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Abstract. This paper puts forward a generalization of the account of
pooling information – offered by standard epistemic logic – based on
intersection of sets of possible worlds. Our account is based on infor-
mation models for substructural logics and pooling is represented by
fusion of information states. This approach yields a representation of
pooling related to structured communication within groups of agents. It
is shown that the generalized account avoids some problematic features
of the intersection-based approach. Our main technical result is a sound
and complete axiomatization of a substructural epistemic logic with an
operator expressing pooling.

1 Introduction

Alice is visiting her friends, Bob and Cathy. She needs to get to the train station
now, and the only option is to take a bus. Alice is not familiar with the bus
routes. Bob tells her that it is best to take the bus no. 25, get off at the Main
Square and change lines there. However, he does not remember the no. of the
connecting line. Cathy does not know this either (she rather bikes), but she takes
a look the public transport mobile application and learns that the right bus to
take at the Main Square is no. 17.

The information provided by Bob and Cathy needs to be pooled together to
be helpful for Alice. Similar situations arise on a daily basis. In order to perform
even the most rudimentary tasks, agents need to pool information coming from a
multitude of sources. While communicating with others, agents pool the received
information with the information they already have and possibly send the results
further. A good model of pooling is therefore crucial for modelling deliberations,
actions and interactions of agents, be they human or artificial.

In epistemic logic the standard representation of information is a set of pos-
sible worlds [1]. Information available to an agent (her information state) is
modelled as a set of possible worlds “accessible” to the agent [2]. Pooling infor-
mation states or pieces of information in general is represented by intersection of
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the corresponding sets. This paper puts forward a generalization of the standard
model. Our account, motivated by some unintuitive features of the standard
framework, is based on information models for substructural logics.1 Pooling is
modelled by fusion of information states, a binary operation that generalizes
intersection. This approach yields a more fine-grained representation of pool-
ing; one that allows to model, for example, structured communication within
groups of agents (“structured pooling”). Our main technical result is a sound
and complete axiomatization of a substructural epistemic logic with an operator
expressing outcomes of structured pooling.

Sect. 2 motivates our approach in more detail. Sect. 3 introduces the seman-
tics based on information models and Sect. 4 extends the semantics by modalities
representing outcomes of structured pooling; our main technical result is estab-
lished in this section as well. Sect. 5 shows that the standard intersection-based
model is a special case of our framework. Sect. 6 concludes the paper.

2 Motivation

In general, we may see information states and pieces of information as elements
of a partially ordered set, with x ≤ y meaning that x supports y. Equivalently,
x ≤ y means that x “extends” y as x ≤ y iff every z supported by y is supported
by x. Information pooling can be represented by a binary operation; let us denote
as x · y the result of pooling x with y. The representation of information by sets
of possible worlds combined with the representation of information pooling in
terms of intersection then corresponds to a special case of this framework where
the poset at hand is a subset-ordered system of sets closed under intersection.

This special case is intuitively objectionable on several grounds. Firstly, the
intersection-based model is monotonic; x pooled with y, i.e. x∩ y, extends both
x and y. This means that support is irrevocable (every piece of information
supported by x or y remains supported.)

Example 1. As a counterexample to monotonicity, let us consider the following
situation. Assume that Ann had believed that her boyfriend David is an honest
man (Ann’s information state at some point in time, x, supports the information
that David is honest, h). Then she dropped that belief as the result of the
conversation with Bob who told her that David had an affair with Cathy (the
result of pooling x with Bob’s information state, y, does not support h; we may
assume for the sake of simplicity that it supports ¬h).

The standard model would represent the situation incorrectly; Ann would
believe that David is honest and that he had an affair with Cathy at the same
time.

A related feature of the standard model is that, if x is inconsistent with y (i.e.
x ∩ y = ∅), then the result of pooling x with y is the empty set. Hence, pooling

1 We do not have space to provide an outline of substructural logics. We refer the
reader to [7, 9, 10].



any pair of inconsistent pieces of information gives the same result, and this
result supports every piece of information (this feature is known as explosion).

Example 2. Let us consider the following counterexample to explosion. Assume
that Ann believes that she has free will and that free will is incompatible with
physical determinism. Then she talks to Bob who persuades her that the physical
world is deterministic. However, as it sometimes happens, she does not aban-
don the belief that she has free will. This means that the system of her beliefs
is inconsistent, but not necessarily that the system supports any information
whatsoever. She might hold inconsistent beliefs abut free will without being a
right-wing extremist.

