
Institute of Computer Science
Academy of Sciences of the Czech Republic

Trust-region interior-point method for
large sparse l1 optimization

L.Lukšan, C. Matonoha, J. Vlček

Technical report No. 942

November 2005

Pod Vodárenskou věž́ı 2, 182 07 Prague 8 phone: +420 2 688 42 44, fax: +420 2 858 57 89,
e-mail:e-mail:ics@cs.cas.cz

Institute of Computer Science
Academy of Sciences of the Czech Republic

Trust-region interior-point method for
large sparse l1 optimization

L.Lukšan, C. Matonoha, J. Vlček 1

Technical report No. 942

November 2005

Abstract:

In this report, we propose an interior-point method for large sparse l1 optimization. After a
short introduction, the complete algorithm is introduced and some implementation details
are given. We prove that this algorithm is globally convergent under standard mild assump-
tions. Thus relatively difficult l1 optimization problems can be solved successfully. The
results of computational experiments given in this report confirm efficiency and robustness
of the proposed method.

Keywords:
Unconstrained optimization, large-scale optimization, nonsmooth optimization, minimax
optimization, interior-point methods, modified Newton methods, computational
experiments.

1This work was supported by the Grant Agency of the Czech Academy of Sciences, project code
IAA1030405, and the institutional research plan No. AV0Z10300504. L.Lukšan is also from the
Technical University of Liberec, Hálkova 6, 461 17 Liberec.

1 Introduction

Consider the l1 optimization problem: Minimize the function

F (x) =
m∑

i=1

|fi(x)|, (1)

where fi : Rn → R, 0 ≤ i ≤ m, are smooth functions depending on ni variables
and satisfying either Assumption 1 or Assumption 2. We assume that the function
F (x) is partially separable, which means that n, m = O(n) are large and ni = O(1),
0 ≤ i ≤ m, are small.

Assumption 1. Functions fi(x), 1 ≤ i ≤ m, are twice continuously differentiable on
convL(F) for a sufficiently large upper bound F , where L(F) = {x ∈ Rn : F (x) ≤ F},
and they have bounded first and second-order derivatives on convL(F). Thus constants
g and G exist such that ‖∇fi(x)‖ ≤ g and ‖∇2fi(x)‖ ≤ G for all 1 ≤ i ≤ m and
x ∈ convL(F).

Assumption 2. Functions fi(x), 1 ≤ i ≤ m, are twice continuously differentiable on
a sufficiently large convex compact set D.

Since continuous functions attain their maxima on a compact set, Assumption 2
guarantees that constants F , g and G exist such that fi(x) ≤ F , ‖∇fi(x)‖ ≤ g and
‖∇2fi(x)‖ ≤ G for all 1 ≤ i ≤ m and x ∈ D. The choice of L(F) and D will be
discussed later (see Assumption 3). Note that the set L(F) used in Assumption 1 need
not be compact.

The minimization of F is equivalent to the sparse nonlinear programming problem
with n + m variables x ∈ Rn, z ∈ Rm:

minimize
m∑

i=1

zi subject to − zi ≤ fi(x) ≤ zi, 1 ≤ i ≤ m. (2)

This problem satisfies the Mangasarian-Fromowitz constraint qualification conditions
and the necessary first-order (KKT) conditions have the form

m∑

i=1

ui∇fi(x) = 0, zi = |fi(x)|, |ui| ≤ 1 and ui =
fi(x)

|fi(x)| if |fi(x)| > 0. (3)

Problem (2) can be solved by an arbitrary nonlinear programming method utilizing
sparsity (sequential linear programming [8], sequential quadratic programming [10],
interior-point [1], [12], [25] and nonsmooth equation [13]). The original problem (1) is
a special case of the polyhedral composite nonsmooth problem (see [7]) and it can be
also solved by the trust-region methods described in [20] and [26].

In this report, we introduce a trust-region interior-point method that utilizes a spe-
cial structure of the l1 optimization problem. The constrained problem (2) is replaced

1

by a sequence of unconstrained problems

minimize B(x, z; µ) =
m∑

i=1

zi − µ
m∑

i=1

log(zi − fi(x))− µ
m∑

i=1

log(zi + fi(x))

=
m∑

i=1

zi − µ
m∑

i=1

log(z2
i − f 2

i (x)) (4)

with a barrier parameter 0 < µ ≤ µ, where we assume that zi > |fi(x)|, 1 ≤ i ≤ m,
and µ → 0 monotonically. Here B(x, z; µ) : Rn+m → R is a function of n+m variables
x ∈ Rn, z ∈ Rm.

