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Abstract: The paper relates evidence and justification logics, both philo-
sophically and technically. On the philosophical side, it is suggested that
the difference between the approaches to evidence in the two families of
logics can be explained as a result of their focusing on two different notions
of support provided by evidence. On the technical side, a justification logic
with operators pertaining to both kinds of support is shown to be sound and
complete with respect to a special class of awareness models. In addition, a
realization theorem with respect to K is shown to hold for the logic.
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1 Introduction

It is commonly assumed that normal modal epistemic logics (Fagin, Halpern,
Moses, & Vardi, 1995; Hintikka, 1962; Meyer, 2001; Meyer & van der
Hoek, 1995; van Benthem, 2011; van Ditmarsch, van der Hoek, & Kooi,
2008) focus on the implicit beliefs of an agent without being able to rep-
resent the evidence the agent might use to justify her beliefs. To represent
evidence, it is argued, normal epistemic logics have to be extended. Two
families of such extensions have recently risen into prominence: justifica-
tion logics (Artemov, 2001, 2008, 2011) and evidence logics (Shi, 2013; van
Benthem, Fernández-Duque, & Pacuit, 2012, 2014; van Benthem & Pacuit,
2011a, 2011b). Justification logics originate in provability logic and are, at
least semantically, close to awareness logics of Fagin and Halpern (1988).
Pieces of evidence are represented ‘syntactically’, as sets of formulas jus-
tified by the respective pieces, see (Artemov, 2012). Evidence logics build

1The author would like to thank Johan van Benthem for discussion and encouragement, the
organizers of Logica 2013 for a pleasant conference and the editors of The Logica Yearbook
for their patience. Work on this paper was carried out at the Institute of Philosophy of the
Slovak Academy of Sciences as a part of the research project "Language and Determination of
Meaning in Context", funded by the grant VEGA 2/0019/12.
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on an evidence-based interpretation of neighbourhood models for classical
modal logics, see (Chellas, 1980), and are a combination of classical and
normal modal logics. Pieces of evidence are represented ‘semantically’, as
sets of worlds consistent with the respective pieces. The difference in their
respective representations of evidence makes the investigation of their rela-
tionship and combinations rather interesting.2

This paper takes first steps to relate these two families of logics, both
philosophically and technically. Simple versions of evidence and justifica-
tion logics are outlined in Sections 2 and 3, respectively. Section 4 discusses
the differences between evidence and justification logics. Three prima facie
differences are pointed out and explained away. First, it is shown in Sec-
tion 4.1 that the basic evidence logic discussed in Section 2 is sound and
complete with respect to a class of models where ‘pieces of evidence’ are
considered explicitly. Second, it is shown in the same section that evidence
logics are consistent with a ‘world-relative’ construal of evidence. Third, it
is argued in Section 4.2 that the difference between the renderings of evi-
dence embodied in evidence and justification logics can be explained as a
result of their focusing on two different kinds of support provided by pieces
of evidence. This is an alternative to the provisional explanations of the dif-
ference known from the literature, which tend to point out ‘different levels
of analysis’ as the main contrast, see (van Benthem et al., 2014, pp. 108,
132), for example. As a result, combinations of evidence and justification
logics are a natural research program. However, only a very simple com-
bination is provided here: Section 5 points out that a specific version of
multi-dimensional awareness logic combines ideas related to evidence and
justification logics. The main technical result is a completeness theorem
for this combination, together with a realization theorem with respect to the
modal logic K. The concluding Section 6 points out that a reformulation of
evidence and justification logics in the framework of term-modal logics, see
(Fitting, Thalmann, & Voronkov, 2001), is an interesting topic for further
research.

2See (van Benthem et al., 2014, p. 132), for example. An interesting combination of justi-
fication logic with dynamic epistemic logic is put forward in (Baltag, Renne, & Smets, 2012,
2014).
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2 A simple evidence logic

For sake of simplicity, only the basic evidence logic without dynamic and
plausibility operators is discussed. The language LE adds to the Boolean
language the monadic operators [E], [B] and [K]. ‘[E]φ’ is read ‘there is
evidence supporting φ’ (or ‘the agent has evidence for φ’), ‘[B]φ’ means
‘the agent believes that φ’ and the operator [K] is construed as a universal
modality (‘[K]φ’ may be read as ‘the agent knows that φ’).

