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Abstract. Reflexive transitive closure modalities represent a number
of important notions, such as common knowledge in a group of agents
or non-deterministic iteration of actions. Normal modal logics with such
modalities are well-explored but weaker logics are not. We add a reflexive
transitive closure box modality to the modal non-associative commuta-
tive full Lambek calculus with a simple negation. Decidability and weak
completeness of the resulting system are established and extensions of the
results to stronger substructural logics are discussed. As a special case,
we obtain decidability and weak completeness for intuitionistic modal
logic with the reflexive transitive closure box.
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1 Introduction

Modalities semantically interpreted using a reflexive transitive closure of a modal
accessibility relation model a number of important notions. For instance, they
represent common knowledge in epistemic logic [4] and program iteration in
dynamic logic [6].

Normal modal logics with such modalities are well-explored but weaker log-
ics are not. This paper adds a reflexive transitive closure modality to a weak
modal substructural logic, namely, the modal non-associative commutative full
Lambek calculus with a simple negation. Decidability and weak completeness
of the resulting system are established utilising the notion of filtration used by
B́ılková et al. [1]. Extensions of our theorems to stronger substructural logics are
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also discussed. It is shown that completeness and decidability proofs for intu-
itionistic logic with common knowlegde [7] follow as a corollary. Our results are
expected to find applications in substructural epistemic logics [1, 10] extended
with a common knowledge operator and non-classical versions of propositional
dynamic logic PDL [11].

The paper is organised as follows. Section 2 introduces our basic modal sub-
structural Lambek calculus and Section 3 adds to it a reflexive transitive closure
modality. Decidability and completeness of the resulting system are established
in Section 4. Extensions of the results to stronger substructural logics are briefly
discussed in Section 5.

2 A modal Lambek calculus

Our basic logic is a modal version of the non-associative commutative full Lam-
bek calculus DFNLe [2] extended with a simple negation.1 This logic is chosen
for the sake of syntactic simplicity (one implication and one negation), but also
because it is often taken as basic in the literature on substructural epistemic
logics [1, 10, 12].

Our results can be established for a non-commutative background logic with
a pair of negations as well. As noted in Section 5, however, non-associativity is
an important prerequisite of the applicability of the present technique.

The language L contains a countable set of atomic formulas Var and the set
of 0-ary connectives {t,>,⊥}, unary connectives {¬,2} and binary connectives
{∧,∨,→,⊗}. The set of formulas Frm(L) is defined in the usual manner. The
variable p ranges over Var ; α, β and ϕ,ψ, χ etc. range over Frm(L).

Definition 1. A L-model is a tuple M = 〈P,≤, L, C, S,R, J·KM 〉 such that P is
a non-empty set, ≤ is a partial order on P , L is a (upwardly) ≤-closed subset of
P (let the set of such subsets be denoted Up(P )), C and S are binary relations
on P , R is a ternary relation on P and J·KM is a mapping from Frm(L) to 2P .
It is required that every model satisfies the following conditions:

x′ ≤ x =⇒ (Cxy =⇒ Cx′y) (1)

x′ ≤ x =⇒ (Sxy =⇒ Sx′y) (2)

x′ ≤ x =⇒ (Rxyz =⇒ Rx′yz) (3)

x ≤ y ⇐⇒ (∃z)(z ∈ L & Rzxy) (4)

Rxyz =⇒ Ryxz (5)

Cxy =⇒ Cyx (6)

1 Due to space limitations, we do not provide an introduction to substructural logics
and their relational semantics. See [9], for example.



Moreover, the truth-set mapping J·KM (mapping each formula to the set of states
in which the formula is true) is required to satisfy the following conditions:

J>KM = P, J⊥KM = ∅ and JtKM = L (7)

Jϕ ∧ ψKM = JϕKM ∩ JψKM and Jϕ ∨ ψKM = JϕKM ∪ JψKM (8)

J¬ϕKM = {x | (∀y)(Cxy =⇒ y 6∈ JϕKM )} (9)

J2ϕKM = {x | (∀y)(Sxy =⇒ y ∈ JϕKM )} (10)

Jϕ→ ψKM = {x | (∀yz)(Rxyz & y ∈ JϕKM =⇒ z ∈ JψKM )} (11)

Jϕ⊗ ψKM = {x | (∃yz)(Ryzx & y ∈ JϕKM & z ∈ JψKM )} (12)

A formula ϕ is valid in M (M  ϕ) iff L ⊆ JϕKM ; ϕ is L-valid (L  ϕ)
iff M  ϕ for all L-models M . A formula ϕ entails ψ in M (ϕ M ψ) iff
JϕKM ⊆ JψKM .