A feature of the standard model that comes into play here is that support is
closed under classical consequence which validates ex falso quodlibet.

Monotonicity and explosion can be avoided by generalizing the standard
model so that (i) a pooling operation is used such that x · y ≤ x does not hold
in general; (ii) mutual inconsistency of x and y is not modelled by x · y = 0,
where 0 is a trivially inconsistent piece of information; (iii) the support relation
between pieces of information is not closed under classical consequence.

In what follows, we provide such a model. Models of this kind are offered,
for instance, by various versions of operational semantics for substructural logics
dating back to [14]. A more complete formulation was provided by Došen [3] and
recently by Punčochář [8]. We build on the latter kind of model, extending it
with modalities expressing structured communication within groups of agents. To
motivate the introduction of such modalities, let us take a look at the connection
between the standard model of pooling and communication within groups of
agents.

A widespread intuitive interpretation of the standard model of pooling is that⋂
a∈G xa is the information state the members of a group G (having information

states xa for a ∈ G) would end up with after communicating with each other.2

From the perspective of this interpretation, the standard framework represents
a very special kind of communication within a group of agents, one in which
agents pool all their information instantenously and every piece of information
shared by each agent is equally considered. This is not how communication within
groups usually works. Imagine an office or a research team; members of such
groups may exchange partial information sequentially (e.g. Ann talks to Bob
and then to Cathy) and some information may not be considered at all (e.g.

2 For example, “A group has distributed knowledge of a fact ϕ if the knowledge of
ϕ is distributed among its members, so that by pooling their knowledge together
the members of the group can deduce ϕ, even though it may be the case that no
member of the group individually knows ϕ.” [4, p. 3]. This interpretation suffers from
well-known problems [5, 11, 16]; we point out some additional ones. Hence, our paper
can be seen as providing an additional argument against considering the standard
model to be a good model of communication-related pooling. In the future, we plan
to study the “full communication principle” of [5, 11] and the dynamic approach of
[16] in the context of our framework.



information that contradicts a belief that an agent is not willing to give up).
The structure of such communication scenarios is often critical when it comes
to the outcome of communication.

Before developing this point, we introduce some notation. We may represent
the (hypothetical) communication scenario of Ann talking to Bob and then to
Cathy (about some issue) by the expression (a ∗ b) ∗ c. “Communication within
group G = {a, b, c}” can be seen as being ambiguous between (a∗ b)∗c, (a∗c)∗ b
etc. Alternatively, the different expressions are related to different ways how
agents in G can communicate with each other. If x, y, z are information states
of a, b and c, respectively, then the outcome of (a ∗ b) ∗ c should be related to
the structured pooling resulting in (x · y) · z. When a more specific formulation
is preferred, we may say that (x · y) · z represents a’s information state after the
scenario (a ∗ b) ∗ c has been realized.

It turns out that, given the link between communication scenarios and pool-
ing, some algebraic properties of intersection are problematic. Take commuta-
tivity and associativity, for example.3

Example 3. Assume that Ann has not yet formed an opinion about a new col-
league, Bob. She has the tendency to accept the first strong opinion she hears
from others. Cathy likes Bob very much but David does not like him at all.
When it comes to her eventual opinion about Bob, it is obviously important to
whom she talks first.

In general, assume that a’s information state is partial with respect to p
(it supports neither p nor ¬p), b’s state supports p and c’s state supports ¬p.
Assume that when communicating with other agents, a accepts only information
that is consistent with her state. Now if a communicates with b and then with c
– that is scenario of the type (a ∗ b) ∗ c – then her resulting state supports p; if
a communicates with c and then with b – that is scenario of the type (a ∗ c) ∗ b
– her state supports ¬p.

Example 4. Assume that Cathy has read recently in a newspaper that Ms. X,
Bob’s favourite politician, obtained some money from Mr. Y, a man involved
in organized crime. Consider two communication scenarios about the credibility
of Ms. X. In the first scenario, which is of the type a ∗ (b ∗ c), Cathy first talks
to Bob and Bob is subsequently discussing the same issue with Ann. Since Bob
trusts Ms. X, he does not believe the information conveyed by Cathy about the
problematic money from Mr. Y, and he does not pass this information to Ann.
In the second scenario, which is of the type (a ∗ b) ∗ c, Ann is discussing Ms.
X’s credibility with Bob first and subsequently with Cathy. Unlike in the first
scenario, she ends up believing that Ms. X obtained some money from Mr. Y,
which she learned from Cathy.