The simplest models for LE are extended evidence models

Me = 〈W,R,E, V 〉 (1)

where 〈W,R, V 〉 is a one-dimensional Kripke model and E is an ‘evidence
relation’ E ⊆ W × 2W . It is required that 〈w,W 〉 ∈ E and 〈w, ∅〉 6∈ E for
all w ∈ W . Hence, extended evidence models are a combination of Kripke
models with neighbourhood models, see (Chellas, 1980; Hansen, Kupke,
& Pacuit, 2009). Sets X ∈ E(w) represent the evidence available to the
agent at w (agent’s ‘evidential state’).3 It is assumed in addition to the usual
Boolean truth-conditions that (‖φ‖Me = {w : Me, w |= φ}):

• Me, w |= [B]φ iff R(w) ⊆ ‖φ‖Me

• Me, w |= [E]φ iff there is X ∈ E(w) such that X ⊆ ‖φ‖Me

• Me, w |= [K]φ iff ‖φ‖Me = W

R is construed as an ‘epistemic accessibility’ relation and [B] is the usual
implicit belief operator. The literature on evidence logics does not offer a
detailed explanation of the relation between pieces (sources) of evidence and
sets X ∈ E(w), but the following might be plausible. Let us assume that
we have a set P of pieces of evidence. These might include ‘propositional
evidence’ (i.e. statements such as ‘There is a table in front of Alice’) as
well as non-propositional entities such as sense-experiences (Alice’s visual
experience of a table) etc.4 Now assume that every x ∈ P comes with
C(x) ⊆ W , the set of worlds consistent with x. A preliminary explanation

3E(w) = {X : EwX} and similarly for R(w).
4It is customary in philosophy of science to assume that all evidence is propositional, see

(Achinstein, 2001, 2010). On the other hand, the use of ‘evidence’ in epistemology is broader,
including propositional as well as non-propositional entities. For nice examples, see (Feld-
man, 1988, 1995; Feldman & Conee, 1985), where sense-experiences are frequently cited as
evidence. However, some epistemologists imply that evidence is exclusively propositional, see
(Williamson, 2000), for example.
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of the invoked notion of consistency might run as follows. If x ∈ P is
propositional, then w ∈ C(x) iff x is true in w (our assumption is that w
is maximally consistent—every statement consistent with w is true in w).
If x ∈ P is non-propositional (sense-experience, event, object etc.), then
w ∈ C(x) iff x exists (obtains) in w. Every X ∈ E(w) can be seen as
corresponding to some x ∈ P in the sense that X = C(x). The set E(w)
then corresponds to P (w) ⊆ P , the evidence available to the agent at w.
[E]φ then holds inw iff there is a piece of evidence x such that x is available
at w and φ holds in every world in which x holds (or exists, obtains, occurs
etc.), i.e. x ‘necessitates’ φ.5

Definition 1 (van Benthem et al., 2012) The Hilbert system H(EL) is
given by the following axiom schemes and rules:

(A0) Propositional tautologies in LE

(A1) S5 axioms for [K]

(A2) K axioms for [B]

(A3) [E]>

(A4) ([E]φ ∧ [K]ψ)↔ [E](φ ∧ [K]ψ)

(A5) [K]φ→ [B][K]φ

(R1) Modus Ponens

(R2) φ→ ψ/[E]φ→ [E]ψ

(R3) φ/[o]φ for o ∈ {K,B}

The basic evidence logic EL is the set of formulas provable in H(EL).

Fact 1 (van Benthem et al., 2012) For every φ ∈ LE: φ ∈ EL iff
Me, w |= φ for all pointed extended evidence models Me, w.