The frame conditions (1)–(3) entail that J·KM is a mapping from Frm to
Up(P ). This, together with condition (4) implies that M  ϕ→ ψ iff ϕ M ψ.

We do not have space to provide a full informal interpretation of the seman-
tics,2 but it will perhaps be helpful to think of x ∈ P as “bodies of information”
in some general sense and ≤ as “informational containment” (x ≤ y means that
every piece of information supported by x is supported by y). We can then think
of L a set of “logical” bodies of information (i.e. those that support logically
valid formulas), C as a relation of compatibility and R as a relation associated
with combining bodies of information (Rxyz means, roughly, that the result of
combining x and y is at least as strong as z).

Theorem 1. L  ϕ iff ϕ is a theorem of the axiom system H, consisting of
axioms:

– ϕ→ ϕ
– ϕ ∧ ψ → ϕ and ϕ ∧ ψ → ψ
– ϕ→ ϕ ∨ ψ and ψ → ϕ ∨ ψ
– ϕ→ > and ⊥ → ϕ

– ϕ ∧ (ψ ∨ χ)→ (ϕ ∧ ψ) ∨ (ϕ ∧ χ)
– 2ϕ ∧2ψ → 2(ϕ ∧ ψ)
– > → 2>

and inference rules (‘//’ indicates a two-way rule):

– ϕ,ϕ→ ψ /ψ
– ϕ→ ψ,ψ → χ/ϕ→ χ
– χ→ ϕ, χ→ ψ /χ→ (ϕ ∧ ψ)
– ϕ→ χ, ψ → χ/ (ϕ ∨ ψ)→ χ
– ϕ→ ψ /2ϕ→ 2ψ

– ϕ→ (ψ → χ) // (ψ ⊗ ϕ)→ χ
– ϕ→ (ψ → χ) //ψ → (ϕ→ χ)
– t→ ϕ//ϕ
– ϕ→ ¬ψ //ψ → ¬ϕ

Proof. This is a standard result [1, 5].

2 See [8], for example.



Example 1. It is easily seen that the modal 2 distributes over ∧,∨ in the ex-
pected way; both

2(ϕ ∧ ψ)↔ (2ϕ ∧2ψ) and 2ϕ ∨2ψ → 2(ϕ ∨ ψ)

are valid in every M . However, the “K-axiom”

2(ϕ→ ψ)→ (2ϕ→ 2ψ)

is not valid in every M (observe that the set {ϕ | x ∈ JϕKM} is closed under
Modus Ponens only if Rxxx). For a similar reason, 2 does not distribute over
⊗, i.e.

2(ϕ⊗ ψ)→ (2ϕ⊗2ψ)

is not valid in every M .3

3 Adding a reflexive transitive closure modality

The language L∗ extends L with a unary connective 2∗. The set of formulas
Frm(L∗) of L∗ is defined in the usual manner and all the syntactic metavariables
are now taken to range over Frm(L∗). Γ,∆ etc. range over subsets of Frm(L∗).
Let Γ/U = {ϕ | Uϕ ∈ Γ} for all U ∈ {¬,2,2∗}.

Definition 2. A L∗-model is M = 〈P,≤, L, C, S, S∗, R, J·KM 〉 where everything
is as in Definition 1 and, in addition,

S∗ is the reflexive transitive closure of S (13)

J2∗ϕKM = {x | (∀y)(S∗xy =⇒ y ∈ JϕKM )} (14)

In general, if Γ ↓ is closed under subformulas, then a Γ ↓-model is a structure that
satisfies all the conditions required for L∗-models, but the truth-set conditions (7)
– (12) and (14) are required to hold only for Γ ↓ as the range of J·K.