The interior-point method described in this report is iterative, i.e., it generates a
sequence of points xk ∈ Rn, k ∈ N (N is a set of integers). For proving the global
convergence, we need the following assumption concerning the function F (x) and the
sequence {xk}∞1 .

Assumption 3. Either Assumption 1 holds and {xk}∞1 ∈ L(F) or Assumption 2 holds
and {xk}∞1 ∈ D.

The interior-point method investigated in this report is a trust-region modification
of the Newton method. Approximation of the Hessian matrix is computed by gradient
differences which can be carried out efficiently if the Hessian matrix is sparse (see [3]).
Since the Hessian matrix need not be positive definite in a non-convex case, a standard
line-search realization cannot be used. There are two basic possibilities, either a trust-
region approach or a line-search strategy with suitable restarts, which eliminate this
insufficiency. We have implemented and tested both these possibilities and our tests
have shown that the first possibility, used in Algorithm 1, is more efficient.

The report is organized as follows. In Section 2, we introduce the interior-point
method for large sparse l1 optimization and describe a corresponding algorithm. Sec-
tion 3 contains more details concerning this algorithm such as a trust-region strategy
and a barrier parameter update. In Section 4 we study theoretical properties of the
interior-point method and prove that this method is globally convergent if Assump-
tion 3 holds. Finally, in Section 5 we present results of computational experiments
confirming the efficiency of the proposed method.

2 Description of the method

Differentiating B(x, z; µ) given by (4), we obtain necessary conditions for a minimum
in the form

m∑

i=1

2µfi(x)

z2
i − f 2

i (x)
∇fi(x)

∆
=

m∑

i=1

ui(x, zi; µ)∇fi(x) = 0 (5)

and

1− 2µzi

z2
i − f 2

i (x)
= 1− ui(x, zi; µ)

zi

fi(x)
= 0, 1 ≤ i ≤ m. (6)

2

Denoting gi(x) = ∇fi(x), 1 ≤ i ≤ m, A(x) = [g1(x), . . . , gm(x)],

f(x) =




f1(x)
. . .

fm(x)


 , z =




z1

. . .
zm


 , u(x, z; µ) =




u1(x, z1; µ)
. . .

um(x, zm; µ)


 (7)

and Z = diag(z1, . . . , zm), we can write (5)–(6) in the form

A(x)u(x, z; µ) = 0, u(x, z; µ) = Z−1f(x). (8)

The system of n+m nonlinear equations (8) can be solved by the Newton method,
which uses second-order derivatives. In every step of the Newton method, we solve a
set of n+m linear equations to obtain increments ∆x and ∆z of x and z, respectively.
These increments can be used for obtaining new quantities

x+ = x + α∆x, z+ = z + α∆z,

where α > 0 is a suitable step-size. This is a standard way for solving general non-
linear programming problems. For the special nonlinear programming problem (2),
the structure of B(x, z; µ) allows us to obtain a minimizer z(x; µ) ∈ R of the function
B(x, z; µ) for a given x ∈ Rn.

Lemma 1. The function B(x, z; µ) (with x fixed) has a unique stationary point, which
is its global minimizer. This stationary point is characterized by the equations

2µzi(x; µ)

z2
i (x; µ)− f 2

i (x)
= 1 or z2

i (x; µ)− f 2
i (x) = 2µzi(x; µ), 1 ≤ i ≤ m, (9)

which have the solutions

zi(x; µ) = µ +
√

µ2 + f 2
i (x), 1 ≤ i ≤ m. (10)

Proof. The function B(x, z; µ) (with x fixed) is convex for zi > |fi(x)|, 1 ≤ i ≤ m,
since it is a sum of convex functions. Thus if a stationary point of B(x, z; µ) exists, it
is its unique global minimizer. Differentiating B(x, z; µ) by z (see (6)), we obtain the
quadratic equations (9), which define its unique stationary point. 2

Assuming z = z(x; µ) and using (6) and (10), we denote

ui(x; µ) = ui(x, z(x; µ); µ) =
fi(x)

zi(x; µ)
=

fi(x)

µ +
√

µ2 + f 2
i (x)

, 1 ≤ i ≤ m, (11)

and

B(x; µ) = B(x, z(x; µ); µ) =
m∑

i=1

zi(x; µ)− µ
m∑

i=1

log(z2
i (x; µ)− f 2

i (x))

=
m∑

i=1

[zi(x; µ)− µ log(zi(x; µ))]− µm log(2µ). (12)

In this case, the barrier function B(x; µ) depends only on x. In order to obtain a
minimizer (x, z) ∈ Rn+m of B(x, z; µ), it suffices to minimize B(x; µ) over Rn.