5This is in need of a deeper discussion. However, such a discussion is left out of the present
paper, due to space limitations. We note that our preliminary characterisation of consistency
loosely builds on Feldman’s characterisation of the relation of ‘necessitation’ between pieces
of evidence and propositions, see (Feldman, 1995).
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3 A simple justification logic

The basic language of justification logic LJ adds to the Boolean language
formulas of form t : φ, where t ∈ Tm. The set of justification terms
Tm is defined inductively over disjoint countable sets V ar of justification
variables and Con of justification constants (x, y, z range over V ar and d, e
range over Con):

• V ar ∪ Con ⊆ Tm

• if s, t ∈ Tm, then s · t ∈ Tm and s+ t ∈ Tm

Hence, in addition to ‘tags’ for specific pieces of evidence (or justifications),
LJ contains operators, which allow to build complex justification terms.
Formulas t : φ are read ‘φ is believed for reason t’.

Definition 2 The Hilbert system H(J) comprises of the following axioms
and rules:

(jA0) Propositional tautologies

(jA1) s : (φ→ ψ)→ (t : φ→ (s · t) : ψ)

(jA2) (s : φ ∨ t : φ)→ (s+ t) : φ

(jR1) Modus Ponens

(jR2) For every axiom φ and any constants e1, . . . , en infer that
en : en−1 : . . . : e1 : φ

The constant specification induced by H(J), CSJ, is the set of all formulas
of the form e : φ, where e is a constant, provable in H(J). The basic
justification logic J is the set of LJ -formulas provable in H(J).

The justification logic J has two interesting properties: it ‘internalizes’
its own proofs and it ‘realizes’ the basic normal modal logic K.

Theorem 1 (Internalization; Brezhnev, 2000) If φ ∈ J, then there is a t
such that t : φ ∈ J.

Theorem 2 (K-realization; Brezhnev, 2000)
i) If φ ∈ K then there is a formula φr ∈ LJ such that φr results from φ

by replacing occurrences of ‘boxes’ by justification operators and φr ∈ J.
ii) If φ ∈ J and φ� results from φ by replacing every occurrence of a

justification operator by a ‘box’, then φ� is a theorem of K.
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The usual models for LJ are Fitting models, see (Fitting, 2005):

Mf = 〈W,R,A, V 〉 (2)

where 〈W,R, V 〉 is a one-dimensional Kripke model and A is a function
from (W × Tm) to 2Fm such that:

• If φ→ ψ ∈ A(w, s) and φ ∈ A(w, t), then ψ ∈ A(w, s · t)

• A(w, s) ∪A(w, t) ⊆ A(w, s+ t)

• If e : φ ∈ CSJ, then φ ∈ A(w, e) for all w ∈W

The truth-conditions of the Boolean fragment are as usual. Moreover:

• Mf , w |= s : φ iff i) Mf , v |= φ for all v such that Rwv and ii)
φ ∈ A(w, s).

The relation R is construed in the usual way. The set A(w, s) is seen as
the set of formulas justified by s at w. This is a ‘syntactic filter’ akin to the
awareness function of Fagin and Halpern (1988) with an extra parameter,
the justification term.6 Note that ‘t justifies φ’ is world-relative: typically
A(w, t) 6= A(v, t) for w 6= v.

The operator ‘·’ corresponds to applying Modus Ponens (it is often called
‘application’): If s justifies φ → ψ and t justifies φ, then s · t justifies ψ.
No other properties of ‘·’ are assumed.7 The operator ‘+’ (‘sum’ or
‘weakening’) corresponds to ‘monotonic merging’ of justifications: If
φ ∈ A(w, s) or φ ∈ A(w, t), then φ ∈ A(w, s + t).8 Formula t : φ holds
at w iff the agent implicitly believes that φ and t justifies φ at w. Hence, the
precise meaning of t : φ could be spelled out as ‘agent’s implicit belief that
φ is justifiable by reference to t’. Note that justification logics do not work
with the notion of some justifications being ‘available’.9

Fact 2 (Fitting, 2005) φ ∈ J iff φ is valid in every Fitting model.
6Of course, the functionA can be replaced by a family of awareness functions {As}s∈Tm.

We will return to this suggestion later.
7In particular, ‘·’ is not assumed to be commutative (there are models with A(w, s · t) 6=

A(w, t · s)), associative (A(w, s · (t · t′)) 6= A(w, (s · t) · t′)), nor idempotent (A(w, s) 6=
A(w, s · s)). Applying ‘·’ is ‘non-monotonic’, as it may lead to ‘forgetting’: there are models
with A(w, s) 6⊆ A(w, s · t).

