking
More complex functions are needed

or at least multidimensional functions must be tested

Computational cost of finding a symmetry
Broader set of static meta-features is yet to be identified
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