3

Lemma 2. Consider the barrier function (12). Then

∇B(x; µ) = A(x)u(x; µ) (13)

and
∇2B(x; µ) = G(x; µ) + A(x)V (x; µ)AT (x), (14)

where

G(x; µ) =
m∑

i=1

ui(x; µ)Gi(x) (15)

with Gi(x) = ∇2fi(x), 1 ≤ i ≤ m, and V (x; µ) = diag(v1(x; µ), . . . , vm(x; µ)) with

vi(x; µ) =
2µ

z2
i (x; µ) + f 2

i (x)
, 1 ≤ i ≤ m. (16)

Proof. Differentiating (12), we obtain

∇B(x; µ) =
m∑

i=1

∇zi(x; µ)− 2µ
m∑

i=1

zi(x; µ)∇zi(x; µ)− fi(x)gi(x)

z2
i (x; µ)− f 2

i (x)

=
m∑

i=1

(
1− 2µzi(x; µ)

z2
i (x; µ)− f 2

i (x)

)
∇zi(x; µ) +

m∑

i=1

2µfi(x)gi(x)

z2
i (x; µ)− f 2

i (x)

=
m∑

i=1

ui(x; µ)gi(x) = A(x)u(x; µ)

by (9) and (5). Differentiating (9), one has

∇zi(x; µ)

z2
i (x; µ)− f 2

i (x)
− 2zi(x; µ)(zi(x; µ)∇zi(x; µ)− fi(x)gi(x))

(z2
i (x; µ)− f 2

i (x))2
= 0

for 1 ≤ i ≤ m, which gives

∇zi(x; µ) =
2zi(x; µ)fi(x)gi(x)

z2
i (x; µ) + f 2

i (x)
(17)

for 1 ≤ i ≤ m after arrangements. Thus

∇ui(x; µ) = ∇
(

fi(x)

zi(x; µ)

)
=

zi(x; µ)gi(x)− fi(x)∇zi(x; µ)

z2
i (x; µ)

=

(
1− 2f 2

i (x)

z2
i (x; µ) + f 2

i (x)

)
gi(x)

zi(x; µ)

=
z2

i (x; µ)− f 2
i (x)

z2
i (x; µ) + f 2

i (x)

gi(x)

zi(x; µ)

=
2µ

z2
i (x; µ) + f 2

i (x)
gi(x) = vi(x; µ)gi(x)

4

by (11), (17), (9) and (16). Differentiating (13) and using the previous expression, we
obtain

∇2B(x; µ) = ∇
m∑

i=1

ui(x; µ)gi(x)

=
m∑

i=1

ui(x; µ)Gi(x) +
m∑

i=1

∇ui(x; µ)gT
i (x)

=
m∑

i=1

ui(x; µ)Gi(x) +
m∑

i=1

vi(x; µ)gi(x)gT
i (x),

which is equation (14). 2

Lemma 3. Let a vector d ∈ Rn solve the equation

∇2B(x; µ)d = −g(x; µ), (18)

where g(x; µ) = ∇B(x; µ) 6= 0. If the matrix G(x; µ) is positive definite, then dT g(x; µ) <
0 (the direction vector d is descent for B(x; µ)).

Proof. Equation (18) implies

dT g(x; µ) = −dT∇2B(x; µ)d = −dT G(x; µ)d− dT A(x)V (x; µ)AT (x)d ≤ −dT G(x; µ)d,

since V (x; µ) is positive definite by (16). Thus dT g(x; µ) < 0 if G(x; µ) is positive
definite. 2

Expression (16) implies that vi(x; µ) is bounded if f 2
i (x) is bounded from zero. If

f 2
i (x) tends to zero faster than µ then vi(x; µ) can tend to infinity and∇2B(x; µ) can be

ill-conditioned (see (14)). The following lemma gives the upper bound for ‖∇2B(x; µ)‖.

Lemma 4. If Assumption 3 holds, then

‖∇2B(x; µ)‖ ≤ m(G + g2‖V (x; µ)‖) ≤ C

µ
,

where C = m(2µG + g2)/2.

Proof. Using (14) and Assumption 3, we obtain

‖∇2B(x; µ)‖ =
∥∥∥G(x; µ) + A(x)V (x; µ)AT (x)

∥∥∥

≤
∥∥∥∥∥

m∑

i=1

ui(x; µ)Gi(x)

∥∥∥∥∥ +

∥∥∥∥∥
m∑

i=1

vi(x; µ)gi(x)gT
i (x)

∥∥∥∥∥
≤ mG + mg2‖V (x; µ)‖,

5

since |ui(x; µ)| ≤ 1, 1 ≤ i ≤ m, by (11). Since V (x; µ) is diagonal, one has

‖V (x; µ)‖ = max
1≤i≤m

|vi(x; µ)| = max
1≤i≤m

(
2µ

z2
i (x; µ) + f 2

i (x)