These examples show that scenarios (a∗b)∗c and (a∗c)∗b, and (a∗b)∗c and
a ∗ (b ∗ c), respectively, might actually lead to different outcomes. In addition,
some communication scenarios may be more effective or leading to more desirable

3 For associativity, see also [13].



results than others. It makes sense, therefore, to extend the formal language
at hand with modalities indexed by communication scenarios; e.q. �(a∗b)∗cα
meaning that, after (a ∗ b) ∗ c is realized, a’s information state supports α. This
language can then be used to formalize reasoning of agents about communication
scenarios. Such reasoning is, of course, a vital part of reasoning about agent
interactions.

Example 5. Going back to Example 1, we may assume that if David’s informa-
tion state supports �ah and �a∗b¬h, then he would try to prevent a ∗ b from
realizing.

As another example, consider the situation where a team leader’s information
state supports both �(a∗b)∗cα and �a∗cα, where α is necessary for a to perform
some task. It is then reasonable for the team leader to suggest a ∗ c and not
(a ∗ b) ∗ c as the former requires less resources (team members, time) than the
former to reach the same goal (a’ having information α).

Our framework, introduced in the next two sections, combines a generaliza-
tion of the intersection-based model of pooling, based on operational substruc-
tural semantics, with a modal language allowing to express reasoning about
hypothetical communication scenarios.

3 Information models

In this section, we reconstruct the semantic framework for substructural logics
introduced in [8] and summarize some of the results needed in the next section.
For the sake of brevity, the results are presented without proofs; the interested
reader is referred to [8].

Let us fix a set of atomic formulas At. The variables p, q, . . . range over
elements of At. An information model is a structure of the following type:

M = 〈S,+, ·, 0, 1, C, V 〉.

S is an arbitrary nonempty set, informally construed as a set of information
states4; + and · are binary operations on S (addition and fusion of states); 0
and 1 are two distinguished elements of S (the trivially inconsistent state and
the logical state); and V is a valuation, that is a function assigning to every
atomic formula a subset of S. The following conditions are assumed:

1. 〈S,+, 0〉 is a join-semilattice with the least element 0, i.e. + is idempotent,
commutative and associative, and x+0 = x for every x ∈ S. The semilattice
determines an ordering of S: a ≤ b iff a+ b = b.

2. The operation · is distributive in both directions over +, i.e. x · (y + z) =
(x · y) + (x · z) and (y + z) · x = (y · x) + (z · x)

4 By “information states” we mean bodies of information that might be “available to”
agents, but we do not assume that every information state is an information state
of an agent.



3. 1 · x = x and 0 · x = 0
4. C satisfies the following conditions: (a) there is no x such that 0Cx, (b) if
xCy, then yCx, (c) (x+ y)Cz iff xCz or yCz

5. V assigns to every atomic formula an ideal in M, that is a subset I ⊆ S
satisfying: (a) 0 ∈ I, (b) x+ y ∈ I iff x ∈ I and y ∈ I

Information models derive from Došen’s grupoid models for substructural logics
[3]. We extend Došen’s models with 0, allowing us to have a simpler semantic
clause for disjunction. Moreover, these structures are enriched with the compat-
ibility relation C that allows us to introduce a paraconsistent negation avoiding
the principle of explosion (ex falso quotlibet).5

Informally, information states x ∈ S represent bodies of information that can
be said to support specific pieces of information. For example, the beliefs of an
agent or the evidence produced during a criminal trial can be seen as bodies
of information supporting information that is not explicitly part of the respec-
tive body. The state 1 represents the “logical” state supporting all the logically
valid formulas and 0 represents the trivially inconsistent state supporting every
formula. The relation C represents compatibility between information states. In-
formally, xCy means that y does not support any information that contradicts
the information supported by x; for more details, see [6]. The operation + yields
the common content of the states x, y. The state x + y supports any piece of
information supported by both x and y. The operation + will correspond to
intersection of the sets of supported formulas (see the construction of canoni-
cal models in this section). Dually, in the specific models in which the states x
and y are represented as sets of possible worlds, + corresponds to union (see
Section 5). The operation · yields a fusion x · y of information states x, y. Im-
portantly, a fusion of two information states may involve far more (or less) than
the intersection of sets of possible worlds. None of the following are assumed:

– x · y ≤ x (monotonicity)
– if not xCy, then x · y = 0 (explosion)
– (x · y) · z = (x · z) · y (commutativity)
– x · (y · z) = (x · y) · z (associativity)

Formulas of the language L are defined as follows:

α ::= p | ⊥ | t | ¬α | α→ α | α ∧ α | α⊗ α | α ∨ α.