8Commutativity, associativity and idempotence are not assumed, although A(w, t) ⊆
A(w, t+ t). ‘Forgetting’ is ruled out.

9However, availability of t at w could be mimicked (at least in the mono-agent case) by
A(w, t) 6= ∅.
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4 What is the difference?

A preliminary characterisation of the difference between evidence and jus-
tification logics is now at hand. There are at least three interesting points:

1. Reference to pieces of evidence. Evidence logics do not refer to spe-
cific pieces of evidence explicitly, ‘syntactically’ (LE) nor ‘semanti-
cally’ (extended evidence models). On the other hand, justification
logics refer to ‘justifications’ both syntactically (justification terms in
LJ ) and semantically (A in Fitting models).

2. What does it mean to have evidence for φ? In extended evidence mod-
els, ‘there is evidence for φ’ is a function of the proposition expressed
by φ. On the other hand, the function A in Fitting models picks for-
mulas directly, without reference to the propositions expressed.

3. Relativity of justifications. In Fitting models, ‘t justifies φ’ is world-
relative. On the other hand, it is not clear if this is the case in ex-
tended evidence models. Our explanation in Section 2 suggests that
extended evidence models are consistent with a ‘constant-evidence’
explanation.

We show in Section 4.1 that direct reference to pieces of evidence, at
least on the ‘level of models’, is easily added to evidence logics. However,
adding ‘tags’ for pieces of evidence to LE is more complicated and we leave
it for another occasion. It is also shown that evidence logics are consistent
with a ‘world-relative’ construal of evidence. Item 2 makes it tempting to
conclude that justification logics ‘go deeper’, beyond the semantic level of
propositions. Section 4.2 offers a different explanation, according to which
the difference results from focusing on two different kinds of support.

4.1 Evidence logics and pieces of evidence

Extended evidence models can be ‘safely’ replaced by models that do invoke
specific pieces of evidence. Neighbourhoods can be simulated by sets of
binary relations.

Definition 3 A two-sorted evidence model is a tuple

M = 〈W,R, {Ri}, S, V 〉i∈G (3)
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where 〈W,R, {Ri}, V 〉i∈G is a (|G|+ 1)-dimensional Kripke model and S:
W → 2G. The truth-conditions for Boolean connectives, [B]φ and [K]φ
are as in extended evidence models. Moreover:

• M, w |= [E]φ iff there is i ∈ S(w) such that Ri(w) ⊆ ‖φ‖M

A two-sorted model is extendible iff (i) for every w, there is i ∈ S(w) such
that Ri(w) = W , and (ii) if i ∈ S(w), then Ri(w) 6= ∅.

The set G is thought of as a set of pieces of evidence and every Ri is a
binary relation of ‘relative compatibility’ corresponding to i ∈ G. Riwv can
be thought of as representing the fact that v is compatible with i, relatively
to w. S(w) is seen as the body of evidence available to the agent at w. Sets
R(w) can be seen as corresponding to the evidence the agent ‘accepts’ or
‘trusts’ at w. One can think of R(w) as the intersection of a multitude of
sets corresponding to specific ‘accepted’ pieces of evidence, but we shall
not go into such details here. The models recognize two sorts of evidence,
hence their name. Observe that no specific relation between the ‘available’
and the ‘accepted’ evidence is assumed.

Definition 4 Let M = 〈W,R, {Ri}, S, V 〉i∈G be a two-sorted evidence
model. The extended copy of M, M∗ = 〈W,R,E∗, V 〉, is obtained by
defining:

• E∗(w) = {X : X = Ri(w) for some i ∈ S(w)}

Fact 3 LetM be an extendible two-sorted model. ThenM∗ is an extended
evidence model. Moreover, if Me is an arbitrary extended evidence model,
then there is an extendible two-sorted modelM such that Me =M∗.

Fact 4 Let Me =M∗. Then ‖φ‖Me = ‖φ‖M for every φ ∈ LE .

