Main Index Mathematical Analysis Infinite series and products Infinite series Divergent series
  Subject Index
comment on the page

The divergence tests

Let

Underoverscript[∑, n = 1, arg3] x _ n(1)

be an infinite series .

If the series converges then according to the definition the sequence

s _ n = Underoverscript[∑, k = 1, arg3] x _ k(2)

of its partial sums is convergent, say typeset structure. Then typeset structure and typeset structure. This gives the following result (for another proof visit ):

Theorem: If  (1)  is a convergent infinite series, then  typeset structure.

Or equivalently, we get

The divergence test: If  (1)  is an infinite series such that typeset structure then the series diverges.

The following extension of the divergence test goes back to L.Olivier [1]:

Theorem: If the series (1) is convergent and its terms typeset structure form a decreasing sequence of positive numbers, then even typeset structure.

The proof follows from Cauchy-Bolzano convergence criterion : Given an typeset structure, there exists typeset structure such that  

x _ (n + 1) + x _ (n + 2) + ... + x _ (n + m) < ε/2(3)

for every typeset structure and every typeset structure. Take typeset structure and typeset structure, where typeset structure denotes the greatest integer function. Then typeset structure and typeset structure. Since typeset structure is decreasing, the left hand side of (3) can be estimated from below by typeset structure, which implies that typeset structure, as desired.

Simple example show that the assumption that typeset structure is decreasing cannot be omitted ( [2]  , Example 1):  Define

x _ n = {          1          -,          n                 if n is a square,           1          --,           2          n                 otherwise .

Then typeset structure,  but typeset structure,  for typeset structure if typeset structure is a square.

The most natural application of this result is to show that the harmonic series is divergent . However more can be derived using Olivier’s test: To formulate this we need the notion of the asymptotic density.  If typeset structureis a subset of the set of positive integers, then the asymptotic density typeset structure of typeset structure is defined by

lim _ (x -> ∞) M(x)/x,        where       M(x) = card ( {m ∈ M :    m <= x} ),

if the limit on the right-hand side exists. We also have ( [3]  , Theorem 11.1) :  If typeset structure exists then

d(M) = lim _ (n -> ∞) n/m _ n   ,     where      M = {m _ 1 < m _ 2 < ... < m _ n < ...} .

The next result shows the relation between convergence of subseries of the harmonic series and the asymptotic density (for more details consult  [4] and  [5] ):

If typeset structure is convergent then typeset structure.

Note that the above theorem stems from [1] , p.34, where Olivier writes:

Donc si l’on trouve, que dans une série infinie, le produit du typeset structure terms, ou du typeset structure des groupes de termes qui conservent le même signe, par typeset structure est zéro, pour typeset structure, on peut regarder cette seule circonstance comme une marque, que la série est convergente, si le produit typeset structure n’est pas nul pour typeset structure.

This is an English translation according to  [6]  :

Therefore if one finds an infinite series, the product of the typeset structureth term, or of the typeset structureth group of terms which keep the same sign, by typeset structure, is zero, for typeset structure, one can regard precisely this situation as an indicator that the series is convergent, and conversely, the series is not convergent if the product typeset structure is nonzero for typeset structure.

That this result in this formulation is not correct was immediately pointed out by N.Abel [7] .

References

[1]  Olivier, L. (1827). Remarques sur les series infinies et leur convergence. J. reine angew. Math., 2(31), 44.

[2]  Šalát, T., & Toma, V. (2003). A classical Olivier's theorem and statistical convergence.. Ann. Math. Blaise Pascal , 10(2), 305-313.

[3]  Niven, I., & Zuckerman, H. S. (1972). An introduction to the theory of numbers  (3rd ed.) . New York etc.: John Wiley & Sons.

[4]  Šalát, T. (1964). On subseries. Math. Zeitschrift, 85, 209-225.

[5]  Powell, B. J., & Šalát, T. (1991). Convergence of subseries of the harmonic series and asymptotic densities of sets of positive integers . Publicationes de l’institut mathématique (Beograd) (N.S.), 50(64), 60-70.

[6]  Goar, M. (1999). Olivier and Abel on series convergence: An episode from early 19th century analysis. Math. Magazine, 72(5), 347-355.

[7]  Abel, N. (1928). Note sur le momoire de Mr. L.Olivier No.4 du second tome de ce journal, ayant pout tire ‘Remarques sur les series infinies et leur convergence'. J. reine angew. Math., 3, 79-81.

Cite this web-page as:

Štefan Porubský: Convergence of means.

Page created  .