With respect to a given information modelM a relation of support 
M between
information states from S and L-formulas is defined recursively by the following
clauses (we drop the subscript):

– x 
 p iff p ∈ V (x).
– x 
 ⊥ iff x = 0.
– x 
 t iff x ≤ 1.

5 An alternative extension of Došen’s semantics is due to Wansing [15] who adds to
Došen’s models a constructive negation based on positive and negative valuation.



– x 
 ¬α iff for any y, if yCx then y 2 α.
– x 
 α→ β iff for any y, if y 
 α, then x · y 
 β.
– x 
 α ∧ β iff x 
 α and y 
 β.
– x 
 α⊗ β iff there are y, z such that y 
 α, z 
 β, and x ≤ y · z.
– x 
 α ∨ β iff there are y, z such that y 
 α, z 
 β, and x ≤ y + z.

If x 
 α, we say that x supports α. The proposition ||α||M expressed by α in
M is the set of states of M that support α.

Theorem 1. For any information model M and any L-formula α, ||α||M is an
ideal in M.

Accordingly, y ≤ x only if every α supported by x is supported by y (“informa-
tion state y extends x”). We say that an L-formula α is valid in an information
model M if the logical state 1 supports α in M. An L-formula is valid in a
class of information models if it is valid in every model in the class. Let α be an
L-formula and ∆ a nonempty set of L-formulas. We say that α is semantically
FL-valid (�FL α) if α is valid in every information model. α is a semantic FL-
consequence of ∆ (∆ �FL α) if for any state x of any information model, if x
supports every formula from ∆, then x supports α.

Lemma 1. An implication α → β is valid in M iff, for all x ∈ S, x 
 α only
if x 
 β.

The logic of all information models is a non-distributive, non-associative,
and non-commutative version of Full Lambek calculus with a paraconsistent
negation. The logic can be axiomatized by a Hilbert-style axiomatic system
(that we call FL) containing the following axiom schemata and inference rules:

A1 α→ α
A2 ⊥ → α
A3 (α ∧ β)→ α
A4 (α ∧ β)→ β
A5 α→ (α ∨ β)
A6 β → (α ∨ β)
A7 (α⊗ (β ∨ γ))→ ((α⊗ β) ∨ (α⊗ γ))

R1 α, α→ β/β
R2 α→ β/(β → γ)→ (α→ γ)
R3 γ → α, γ → β/γ → (α ∧ β)
R4 α→ γ, β → γ/(α ∨ β)→ γ
R5 α→ ¬β/β → ¬α
R6 α→ β/(γ ⊗ α)→ (γ ⊗ β)
R7 α→ (β → γ)/(α⊗ β)→ γ
R8 (α⊗ β)→ γ/α→ (β → γ)
R9 t→ α/α
R10 α/t→ α



Lemma 2. Every axiom of FL is semantically FL-valid and all the rules pre-
serve semantic FL-validity in all information models.

A proof in the system FL is defined in the standard way as a finite sequence of L-
formulas such that every formula in the sequence is either an instance of an axiom
schema, or a formula that is derived by applying an inference rule to formulas
that occur earlier in the sequence. We say that α is FL-provable (`FL α), if
there is a proof β1, . . . , βn such that α = βn. The expression α1, . . . , αn `FL β
is an abbreviation for `FL (α1 ∧ . . . ∧ αn)→ β, and if ∆ is a set of L-formulas,
∆ `FL β means that there are α1, . . . , αn ∈ ∆ such that α1, . . . , αn `FL β.

Definition 1. A set of L-formulas λ is a logic over FL iff (a) λ contains all the
axioms of FL, (b) λ is closed under the rules of FL, and (c) λ is closed under
uniform substitutions of L-formulas.

For any logic over FL we construct a canonical model. For a given logic λ the
canonical model of λ is constructed out of λ-theories.

Definition 2. Let λ be a logic over FL. A nonempty set of L-formulas ∆ is an
λ-theory if it satisfies the following two conditions:

(a) if α ∈ ∆ and β ∈ ∆, then α ∧ β ∈ ∆,
(b) if α ∈ ∆ and α→ β ∈ λ, then β ∈ ∆.