)
(19)

by (16). Using (10), we can write

z2
i (x; µ) + f 2

i (x) =
(
µ +

√
µ2 + f 2

i (x)
)2

+ f 2
i (x)

= 2
(
µ2 + µ

√
µ2 + f 2

i (x) + f 2
i (x)

)
≥ 4µ2

for all 1 ≤ i ≤ m, which together with (19) proves the lemma. 2

The vector d ∈ Rn obtained by solving (18) is descent for B(x; µ) if the matrix
G(x; µ) is positive definite. Unfortunately, the positive definiteness of this matrix is
not assured, which causes that the standard line-search methods cannot be used. For
this reason, the trust-region methods were developed. These methods use a direction
vector obtained as an approximate minimizer of the quadratic subproblem

minimize Q(d) =
1

2
dT∇2B(x; µ)d + gT (x; µ)d subject to ‖d‖ ≤ ∆, (20)

where ∆ is a trust region radius (more details are given in Section 3). The direction
vector d serves for obtaining a new point x+ ∈ Rn. Denoting

ρ(d) =
B(x + d; µ)−B(x; µ)

Q(d)
, (21)

we set
x+ = x if ρ(d) < ρ or x+ = x + d if ρ(d) ≥ ρ (22)

and update the trust region radius in such a way that

β‖d‖ ≤ ∆+ ≤ β‖d‖ if ρ(d) < ρ or ∆ ≤ ∆+ ≤ γ∆ if ρ(d) ≥ ρ, (23)

where 0 < ρ < ρ < 1 and 0 < β ≤ β < 1 < γ.

In (20), we assume that ∇2B(x; µ) = G + A(x)V (x; µ)AT (x), where G = G(x; µ)
(see (14)). In practical computations, G is an approximation of G(x; µ) obtained by
using either gradient differences or variable metric updates. In the first case, G is
computed by differences A(x+δvj)u(x; µ)−A(x)u(x; µ) for a suitable set of vectors vj,
j = 1, 2, . . . , n, where n ¿ n. Determination of vectors vj, j = 1, 2, . . . , n, is equivalent
to a graph coloring problem (see [3]). The corresponding code is proposed in [2]. In
the second case, G is defined by the expression

G =
m∑

i=1

ui(x; µ)Gi,

6

where approximations Gi of ∇2fi(x) are computed by using variable metric updates
described in [11]. In this case, we assume that problem (1) is ”partially separable”,
which means that functions fi(x), 1 ≤ i ≤ m, depend on a small number of variables
(ni, say, with ni = O(1), 1 ≤ i ≤ m). More details are given in the next section.

Now we are in a position to describe the basic algorithm.

Algorithm 1.

Data: The termination parameter ε > 0, the minimum value of the barrier pa-
rameter µ > 0, the rate of the barrier parameter decrease 0 < τ < 1,
the trust-region parameters 0 < ρ < ρ < 1, the trust-region coefficients

0 < β ≤ β < 1 < γ, the step bound ∆ > 0.

Input: A sparsity pattern of the matrix A. An initial estimation of the vector x.

Step 1: Initiation. Choose the initial barrier parameter µ > 0 and the initial trust-
region radius 0 < ∆ ≤ ∆. Determine a sparsity pattern of the matrix
∇2B from the sparsity pattern of the matrix A. Carry out a symbolic
decomposition of ∇2B. Compute the values fi(x), 1 ≤ i ≤ m, and F (x) =∑

1≤i≤m |fi(x)|. Set k := 0 (the iteration count).

Step 2: Termination. Determine the vector z(x; µ) by (10) and the vector u(x; µ)
by (8). Compute the matrix A(x) and the vector g(x; µ) = A(x)u(x; µ). If
µ ≤ µ and ‖g(x; µ)‖ ≤ ε, then terminate the computation. Otherwise set
k := k + 1.

Step 3: Approximation of the Hessian matrix. Compute approximation G of Hes-
sian matrix G(x; µ) by using either gradient differences or variable metric
updates. Determine the Hessian matrix ∇2B(x; µ) by (14).

Step 4: Direction determination. Determine the vector d as an approximate solution
of the trust-region subproblem (20).

Step 5: Step-length selection. Set x := x+, where x+ is a point defined by (22).
Compute the values fi(x), 1 ≤ i ≤ m, and F (x) =

∑
1≤i≤m |fi(x)|.

Step 6: Trust-region update. Determine a new trust-region radius ∆ satisfying (23)
and set ∆ := min(∆, ∆).