Lemma 1. Let ϕ ∈ Γ ↓. If there is a Γ ↓-model M such that M 6 ϕ, then there
is a L∗-model M ′ such that M ′ 6 ϕ. If M is finite then so is M ′.

We note that J2∗ϕKM ∈ Up(P ), so ϕ M ψ iff M  ϕ→ ψ for all Γ ↓-models
M where ϕ→ ψ ∈ Γ ↓.

One immediate consequence of the truth condition for 2∗ϕ is that our logic is
not compact. To see this, observe that every finite subset of {¬2∗p}∪{p}∪{2np |
n ∈ ω} is satisfiable, but the set itself is not.

3 Stated more precisely, counterexamples to the K-axiom can be constructed if the
frame property Syx =⇒ Rxxx fails. Similarly, counterexamples to distributivity of
2 over ⊗ can be found if we have Swx and Ryzx but also Ry′z′w and Sy′u with
y 6≤ u for some u. Counterexamples to the converse implication can be found if a
similar frame condition holds.



4 Axiomatization and decidability

Our main result is a weakly complete axiomatization of the set of L∗-valid formu-
las and a proof that this set is decidable. We use a generalisation of the standard
filtration technique [4, 6]. In particular, we build on the notion of filtration used
in [1].

Definition 3. Let H∗ be the axiom system obtained from H by adding the axiom
and rule schemas shown in Fig. 1 (called stars).

(∗1) 2∗ϕ ∧ 2∗ψ → 2∗(ϕ ∧ ψ)

(∗2) > → 2∗>
(∗3) 2∗ϕ↔ (ϕ ∧ 22∗ϕ)

(∗4) ϕ→ ψ /2∗ϕ→ 2∗ψ

(∗5) ϕ→ 2ϕ/ϕ→ 2∗ϕ

Fig. 1. The stars.

We note that axiomatizations of normal modal logics with a reflexive transi-
tive closure modality usually contain induction axiom

(ϕ ∧2∗(ϕ→ 2ϕ))→ 2∗ϕ

inhstead of the loop invariance rule (∗5) (see [6], foe example). These two are
equivalent in the classical setting (in the sense that the rule preserves validity iff
the axiom is valid), but not so in our framework. In fact, it can be shown that
the induction axiom is not valid in every model. The reason is closely related to
the failure of the K-axiom pointed out in Example 1.

We write ` ϕ if ϕ is a theorem of H∗, ϕ ` ψ if ` ϕ→ ψ and Γ ` ∆ if there
are finite Γ ′ ⊆ Γ and ∆′ ⊆ ∆ such that

∧
Γ ′ `

∨
∆′.

A set of formulas Γ is a proper prime theory iff Γ 6= Frm(L∗) and Γ ` ϕ∨ψ
only if ϕ ∈ Γ or ψ ∈ Γ . Note that, for all proper prime theories Γ , Γ ` ϕ only
if ϕ ∈ Γ since Γ ` ϕ implies Γ ` ϕ ∨ ϕ. Note also that if ∆ ` ϕ, then ∆ ⊆ Γ
only if ϕ ∈ Γ .

Theorem 2. If Γ 6` ∆, then there is a proper prime theory Γ ′ ⊇ Γ disjoint
from ∆.

Proof. This is established by using a variant of the Pair Extension Theorem [9,
p. 94].

Definition 4. The canonical structure

Mc = 〈Pc,≤c, Lc, Sc, S∗c , Cc, Rc, J·Kc〉

is defined as follows:



– Pc is the set of all proper prime theories;
– ≤c is set inclusion;
– Lc = {Γ | t ∈ Γ};
– Sc = {〈Γ,∆〉 | Γ/2 ⊆ ∆};
– S∗c = {〈Γ,∆〉 | Γ/2∗ ⊆ ∆};
– Cc = {〈Γ,∆〉 | Γ/¬ ∩∆ = ∅};
– Rc = {〈Γ,∆,Θ〉 | (∀ϕψ)(ϕ→ ψ ∈ Γ & ϕ ∈ ∆ =⇒ ψ ∈ Θ)};
– JϕKc = {Γ | ϕ ∈ Γ}.