Definition 3. Let λ be a logic over FL. The canonical model of λ is the struc-
ture Mλ = 〈Sλ,+λ, ·λ, 0λ, 1λ, Cλ, V λ〉, where

– Sλ is the set of all λ-theories,
– Γ +λ ∆ = Γ ∩∆,
– Γ ·λ ∆ = {α; for some γ ∈ Γ and δ ∈ ∆, (γ ⊗ δ)→ α ∈ λ},
– 0λ is the set of all L-formulas,
– 1λ = λ,
– ΓCλ∆ iff for all α, if ¬α ∈ Γ , then α /∈ ∆,
– Γ ∈ V λ(p) iff p ∈ Γ .

Theorem 2. Mλ is an information model.

Theorem 3. For any L-formula α and λ-theory Γ , the following holds:

Γ 
 α in Mλ iff α ∈ Γ .

Assume that λ is given by an axiomatic system that is sound with respect to a
class of information models that contains the canonical model of λ. The following
direct corollary of Theorem 3 guarantees that the system must be also complete
with respect to the class.

Corollary 1. α ∈ λ iff α is valid in Mλ.

In particular, using Lemma 2 and Corollary 1 we obtain completenes of FL.

Corollary 2. ∆ �FL β iff ∆ `FL β.

Since the construction leads to strong completeness of FL, we obtain compact-
ness immediately.

Corollary 3. If ∆ �FL β, then there is a finite Γ ⊆ ∆ such that Γ �FL β.



4 Communication models

This section extends information models by a representation of information
about the results of communications scenarios.

Let us fix a set of expressions Ag, representing a set of agents. We will define
inductively a set of expressions CS (Ag) (structured communication scenarios
over Ag), or just CS , in the following way: 1. every a ∈ Ag is in CS . 2. if G
and H are in CS , then the expression (G ∗H) is also in CS . 3. Nothing else is
in CS . A communication scenario can be viewed as a binary tree whose leaves
represent agents. The principal agent of G ∈ CS is the agent denoted by the
leftmost occurrence of an agent variable in G. For example, the principal agent
of both a ∗ (b ∗ c) and (a ∗ b) ∗ c is a.

Variables G,H, . . . range over elements of CS . A communication model is
any tuple

M = 〈S,+, ·, 0, 1, C, {fG}G∈CS , V 〉,

where M = 〈S,+, ·, 0, 1, C, V 〉 is an information model and {fG}G∈CS is a col-
lection of unary functions on S satisfying for every G,H ∈ CS :

(f0) fG(0) = 0
(f+) fG(x+ y) = fG(x) + fG(y)
(f ·) fG∗H(x) ≤ fG(x) · fH(x)

Informally, fa(x) is the information state of agent a, according to the body
of information x; see [12]. fa∗b(x) is the information state of a, according to
x, after the communication scenario a ∗ b is realized.6 In general, fG(x) is the
information state of the principal agent of scenario G after G has been carried
out, according to x. The result of pooling the information of the principal agent
of G after realizing G with the information state of the principal agent of H
after realizing H is represented by fG∗H . We call this the information state of
the scenario G ∗H.

Our three “frame conditions” represent the following informal assumptions
about communication scenarios. First, every G has an inconsistent information
state according to 0, (f0). This is straightforward as 0 supports every piece of
information, i.e. it supports every piece of information about every G. Second,
the information state of G according to the common content of x and y is
the common content of fG(x) and fG(y), (f+). This is a consequence of the
interpretation of x+ y as the intersection of the information provided by x and
y. Third, the information state of G ∗ H according to x extends the fusion of
fG(x) and fH(x), (f ·). This represents the fact that structured pooling is based
on fusion of information states.

6 The body of information x consists of information on a number of topics, including
agents a and b, and how they react to receiving specific information in communi-
cation. fa∗b(x) is the information constituting a’s information state after receiving
information from b, according to what x says about a and b.



Note, however, that on the level of information states we do not define pooling
as fusion, that is we do not require

(f=) fG∗H(x) = fG(x) · fH(x)

The reason will become clear in the next section where we explain how our frame-
work generalizes the standard intersection-based model of pooling (i.e. epistemic
logic with distributed knowledge). A spoiler: in the particular cases where our
models correspond to standard models, the information states are sets of possi-
ble worlds, ∗ is union and · is intersection. In these cases (f=) naturally fails; it
is only the case that fG∪H(x) ⊆ fG(x) ∩ fH(x).

The language L� is obtained by adding to L a modality �G for every com-
munication scenario G:

α ::= p | ⊥ | t | ¬α | α→ α | α ∧ α | α⊗ α | α ∨ α | �Gα

The semantic clauses for the language L� extend the semantic clauses for L with
the following clause for the group modalities:

x 
 �Gα iff fG(x) 
 α.