Step 7: Barrier parameter update. If ρ(d) ≥ ρ (where ρ(d) is given by (21)), de-
termine a new value of the barrier parameter µ ≥ µ (not greater than the
current one) by the procedure described in Section 3. Go to Step 2.

The use of the maximum step-length ∆ has no theoretical significance but is very
useful for practical computations. First, the problem functions can sometimes be eval-
uated only in a relatively small region (if they contain exponentials) so that the max-
imum step-length is necessary. Secondly, the problem can be very ill-conditioned far
from the solution point, thus large steps are unsuitable. Finally, if the problem has
more local solutions, a suitably chosen maximum step-length can cause a local solution

7

with a lower value of F to be reached. Therefore, the maximum step-length ∆ is a
parameter, which is most frequently tuned.

An important part of Algorithm 1 is an update of the barrier parameter µ. There
are several influences that should be taken into account, which make the updating
procedure rather complicated.

3 Implementation details

In Section 2, we have pointed out that the direction vector d ∈ Rn should be a solution
of the quadratic subproblem (20). Usually, an inexact approximate solution suffices.
There are several ways for computing suitable approximate solutions (see, e.g., [5],
[14], [18], [19], [22], [23], [24]). We have used two approaches based on direct decom-
positions of the matrix ∇2B (to simplify the notation, we omit arguments x and µ in
the subsequent considerations, i.e., we will write ∇2B and g instead of ∇2B(x; µ) and
g(x; µ)).

The first strategy, the dog-leg method described in [5], [19], seeks d as a linear
combination of the Cauchy step dC = −(gT g/gT∇2Bg)g and the Newton step dN =
−(∇2B)−1g. The Newton step is computed by using either the sparse Gill-Murray
decomposition [9] or the sparse Bunch-Parlett decomposition [6]. The sparse Gill-
Murray decomposition has the form ∇2B + E = LDLT = RT R, where E is a positive
semidefinite diagonal matrix (which is equal to zero when ∇2B is positive definite),
L is a lower triangular matrix, D is a positive definite diagonal matrix and R is an
upper triangular matrix. The sparse Bunch-Parlett decomposition has the form∇2B =
PLMLT P T , where P is a permutation matrix, L is a lower triangular matrix and M
is a block-diagonal matrix with 1× 1 or 2× 2 blocks (which is indefinite when ∇2B is
indefinite). The following algorithm is a typical implementation of the dog-leg method.

Algorithm A: Data ∆ > 0.

Step 1: If gT∇2Bg ≤ 0, set d := −(∆/‖g‖)g and terminate the computation.

Step 2: Compute the Cauchy step dC = −(gT g/gT∇2Bg)g. If ‖dC‖ ≥ ∆, set d :=
(∆/‖dC‖)dC and terminate the computation.

Step 3: Compute the Newton step dN = −(∇2B)−1g. If (dN − dC)T dC ≥ 0 and
‖dN‖ ≤ ∆, set d := dN and terminate the computation.

Step 4: If (dN − dC)T dC ≥ 0 and ‖dN‖ > ∆, determine a number θ in such a way
that dT

CdC/dT
CdN ≤ θ ≤ 1, choose α > 0 such that ‖dC + α(θdN − dC)‖ = ∆,

set d := dC + α(θdN − dC) and terminate the computation.

Step 5: If (dN − dC)T dC < 0, choose α > 0 such that ‖dC + α(dC − dN)‖ = ∆, set
d := dC + α(dC − dN) and terminate the computation.

The second strategy, the optimum step method, computes a more accurate solution

8

of (20) by using the Newton method applied to the nonlinear equation

1

‖d(λ)‖ −
1

∆
= 0, (24)

where (∇2B + λI)d(λ) = −g. This way, described in [18] in more details, follows
from the KKT conditions for (20). Since the Newton method applied to (24) can be
unstable, the safeguards (lower and upper bounds to λ) are usually used. The following
algorithm is a typical implementation of the optimum step method.

Algorithm B: Data 0 < δ < 1 < δ (usually δ = 0.9 and δ = 1.1), ∆ > 0.

Step 1: Determine ν as the maximum diagonal element of the matrix −∇2B. Com-
pute λ = ‖g‖/∆ + ‖∇2B‖, λ = ‖g‖/∆ − ‖∇2B‖ and set λ := max(0, ν, λ),
λ := λ. Set l = 0 (the inner iteration count).

Step 2: If l > 0 and λ ≤ ν, set λ :=
√

λλ.

Step 3: Determine the Gill-Murray decomposition ∇2B + λI + E = RT R. If E = 0
(i.e. if ∇2B + λI is positive definite), go to Step 4. In the opposite case,
determine a vector v ∈ Rn such that ‖v‖ = 1 and vT (∇2B + λI)v ≤ 0, set
ν := λ− vT (∇2B + λI)v, λ := max(ν, λ), l := l + 1 and go to Step 2.