Theorem 3 For all φ ∈ LE: φ ∈ EL iff M, w |= φ for all pointed
extendible two-sorted modelsM, w.

Proof. Soundness is easily established by induction on the length of proofs.
Completeness follows from Facts 1, 3 and 4.

Note that the evidence-based interpretation of two-sorted models ex-
tends to simple multi-dimensional Kripke models M = 〈W, {Ri}, V 〉i∈G.
In other words, normal multi-dimensional modal logics can be construed as
simple logics of evidence, where ‘agents’ are replaced by ‘pieces of evi-
dence’ and ‘groups’ by ‘evidential states’.
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4.2 Two kinds of support

Evidence logics are based on the notion that φ is supported by evidence iff
there is an available piece of evidence that necessitates φ, i.e. every world
in which the piece of evidence holds (or obtains) is a φ-world (call this the
propositional notion of support). Consequently, if φ and ψ express the same
proposition, then φ is propositionally supported iff ψ is. It is plain that this
is not the case in the context of justification logics, where φ is supported by
evidence (at w) iff φ ∈ A(w, t) for some t. It is possible that φ, ψ express
the same proposition in a Fitting model and φ ∈ A(w, t), but ψ 6∈ A(w, s)
for all s.

The propositional notion of support is assumed by many sceptical ar-
guments. A typical sceptical argument insists that a class of beliefs is not
supported in that it is not necessitated by any evidence. For example, the
sceptic argues that my belief that there is a table in front of me is not sup-
ported by my visual experiences, because it is possible for me to have the
experiences in worlds where there is no table in front of me. For example,
it is possible to see a table while hallucinating, while being a brain in a vat
etc. These possibilities are not ruled out by our evidence.

Accordingly, the propositional notion of support seems unrealistic from
an intuitive point of view. For example, when considering perceptual be-
liefs, one tends to consider visual experiences as evidence par excellence.
There is a difference between our ‘intuitive’ understanding of evidence and
the propositional notion of support. Some epistemologists make a similar
point. For example, Feldman (1995) argues that the question whether one’s
belief in φ is rational is independent of the question whether one’s evidence
necessitates φ.

Example 1. Let> be any propositional tautology, let p be short for ‘There is
a table in front of Alice’ and let x denote Alice’s visual experience of a table
in front of her. Intuitively, x supports p and x does not support >. But, it is
plain that x necessitates>, for the sole reason that> is necessary. Moreover,
x does not necessitate p, as the obvious sceptical counterexamples show.

One can explain the difference between evidence and justification logics
in terms of the contrast between the propositional and the ‘intuitive’ notion
of support. Evidence logics represent propositional support and justification
logics focus on the independent intuitive notion. On this interpretation of
the difference, one immediately sees the relevance of logics that combine
these two approaches.
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5 A simple two-sorted justification logic

A simple logic that represents the propositional as well as the ‘intuitive’
notion of support is introduced in the present section (5.1). The logic is
shown to be sound and complete with respect to a class of multi-dimensional
awareness models (5.2). In addition, it is shown that the logic realizes K,
but the usual proofs of internalization fail (5.3).

5.1 The logic JE

The language LJE is LJ extended with monadic operators [Et] and [At] for
every t ∈ Tm. [Et]φ is read ‘t necessitates φ’ and [At]φ is read ‘t weakly
supports φ’. The justification formulas t : φ are read ‘t strongly supports φ’.
Strong support is construed as a combination of necessitation (propositional
support) and weak (‘intuitive’) support.

Definition 5 The Hilbert system H(JE) is given by the following axioms
and rules:

(Ax0) Propositional tautologies

(Ax1) [Et](φ→ ψ)→ ([Et]φ→ [Et]ψ)

(Ax2) ([Es]φ ∨ [Et]φ)→ ([Es·t]φ ∧ [Es+t]φ)

(Ax3) ([Es]φ ∧ [Et]ψ)→ ([Es·t](φ ∧ ψ) ∧ [Es+t](φ ∧ ψ))

(Ax4) [As](φ→ ψ)→ ([At]φ→ [As·t]ψ)

(Ax5) ([As]φ ∨ [At]φ)→ [As+t]φ

(Ax6) t : φ↔ ([Et]φ ∧ [At]φ)

(Ax7) s : (φ→ ψ)→ (t : φ→ (s · t) : ψ)

(Ax8) (s : φ ∨ t : φ)→ (s+ t) : φ

(Ru1) Modus Ponens

(Ru2) φ/[Et]φ for all t ∈ Tm

(Ru3) For every axiom φ and any constants e1, . . . , en infer that
en : en−1 : . . . : e1 : φ
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The constant specification induced by H(JE), CSJE, is the set of for-
mulas of the form e : φ provable in H(JE). The logic JE is the set of
formulas provable in H(JE).