The following result extends Theorem 1. The result shows that complex for-
mulas and atomic formulas express propositions of the same kind. This will
guarantee that the logic of all communication models is closed under uniform
substitution.

Theorem 4. For any communication model M and any L�-formula α, ||α||M
is an ideal in M.

Proof. Let M be a communication model and α an L�-formula. We have to
show that ||α||M is an ideal in M. This can be proved by induction. We will
show the inductive step for �G. The inductive assumption is that for a given
L�-formula β, ||β||M is an ideal in M. We will show that ||�Gβ||M is also an
ideal. First, since 0 
 β and fG(0) = 0, we have fG(0) 
 β, i.e. 0 
 �Gβ. Second,
x+y 
 �Gβ iff fG(x+y) 
 β iff fG(x)+fG(y) 
 β iff fG(x) 
 β and fG(y) 
 β
iff x 
 �Gβ and y 
 �Gβ.

Let α be an L�-formula and ∆ a nonempty set of L�-formulas. We say that α
is semantically PFL-valid (�PFL α) if α is valid in every communication model;
α is a semantic PFL-consequence of ∆ (∆ �PFL α) if for any state x of any
communication model, x supports every formula from ∆ only if x supports α.

The axiomatic system PFL is given by axioms and rules of FL plus the
axiom A8, and the rules R11 and R12.

A8 (�Gα ∧�Gβ)→ �G(α ∧ β)
R11 α→ β/�Gα→ �Gβ
R12 (α⊗ β)→ γ/(�Gα ∧�Hβ)→ �G∗Hγ.

The following claim extends Lemma 2.



Lemma 3. Every axiom of PFL is semantically PFL-valid and all the rules
preserve semantic PFL-validity in all communication models.

Proof. (a) Let x be an arbitrary state of a communication model such that
x 
 �Gα ∧ �Gβ. Then fG(x) 
 α and fG(x) 
 β, i.e. fG(x) 
 α ∧ β. So
x 
 �G(α ∧ β). It follows that 1 
 (�Gα ∧ �Gβ) → �G(α ∧ β), so we have
proved that A8 is semantically PFL-valid.

(b) Assume that 1 
 α→ β in an arbitrary communication model. Let x be
a state of that model such that x 
 �Gα. Then fG(x) 
 α and it follows from
our assumption that fG(x) 
 β. So x 
 �Gβ. It follows that 1 
 �Gα→ �Gβ,
so we have proved that R11 preserves semantic PFL-validity.

(c) Assume that in a communication model M, 1 
 (α ⊗ β) → γ. We will
prove that 1 
 (�Gα ∧ �Hβ) → �G∗Hγ. Assume x 
 �Gα ∧ �Hβ. Then
fG(x) 
 α and fH(x) 
 β. It follows that fG(x) · fH(x) 
 α ⊗ β, and so
fG(x) · fH(x) 
 γ. Since fG∗H(x) ≤ fG(x) · fH(x), it holds fG∗H(x) 
 γ, due to
Theorem 4. As a consequence, x 
 �G∗Hγ.

Definition 4. A set of L�-formulas λ is called a logic over PFL if the following
three conditions are satisfied: (a) λ contains all the axioms of PFL, (b) λ is
closed under the rules of PFL, (c) λ is closed under uniform substitutions of
L�-formulas.

Theories related to logics over PFL are defined in the same way as theories
related to logics over FL (see Definition 2) with the difference that if λ is a
logic over PFL then λ-theories are sets of L�-formulas. The construction of the
canonical model for a given logic over PFL extends the construction from the
previous section.

Definition 5. Let λ be a logic over PFL. The canonical model of λ is the struc-
ture Mλ = 〈Sλ,+λ, ·λ, 0λ, 1λ, Cλ, {fλG}G∈CS , V

λ〉, where Sλ,+λ, ·λ, 0λ, 1λ, Cλ
and V λ are defined as in Definition 3 and for any G ∈ CS and any λ-theory Γ
we define:

fλG(Γ ) = {α ∈ L�;�Gα ∈ Γ}.

Let us fix a logic λ over PFL. We will write just S, +, ·, 0, 1, C, fG, V instead
of Sλ, +λ, ·λ, 0λ, 1λ, Cλ, fλG, V λ.

Lemma 4. If Γ is a λ-theory, then fG(Γ ) is also a λ-theory.

Proof. (a) Assume that α ∈ fG(Γ ) and β ∈ fG(Γ ), i.e. �G(α) ∈ Γ and �G(β) ∈
Γ . Since Γ is a λ-theory, �Gα ∧ �Gβ ∈ Γ . Since λ contains all the axioms of
PFL, �G(α ∧ β) ∈ Γ , due to A8. It follows that α ∧ β ∈ fG(Γ ).