Step 4: Determine a vector d ∈ Rn as a solution of the equation RT Rd + g = 0.
If ‖d‖ > δ∆, set λ := λ and go to Step 6. If δ∆ ≤ ‖d‖ ≤ δ∆, terminate
the computation. If ‖d‖ < δ∆ and λ = 0, terminate the computation. If
‖d‖ < δ∆ and λ 6= 0, set λ := λ and go to Step 5.

Step 5: Determine a vector v ∈ Rn as a good approximation of the eigenvector
corresponding to the minimum eigenvalue of∇2B in such a way that ‖v‖ = 1
and vT d ≥ 0 (this vector can be determined from the decomposition RT R in
the way used in subroutines of the LAPACK library). Determine a number
α ≥ 0 such that ‖d + αv‖ = ∆. If α2‖Rv‖2 ≤ (1 − δ2)(‖Rd‖2 + λ∆2),
set d := d + αv and terminate the computation. In the opposite case, set
ν := λ− ‖Rv‖2, λ := max(ν, λ) and go to Step 6.

Step 6: Determine a vector v ∈ Rn as a solution of the equation RT v = d and set

λ := λ +
‖d‖2

‖v‖2

(‖d‖ −∆

∆

)
.

If λ < λ, set λ := λ. If λ > λ, set λ := λ. Set l := l + 1 and go to Step 2.

The above algorithms generate the direction vectors such that

‖d‖ ≤ δ∆,

‖d‖ < δ∆ ⇒ ∇2Bd = −g,

−Q(d) ≥ σ‖g‖min

(
‖d‖, ‖g‖

‖∇2B‖

)
,

9

where 0 < σ < 1 is a constant depending on the particular algorithm. These inequalities
and (23) imply (see [21]) that a constant 0 < c < 1 exists such that

‖d‖ ≥ c
‖g̃‖µ
C

, (25)

where ‖g̃‖ is the minimum norm of all gradients that have been computed so far and
C is a constant used in Lemma 4. Thus using (21), (22) and (25), one has

B(x + d; µ)−B(x; µ) ≤ ρQ(d) ≤ −Cµ‖g̃‖2 if ρ(d) ≥ ρ, (26)

where C = ρ σ c/C.
The update of the trust region radius satisfying (23) requires a more detailed spec-

ification. In our implementation, we have set

∆+ = β‖d‖ if ρ(d) < ρ1 and ∆̃ < β‖d‖,
∆+ = ∆̃ if ρ(d) < ρ1 and β‖d‖ ≤ ∆̃ ≤ β‖d‖,

∆+ = β‖d‖ if ρ(d) < ρ1 and β‖d‖ ≤ ∆̃,

∆+ = ∆ if ρ1 ≤ ρ(d) ≤ ρ2,

∆+ = ∆ if ρ2 < ρ(d) and ‖d‖ < δ∆,

∆+ = γ∆ if ρ2 < ρ(d) and ‖d‖ ≥ δ∆,

where 0 < ρ < ρ = ρ1 < ρ2 < 1, δ is a value used in Algorithm B (δ = 1 in Algorithm A)

and ∆̃ is a value obtained by the quadratic interpolation.
Matrix G appearing in Step 3 of Algorithm 1 can be computed by using gradient

differences as was mentioned in the previous section. Alternatively, safeguarded BFGS
updates can be applied efficiently. In this case, G+ =

∑m
i=1 ui(x

+; µ+)G+
i , where x+

is the vector of variables in the next iteration and G+
i , 1 ≤ i ≤ m are computed by

the following way. Let Rn
i ⊂ Rn, 1 ≤ i ≤ m, be subspaces defined by ni variables

on which each fi depends and Zi ∈ Rn×ni be the matrix whose columns form the
canonical orthonormal basis in Rn

i (i.e., they are columns of the unit matrix). Then we
can define reduced approximations of the Hessian matrices G̃i = ZT

i GiZi, 1 ≤ i ≤ m.
New reduced approximations of the Hessian matrices are computed by the formulas

G̃+
i = G̃i +

ỹiỹ
T
i

s̃T
i ỹi

− G̃is̃is̃
T
i G̃i

s̃T
i G̃is̃i

, s̃T
i ỹi > 0,

G̃+
i = G̃i, s̃T

i ỹi ≤ 0,

where s̃i = ZT
i (x+−x), ỹi = ZT

i (∇fi(x
+)−∇fi(x)), 1 ≤ i ≤ m. Finally G+

i = ZiG̃
+
i ZT

i ,
1 ≤ i ≤ m. In the first iteration we set G̃i = I, 1 ≤ i ≤ m (I is the unit matrix).