It is a standard observation that the canonical structure is not a L∗-model,
for it fails to meet condition (13). In general, S∗c contains the reflexive transitive
closure (Sc)

∗ of Sc, but it is not identical to it.4 Nevertheless, the conditions
(1) – (12) and (14) are met [1, 9]. (For instance, let us check condition (14).
The left-to-right inclusion is trivial. The right-to-left inclusion is established by
a variant of the Witness Lemma [9, p. 255]. If 2∗ϕ 6∈ Γ , then Γ/2∗ 6` ϕ. Hence,
by the Pair Extension Theorem, there is ∆ ∈ Pc such that S∗cΓ∆ and ∆ 6∈ JϕKc.)

Definition 5. The closure of ϕ, cl(ϕ), is the smallest set of formulas such that

– {ϕ, t} ⊆ cl(ϕ);
– ψ ∈ cl(ϕ) for all subformulas ψ of ϕ;
– if 2∗ψ ∈ cl(ϕ), then 22∗ψ ∈ cl(ϕ).

For every ϕ, let Γ �ϕ ∆ iff (Γ ∩ cl(ϕ)) ⊆ ∆ and Γ ∼ϕ ∆ iff Γ �ϕ ∆ and
∆ �ϕ Γ . Moreover, let [Γ ]ϕ = {∆ | Γ ∼ϕ ∆}.

It is plain that cl(ϕ) is finite for all ϕ.

Definition 6. Fix a formula ϕ. The ϕ-filtration of the canonical structure is a
structure Mϕ = 〈Pϕ,≤ϕ, Lϕ, Sϕ, S∗ϕ, Cϕ, Rϕ, J·Kϕ〉 defined as follows:

– Pϕ = {[Γ ]ϕ | Γ ∈ Pc};
– [Γ ]ϕ ≤ϕ [∆]ϕ iff Γ �ϕ ∆;
– Lϕ = {[Γ ]ϕ | (∃Γ ′ �ϕ Γ )(Γ ′ ∈ Lc)};
– Sϕ = {〈[Γ ]ϕ, [∆]ϕ〉 | (∃Γ ′ �ϕ Γ )(ScΓ

′∆)};
– S∗ϕ = (Sϕ)∗;
– Cϕ = {〈[Γ ]ϕ, [∆]ϕ〉 | (∃Γ ′ �ϕ Γ,∃∆′ �ϕ ∆)(CcΓ

′∆′)};
– Rϕ = {〈[Γ ]ϕ, [∆]ϕ, [Θ]ϕ〉 | (∃Γ ′ �ϕ Γ,∃∆′ �ϕ ∆)(RcΓ

′∆′Θ)};
– for all α ∈ cl(ϕ), JαKϕ = {[Γ ]ϕ | α ∈ Γ}; for α 6∈ cl(ϕ), JαKϕ = ∅.

The crucial difference between the canonical structure and its filtration (in
addition to the fact that the latter is finite) is the fact that, in a ϕ-filtration,
S∗ϕ is defined to be the reflexive transitive closure of Sϕ. However, one needs to
check that the ϕ-filtration of the canonical structure is a cl(ϕ)-model. In what
follows, we drop the subscript ‘ϕ’ whenever possible.

4 The reason is that if 2∗ϕ ∈ Γ , then ϕ,2nϕ ∈ Γ for all n ∈ ω by (∗3), but the
converse implication cannot be established (our axiomatization is finitary).



Theorem 3. For all ϕ, the ϕ-filtration of the canonical structure is a cl(ϕ)-
model.

Proof. The relation ≤ϕ is obviously a partial order on Pϕ. The fact that Cϕ, Rϕ
and Lϕ satisfy the conditions (1), (6), (3), (5) and (4), respectively, and that
Lϕ is closed under ≤ϕ are established similarly as in [1]. (13) holds by definition
and (2) is established as follows. If S[Γ ][∆] then ScΓ

′∆ for some Γ ′ � Γ . But if
[Θ] ≤ [Γ ] then Θ � Γ and, consequently, Θ � Γ ′. Hence, S[Θ][∆].