(b) Assume that α ∈ fG(Γ ) and α → β ∈ λ. Then �Gα ∈ Γ and since λ is
closed under the rules of PFL, �Gα → �Gβ ∈ λ, due to R11. It follows that
�Gβ ∈ Γ . So, β ∈ fG(Γ ).

Lemma 5. For any λ-theories Γ,∆ the following conditions are satisfied:



(a) fG(0) = 0,
(b) fG(∆+ Γ ) = fG(∆) + fG(Γ ),
(c) fG∗H(∆) ≤ fG(∆) · fH(∆).

Proof. The case (a) is immediate. (b) We are proving fG(∆∩Γ ) = fG(∆)∩fG(Γ ).
It holds that α ∈ fG(∆ ∩ Γ ) iff �Gα ∈ ∆ ∩ Γ iff �Gα ∈ ∆ and �Gα ∈ Γ iff
α ∈ fG(∆) and α ∈ fG(Γ ) iff α ∈ fG(∆) ∩ fG(Γ ).

(c) We are proving fG(∆) · fH(∆) ⊆ fG∗H(∆). Assume α ∈ fG(∆) · fH(∆).
That means that there are β ∈ fG(∆) and γ ∈ fH(∆) such that (β⊗γ)→ α ∈ λ.
The rule R12 gives us (�Gβ ∧ �Hγ) → �G∗Hα ∈ λ. Moreover, �Gβ ∈ ∆ and
�Hγ ∈ ∆, so �Gβ ∧ �Hγ ∈ ∆. It follows that �G∗Hα ∈ ∆, and, consequently,
α ∈ fG∗H(∆).

Lemmas 4 and 5 lead to the following strengthening of Theorem 2.

Theorem 5. Mλ is a communication model.

Theorem 5 allows us to express the following “truth-lemma” as a meningful
statement. In addition, we will show that the statement is true.

Theorem 6. For any L�-formula α and any λ-theory Γ :

Γ 
 α in Mλ iff α ∈ Γ .

Proof. We can proceed by induction on the complexity of α. The base of the
induction and the inductive steps for ¬, →, ∧, ⊗, and ∨ are the same as in the
proof of Theorem 3. Let us consider the case of �G. The induction hypothesis
is that the claim holds for an L�-formula β. To see that then the claim holds
also for �Gβ, we can observe that the following equivalences hold: Γ 
 �Gβ iff
fG(Γ ) 
 β iff β ∈ fG(Γ ) iff �Gβ ∈ Γ .

Corollary 4. α ∈ λ iff α is valid in Mλ.

Corollary 5. ∆ �PFL β iff ∆ `PFL β.

Corollary 6. If ∆ �PFL β, then there is a finite Γ ⊆ ∆ such that Γ �PFL β.

5 The standard framework as a special case

We show in this section that every model of standard epistemic logic with dis-
tributed knowledge (i.e. every standard intersection-based model) corresponds
to a particular communication model. The modality �G will boil down to stan-
dard distributed knowledge in these specific cases. The language LD is a basic
language of classical propositional logic enriched with a modality of distributed
knowledge for every set of agents A ⊆ Ag:

α ::= p | ¬α | α ∧ α | DAα.



A standard model is a tuple M = 〈W, {Ra}a∈Ag, V 〉, where W is a non-empty set
(of possible worlds), Ra : W → P(W ), for every a ∈ Ag, and V : At → P(W ).
Moreover, for every set of agents A ⊆ Ag, we define a function RA : W → P(W )
in the following way:

RA(w) =
⋂
a∈ARa(w).

In a given standard model 〈W,R, V 〉, a relation of truth between worlds and
LD-formulas is defined in the following way:

– w � p iff w ∈ V (p),
– w � ¬α iff w 2 α,
– w � α ∧ β iff w � α and w � β,
– w � DAα iff for every v ∈ RA(w), v � α.

An LD-formula is valid in a standard model iff it is true in every world of that
model. We can assign to every communication scenario G a set of agents s(G)
by the following recursive equations:

s(a) = {a}, for every a ∈ Ag, and s(G ∗H) = s(G) ∪ s(H).