A very important part of Algorithm 1 is the update of the barrier parameter µ.
There are two requirements, which play opposite roles. First µ → 0 should hold, since
this is the main property of every interior point method. On the other hand, Lemma 4

10

implies that ∇2B(x; µ) can be ill-conditioned if µ is too small. Thus the lower bound
µ for µ is used in Algorithm 1 (we recommend value 10−8 in the double precision
arithmetic).

Algorithm 1 is also sensitive on the way in which the barrier parameter decreases.
We have tested various possibilities for the barrier parameter update including simple
geometric sequences, which were proved to be unsuitable. Better results were obtained
by setting

µ+ = max(µ, ‖g‖2) if ρ(d) ≥ ρ and ‖g‖2 ≤ τµ (27)

(where 0 < τ < 1) and µ+ = µ otherwise.

4 Global convergence

In the subsequent considerations, we will assume that ε = µ = 0 and all computations
are exact. We will investigate the infinite sequence {xk}∞1 generated by Algorithm 1.

Lemma 5. Let Assumption 3 be satisfied. Then the values {µk}∞1 , generated by Al-
gorithm 1, form a non-increasing sequence such that µk → 0. Moreover, there is an
infinite subset K ⊂ N such that ρ(dk) ≥ ρ and ‖g(xk; µk)‖2 ≤ τµk for all k ∈ K.

Proof. (a) First, we prove that B(x; µ) is bounded from below if µ is fixed. Since
zi(x; µ) ≥ 2µ and

∂B(x; µ)

∂zi

= 1− µ

zi(x; µ)
≥ 1− µ

2µ
=

1

2

for 1 ≤ i ≤ m by (10) and (12), function B(x; µ) attains its minimum if zi(x; µ) = 2µ
for 1 ≤ i ≤ m. Thus

B(x; µ) =
m∑

i=1

[zi(x; µ)− µ log(zi(x; µ))]−mµ log(2µ)

≥ m[2µ− µ log(2µ)]−mµ log(2µ) = 2mµ(1− log(2µ)). (28)

(b) Now we prove that the set K of indices for which µk is updated is infinite. Note
that K is the set of indices such that ρ(dk) ≥ ρ and ‖g(xk; µk)‖2 ≤ τµk (see (27)).
If K was finite, an index k ∈ N would exist such that µk = µk ∀k ≥ k. Since the
function B(x; µk) is continuous, uniformly bounded from below by (a), ‖∇2B(x; µk)‖
is uniformly bounded from above by Lemma 4 and (22) holds for all k ≥ k, it can
be proved (see [4]) that limk→∞ ‖g(xk; µk)‖ = 0. Thus an index l ≥ k exists such
that ρ(dl) ≥ ρ and ‖g(xl; µk)‖2 ≤ τµk (since ρ(dk) < ρ implies that xk and, therefore,
‖g(xk; µk)‖ does not change). Thus µl+1 = ‖g(xl; µk)‖2 ≤ τµk < µk by (27), which is in
a contradiction with the assumption that µk = µk ∀k ≥ k. Since we have proved that
the set K of indices for which µk+1 ≤ τµk is infinite, we can conclude that µk → 0. 2

Now we will prove that

B(xk+1; µk+1) ≤ B(xk+1; µk)− L(µk+1 − µk) (29)

11

for some constant L ∈ R. For this purpose, we consider that z(x; µ) and B(x; µ) are
functions of µ and we write z(x, µ) = z(x; µ) and B(x, µ) = B(x; µ).

Lemma 6. Let zi(x, µ), 1 ≤ i ≤ m, be the values given by Lemma 1 (for fixed x and
variable µ). Then

∂zi(x, µ)

∂µ
> 1, ∀1 ≤ i ≤ m,

and
∂B(x, µ)

∂µ
= −

m∑

i=1

log(z2
i (x, µ)− f 2

i (x)) = −
m∑

i=1

log(2µzi(x, µ)).

Proof. Differentiating the expressions zi(x, µ) = µ+
√

µ2 + f 2
i (x), 1 ≤ i ≤ m, following

from Lemma 1, we obtain

∂zi(x, µ)

∂µ
= 1 +

µ√
µ2 + f 2

i (x)
> 1, 1 ≤ i ≤ m.