It remains to be shown that J·Kϕ satisfies the conditions (7) – (12) and (14)
when applied to ψ ∈ cl(ϕ). The cases where the main connective of ψ is in
{>,⊥, t,¬,∧,∨,→,⊗} are established as in [1].

Next, assume that ψ = 2α. We have to show that

2α ∈ Γ ⇐⇒ (∀[∆])(S[Γ ][∆] =⇒ α ∈ ∆)

(α ∈ ∆ means [∆] ∈ JαK) Assume first that 2α ∈ Γ and S[Γ ][∆]. It follows that
ScΓ

′∆ for some Γ ′ � Γ . But then 2α ∈ Γ ′ and, by the definition of Sc, α ∈ ∆.
Conversely, if 2α 6∈ Γ , then the Witness Lemma [9, p. 255] entails that there is
∆ such that ScΓ∆ and α 6∈ ∆. But it is plain that ScΓ∆ only if S[Γ ][∆].

Finally, assume that ψ = 2∗α. We have to show that

2∗α ∈ Γ ⇐⇒ (∀[∆])(S∗[Γ ][∆] =⇒ α ∈ ∆)

If 2∗α 6∈ Γ then, by a variation of the Witness Lemma, there is ∆ such that
α 6∈ ∆ and S∗cΓ∆. It is sufficient to show that there is Θ such that S∗[Γ ][Θ] and
Θ � ∆.

Let
E = {Φ | (∃Θ)(S∗[Γ ][Θ] &Θ � Φ)}

(E is closed under ≤c, but E′ = {Φ | S∗[Γ ][Φ]} is not. Recall that (Sc)
∗ ⊆ S∗c ,

but not necessarily vice versa.) We have to show that ∆ ∈ E. For all [Φ] ∈ P ,
define

ψ[Φ] =
∧
{α ∈ cl(ϕ) | α ∈ Φ}

and
ψE =

∨
{ψ[Φ] | S∗[Γ ][Φ]}.

Note that ψE is well-defined since Pϕ is finite. We establish two claims.
Claim 1. E is closed under Sc, i.e., if Φ ∈ E and ScΦΨ , then Ψ ∈ E. If Φ ∈ E,

then there is Θ such that S∗[Γ ][Θ] and Θ � Φ. It follows from ScΦΨ and Θ � Φ
that S[Θ][Ψ ]. But S∗ is the reflexive transitive closure of S, so it follows that
S∗[Γ ][Ψ ]. Hence, Ψ ∈ E.

Claim 2. E = JψEKc. First, assume that Φ ∈ E, i.e., there is Ψ such that
S∗[Γ ][Ψ ] and Ψ � Φ. Now Ψ � Φ implies ψ[Ψ ] ∈ Φ (proper prime theories are
closed under forming conjunctions). But Ψ ∈ E, so ψ[Ψ ] ` ψE . Consequently,
ψE ∈ Φ, i.e., Φ ∈ JψEKc. Conversely, assume that ψE ∈ Φ. Φ is a prime theory,
so ψ[Θ] ∈ Φ for some Θ such that S∗[Γ ][Θ]. It follows that Θ � Φ. Hence, Φ ∈ E.

The two claims imply that JψEKc ⊆ J2ψEKc. (If ψE ∈ ∆, then ∆ ∈ E by
Claim 2. But then, if Sc∆Θ for some Θ, then Θ ∈ E by Claim 1. By Claim 2, if



Sc∆Θ, then ψE ∈ Θ. Hence, 2ψE ∈ ∆.) Consequently, ψE → 2ψE ∈
⋂
{Φ|Φ ∈

Lc}. Now since ϕ → 2ϕ/ϕ → 2∗ϕ is an inference rule of H∗, ψE → 2∗ψE ∈⋂
{Φ|Φ ∈ Lc} and JψEKc ⊆ J2∗ψEKc. Now we show that S∗cΓ∆ implies that

there is Θ such that S∗[Γ ][Θ] and Θ � ∆. It is plain that Γ ∈ E. By Claim
2, Γ ∈ JψEKc and, consequently, Γ ∈ J2∗ψEKc. Now ∆ ∈ JψEKc since S∗cΓ∆.
In other words, ∆ ∈ E. But this means that there is Θ such that S∗[Γ ][Θ] and
Θ � ∆.