So, s(G) is the set of agents occurring in G. Now we will construct for any
given standard model M = 〈W, {Ra}a∈Ag, V 〉 a communication model Mi =
〈S,+, ·, 0, 1, C, {fG}G∈CS , V

†〉 in the following way:

– S = P(W ),
– x+ y = x ∪ y and x · y = x ∩ y,
– 0 = ∅ and 1 = W ,
– xCy iff x ∩ y 6= ∅,
– fG(x) =

⋃
w∈xRs(G)(w),

– x ∈ V †(p) iff x ⊆ V (p).

Lemma 6. For all M, Mi is a communication model.

Proof. We will verify only that the three conditions for the group functions are
satisfied. In Mi these conditions boil down to the following claims:

–
⋃
w∈∅RA(w) = ∅,

–
⋃
w∈x∪y RA(w) = (

⋃
w∈xRA(w)) ∪ (

⋃
w∈y RA(w)),

–
⋃
w∈xRA∪B(w) ⊆ (

⋃
w∈xRA(w)) ∩ (

⋃
w∈xRB(w)).

The first two claims are obvious. We will prove the third one. Assume that
v ∈

⋃
w∈xRA∪B(w). Then there is w ∈ x such that v ∈ RA∪B(w), i.e. for all

a ∈ A ∪ B, v ∈ Ra(w). It follows that there is w ∈ x such that for all a ∈ A,
v ∈ Ra(w), and there is w ∈ x such that for all a ∈ B, v ∈ Ra(w). In other words,
there is w ∈ x such that v ∈ RA(w), and there is w ∈ x such that v ∈ RB(w),
i.e. v ∈ (

⋃
w∈xRA(w)) ∩ (

⋃
w∈xRB(w)).

Now it can be explained why we did not require fG∗H(x) = fG(x) · fH(x). This
equation does not hold even in the most simple models generated by standard
epistemic models. In particular, it does not generally hold that



(
⋃
w∈xRA(w)) ∩ (

⋃
w∈xRB(w)) ⊆

⋃
w∈xRA∪B(w).

For the sake of simplicity, assume that A = {a}, B = {b}, and x = {w1, w2}.
Consider for example the situation described by this table:

Ra Rb R{a,b}

w1 {w1, v} {w1} {w1}
w2 {w2} {w2, v} {w2}

In this situation, v ∈ (
⋃
w∈xRA(w)) ∩ (

⋃
w∈xRB(w)) but v /∈

⋃
w∈xRA∪B(w).

(Nevertheless, (f=) holds in Mi for singleton states x.) Dually speaking, suppose
that v is the only world in which p is false. Then, the state fA∪B(x) = {w1, w2}
supports the information that p but the state fA(x) ∩ fB(x) = {v, w1, w2} does
not support p.

As the last step, let us introduce a recursive translation tr of L� into LD.
For every atomic formula p, we define tr(p) = p. Moreover, tr(⊥) = q ∧ ¬q and
tr(t) = ¬(q ∧ ¬q), for a selected atomic formula q. The translation operates on
complex formulas according to these equations:

tr(¬α) = ¬tr(α) tr(�Gα) = Ds(G)tr(α)
tr(α ∧ β) = tr(α) ∧ tr(β) tr(α⊗ β) = tr(α) ∧ tr(β)
tr(α→ β) = ¬(tr(α) ∧ ¬tr(β)) tr(α ∨ β) = ¬(¬tr(α) ∧ ¬tr(β))

Theorem 7. For every M, every set x of its worlds, and every L�-formula α,
the following holds:

x 
 α in Mi iff for all w ∈ x, w � tr(α) in M.

Proof. Induction on the complexity of α. We will show just the case of �G. As
the induction hypothesis we assume that our claim holds for an L�-formula β.
The following equivalences show that then it must hold also for �Gβ.

x 
 �Gβ iff fG(x) 
 β
iff

⋃
w∈xRs(G)(w) 
 β

iff for all v ∈
⋃
w∈xRs(G)(w), v � tr(β)

iff for all w ∈ x and for all v ∈ Rs(G)(w), v � tr(β)
iff for all w ∈ x, w � Ds(G)tr(β)
iff for all w ∈ x, w � tr(�Gβ).

Corollary 7. For every L�-formula α, tr(α) is valid in M iff α is valid in Mi.



6 Conclusion

In this paper, we have formulated a generalization of the standard semantics for
distributed knowledge. The standard modality of distributed knowledge/belief
that is indexed by sets of agents has been generalized to an epistemic modality
which is relative to structured communication scenarios. Our general framework
allows to add this modality to a large class of non-classical logics extending a
weak, non-associative, non-distributive and non-commutative Full Lambek Cal-
culus with a paraconsistent negation.
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