Lemma 1 J ⊆ JE.

Lemma 2 Axioms (Ax7) and (Ax8) are redundant, i.e. derivable from the
other axioms.

We note that Lemma 1 requires the inclusion of the ‘redundant’ axioms
(Ax7) and (Ax8), since (Ru3) applies only to axioms. The constant spec-
ification induced by the Hilbert system without the two axioms does not
contain CSJ.

Definition 6 A common model is a tuple

M = 〈W, {Rt}, {At}, V 〉t∈Tm (4)

where every Rt ⊆W 2 and At: W → 2Fm(LJE). It is assumed that

• Rs·t, Rs+t ⊆ Rs ∩Rt

• If φ→ ψ ∈ As(w) and φ ∈ At(w), then ψ ∈ As·t(w)

• As(w) ∪At(w) ⊆ As+t(w)

• If e : φ ∈ CSJE, then φ ∈ Ae(w) for all w ∈W

The truth-conditions for the Boolean fragment are as usual. Moreover:

M, w |= [Et]φ iff Rt(w) ⊆ ‖φ‖M (∗)

M, w |= [At]φ iff φ ∈ At(w) (∗∗)

M, w |= t : φ iff (∗) and (∗∗)
Common frames and validity are defined in the usual way.

Common models are a special class of multi-dimensional awareness
models. For every t ∈ Tm, Rt represents the propositional support pro-
vided by t and At represents the weak (‘intuitive’) support. Rt(w) is the
set of worlds consistent with t relatively to w. At(w) is the set of formulas
weakly supported by t at w. Note that these are independent: there are mod-
els where Rt(w) ⊆ ‖φ‖M but φ 6∈ At(w) and vice versa. EJ can be seen
as a justification logic that incorporates the notion of propositional support
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from evidence logic. However, the logic does not contain EL for the simple
reason that it replaces the idea of ‘quantifying’ over pieces of evidence by
operators expressing the propositional support provided by specific pieces
of evidence.

5.2 Completeness

This section establishes the usual soundness and completeness results. Com-
pleteness is shown by the standard canonical model construction. We note
that the strong justification logic LP was shown to be sound and complete
with respect to a special class of common models in (Sedlár, 2013).

Theorem 4 (Soundness) If φ ∈ JE, then φ is valid in every common
frame.

Proof. Induction on the length of proofs.

Definition 7 (Canonical frame and model) The canonical frame for JE is
a structure Fc = 〈W c, {Rct}, {Act}〉t∈Tm where

• W c is the set of maximal JE-consistent sets of formulas Γ,∆, . . .

• ΓRct∆ iff ΓE(t) ⊆ ∆, where ΓE(t) = {φ : [Et]φ ∈ Γ}

• φ ∈ Act(Γ) iff [At]φ ∈ Γ

The canonical model for JE is Mc = 〈Fc, V c〉, where Γ ∈ V c(p) iff p ∈ Γ.

Lemma 3 (Frame Lemma) The canonical frame is a common frame.

Proof. As usual, we have to show that the canonical frame satisfies the
frame conditions of Definition 6. First, it has to be shown that ΓRcs∆ and
ΓRct∆ if ΓRcs+t∆. If φ ∈ ΓE(s), then [Es]φ ∈ Γ and, by (Ax2) and propo-
sitional logic, [Es+t]φ ∈ Γ. By the assumption, φ ∈ ∆. The cases for
ΓRct∆ and Rcs·t are similar.