The final thing to show is that if 2∗α ∈ Γ and S∗[Γ ][∆], then α ∈ ∆.
Our assumption S∗[Γ ][∆] entails that either [Γ ] = [∆] or there is n ≥ 1 such
that S[Γ ][∆1] · · · [∆n] = [∆]. If [Γ ] = [∆], then Γ ∼ ∆ and 2∗α ∈ ∆. Since
` 2∗α → α, α ∈ ∆ and we are done. Assume that there is n ≥ 1 such that
S[Γ ][∆1] · · · [∆n] = [∆]. We show by induction that for all n ≥ 1, ∆n contains α
and 2∗α. 2∗α ∈ Γ entails that 22∗α ∈ Γ (as ` 2∗α → 22∗α). By the clause
ψ = 2β established above, S[Γ ][∆1] entails that 2∗α ∈ ∆1, so α ∈ ∆1 as well.
Let us now assume that the claim holds for k < n. We show that it holds for
k + 1 as well. Assume that α,2∗α ∈ ∆k and S[∆k][∆k+1]. Again, 22∗α ∈ ∆k

and 2∗α ∈ ∆k+1 by the clause ψ = 2β and, consequently, α ∈ ∆k+1.

Theorem 4. If 6` ϕ, then there is a finite L∗-model M such that M 6 ϕ.

Proof. If 6` ϕ, then t 6` ϕ. By the Pair Extension Theorem [9], there is a proper
prime theory Γ ∈ Lc such that ϕ 6∈ Γ . The ϕ-filtration Mϕ of the canonical
structure is a finite cl(ϕ)-model by Theorem 3. Moreover, [Γ ] ∈ Lϕ and [Γ ] 6∈
JϕKϕ. So, Mϕ 6 ϕ. By Lemma 1, there is a finite L∗-model M such that M 6 ϕ.

Theorem 5. H∗ is a sound and weakly complete axiomatisation of the set of
formulas valid in every L∗-model. This set is decidable.

Proof. Soundness of H∗ is left to the reader. Weak completeness follows from
Theorem 4. Decidability follows from the fact that any ϕ-filtration of the canon-
ical structure is finite (and, in fact, bounded by the size of ϕ).

5 Extensions

It is easily seen that our results can be extended to stronger substructural logics.

Theorem 6. Let L be a substructural logic (in L) axiomatised by H(L) and
characterised by a class of models Mod(L). Assume that M ∈ Mod(L) iff M
satisfies a set of frame conditions Con(L) such that the H(L)-canonical struc-
ture and the ϕ-filtration (for arbitrary ϕ) of the canonical structure both satisfy
Con(L). Then the extension of L by a reflexive transitive closure modality is
decidable and axiomatised by H(L) plus the stars.

Proof. If it is assumed that the ϕ-filtration of the canonical structure satisfies
all the relevant frame conditions, then the fact that J·Kϕ satisfies the conditions
(7) – (12) and (14) when applied to ψ ∈ cl(ϕ) is established exactly as in the
proof of Theorem 3 above. But this means that the ϕ-filtration of the canonical
structure is a finite cl(ϕ)-model. The rest of the argument is as before.



This observation also hints at potential limitations of the present technique.
In general, if a frame condition is not preserved under forming filtrations (i.e. if
the canonical structure satisfies the condition, then its ϕ-filtration for arbitrary ϕ
does so as well) then the present technique cannot be applied to logics complete
with respect to models satisfying the frame condition. For instance, the frame
condition corresponding to associativity5

Rxyv & Rvzw =⇒ (∃u)(Rxuw & Ryzu)

is not preserved by standard notions of filtration such as the one we have used
in the present paper.

If one is interested in adding a reflexive transitive closure modality to modal
intuitionistic logic (as in [7]), however, the problem with associativity can be
avoided by interpreting → directly in terms of ≤:

Jϕ→ ψK = {x | (∀y)(x ≤ y =⇒ (y ∈ JϕK =⇒ y ∈ JψK))}

An inspection of our proof of Theorem 3 reveals that, after adding the stars
to any axiomatization of intuitionistic logic with 2 [3], our argument can be
repeated without modification.
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