Second, assume that φ → ψ ∈ Acs(Γ) and φ ∈ Act(Γ). ψ ∈ Act(Γ)
follows from (Ax4). The fact that Acs(Γ) ∪ Act(Γ) ⊆ Acs+t(Γ) is proven
similarly by invoking (Ax5).

Third, assume that e : φ ∈ CSJE. Then e : φ ∈ JE and e : φ ∈ Γ for
all Γ ∈ W c. By (Ax6) and propositional logic, [Ae]φ ∈ Γ for all Γ ∈ W c.
Hence, φ ∈ Ace(Γ) for all Γ.
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Lemma 4 (Model Lemma) The canonical model is a common model.

Proof. The Lemma follows from Lemma 3 and the fact that φ ∈ Γ iff
Mc,Γ |= φ. The second claim (Truth Lemma) is shown by standard in-
duction on the complexity of φ. The base case holds by definition and the
cases for Boolean connectives are trivial.

Now assume that [Et]φ ∈ Γ. It follows that φ ∈ ΓE(t) and, hence,
φ ∈ ∆ for all ΓE(t) ⊆ ∆. Consequently, Mc,Γ |= [Et]φ. Conversely,
assume that [Et]φ 6∈ Γ. Then ΓE(t) ∪ {¬φ} is JE-consistent and can be
extended to a maximal JE-consistent set Γ∗. It is plain that ΓRctΓ

∗ and
φ 6∈ Γ∗. Hence, Mc,Γ 6|= [Et]φ.

Next, [At]φ ∈ Γ iff φ ∈ Act(Γ) (by definition) iff Mc,Γ |= [At]φ. Now
t : φ ∈ Γ iff [Et]φ ∈ Γ and [At]φ ∈ Γ by (Ax6). The rest follows from the
previous claims concerning [Et]φ and [At]φ.

Theorem 5 (Completeness) If φ is valid in every common frame, φ ∈ JE.

5.3 Realization and internalization

In this section, an ‘operator’ is any instance of ‘[Et]’, ‘[At]’ and ‘t :’, and a
‘justification operator’ is any instance of ‘t :’.

Lemma 5 Let φ ∈ LJE and let φ� be the result of replacing every occur-
rence of an operator in φ by an occurrence of the modal box ‘�’. If φ ∈ JE,
then φ ∈ K.

Proof. Simple induction on the length of H(JE)-proofs. Observe that the
claim holds for every axiom of H(JE) and the rules ‘preserve the claim’ as
well.

Theorem 6 If φ ∈ K then there is a formula φr ∈ LJE such that φr

results from φ by replacing occurrences of ‘boxes’ by occurrences of justifi-
cation operators and φr ∈ JE.

Proof. Follows from Theorem 2 and Lemma 1.

A corollary of these two results is that JE ‘realizes’ K. However, the
usual proof of the internalization property (see, e.g., Artemov, 2008) does
not work. The reason is that there is no justification operator correspond-
ing to the necessitation rule (Ru2). Moreover, other well-known techniques
used when justification logic is combined with normal modal logics (see
Artemov & Nogina, 2005a, 2005b for example) are not applicable in our
context either.
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6 Conclusion

The paper attempted to take first steps to relate evidence and justification
logics. The main results are: (i) a completeness proof for the basic evidence
logic with respect to a new class of models, where ‘pieces of evidence’ are
invoked explicitly, (ii) completeness and realization proofs for a justifica-
tion logic that incorporates some ideas form evidence logic (operators for
propositional support). In a more philosophical vein, it has been suggested
that (i) the difference between the rendering of evidence in justification and
evidence logics can be explained as the result of their focusing on two dis-
tinct notion of support, (ii) even multi-dimensional normal modal logics can
be seen as logics of evidence.

However, a natural goal is to extend JE at least with the operator [E]
of evidence logic. Of course, this could be done by adding neighbourhoods
to common models. A more interesting approach is to construe [E] as a
quantifier over selected subsets of justification terms. Such a framework
comes close to term-modal logics of Fitting et al. (2001), a version of first-
order modal logic where modal operators are indexed by the terms of the
language. This approach makes the introduction of predicates for and quan-
tification over pieces of evidence relatively straightforward. However, this
interesting project is beyond the scope of this paper.
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