Differentiating the function

B(x, µ) =
m∑

i=1

zi(x, µ)− µ
m∑

i=1

log(z2
i (x, µ)− f 2

i (x)),

one has

∂B(x, µ)

∂µ
=

m∑

i=1

∂zi(x, µ)

∂µ
−

m∑

i=1

log(z2
i (x, µ)− f 2

i (x))−
m∑

i=1

2µzi(x, µ)

z2
i (x, µ)− f 2

i (x)

∂zi(x, µ)

∂µ

=
m∑

i=1

∂zi(x, µ)

∂µ

(
1− 2µzi(x, µ)

z2
i (x, µ)− f 2

i (x)

)
−

m∑

i=1

log(z2
i (x, µ)− f 2

i (x))

= −
m∑

i=1

log(z2
i (x, µ)− f 2

i (x)) = −
m∑

i=1

log(2µzi(x, µ))

by (9). 2

Lemma 7. Let Assumption 3 be satisfied. Then (29) holds with some constant L ∈ R.

Proof. Using Lemma 6, the mean value theorem and (10), we can write

B(xk+1, µk+1)−B(xk+1, µk) = −
m∑

i=1

log(2µ̃kzi(xk+1, µ̃k))(µk+1 − µk)

≤ −
m∑

i=1

log
(
2µ̃k(2µ̃k + F)

)
(µk+1 − µk)

≤ −
m∑

i=1

log
(
2µ(2µ + F)

)
(µk+1 − µk)

∆
= −L(µk+1 − µk),

where 0 < µk+1 ≤ µ̃k ≤ µk ≤ µ. 2

12

Theorem 1. Let Assumption 3 be satisfied. Consider the sequence {xk}∞1 , generated
by Algorithm 1. Then

lim inf
k→∞

m∑

i=1

ui(xk; µk)gi(xk) = 0,

and
lim
k→∞

(z2
i (xk; µk)− f 2

i (xk)) = 0, |ui(xk; µk)| ≤ 1,

lim
k→∞

ui(xk; µk) = 1 if lim inf
k→∞

fi(xk) > 0,

lim
k→∞

ui(xk; µk) = −1 if lim sup
k→∞

fi(xk) < 0

for 1 ≤ i ≤ m.

Proof. The inequalities |ui(xk; µk)| ≤ 1, 1 ≤ i ≤ m, and the last two relations follow
immediately from (11).

(a) Since (29) holds, we can write

B(xk+1; µk+1)−B(xk; µk) = (B(xk+1; µk+1)−B(xk+1; µk)) + (B(xk+1; µk)−B(xk; µk))

≤ −L(µk+1 − µk) + (B(xk+1; µk)−B(xk; µk)),

which together with (29), (26) and Lemma 5 implies

B ≤ lim
k→∞

B(xk; µk) ≤ B(x1; µ1)− L
∞∑

k=1

(µk+1 − µk) +
∞∑

k=1

(B(xk+1; µk)−B(xk; µk))

≤ B(x1; µ1) + Lµ +
∑

ρ(dk)≥ρ

(B(xk+1; µk)−B(xk; µk))

≤ B(x1; µ1) + Lµ− C
∑

ρ(dk)≥ρ

µk‖g̃k‖2,

where
B = min

0≤µ≤µ
2mµ(1− log(2µ)) ≥ 2mµ(1− log(2µ))

(see (28)) and ‖g̃k‖ = min1≤j≤k ‖g(xj; µj)‖. If lim infk→∞ ‖g(xk; µk)‖ = 0 was not
satisfied, then a number ε > 0 would exist such that

‖g̃k‖ ≥ ε ∀k ∈ N. (30)

Then, using the last proved inequality, we obtain

B(x1; µ1) + Lµ−B ≥ Cε2
∑

ρ(dk)≥ρ

µk ≥ Cε2
∑

k∈K

µk ≥ Cε2

τ

∑

k∈K

‖g(xk; µk)‖2,

where K is the infinite set of indices defined in Lemma 5. Thus ‖g(xk; µk)‖ K→ 0 which
is in a contradiction with (30).

(b) Using (9) and (10), one has z2
i (xk; µk)− f 2

i (xk) ≤ 2µk(2µk + F). Thus z2
i (xk; µk)−

f 2
i (xk) → 0 as µk → 0. 2

13

Corollary 1. Let the assumptions of Theorem 1 be satisfied and the sequence {xk}∞1
be bounded (either L(F) in Assumption 1 is compact or Assumption 2 holds). Then
there is a cluster point x ∈ Rn of the sequence {xk}∞1 that satisfies KKT conditions
(3), where u ∈ Rm is a cluster point of the sequence {u(xk; µk)}∞1 .

Now we return to the case when ε > 0 and µ > 0. The following lemma specifies a
precision with which the KKT conditions are satisfied if Algorithm 1 terminates.

Theorem 2 Let Assumption 3 be satisfied. If Algorithm 1 terminates in the k-th
iteration, then ∥∥∥∥∥

m∑

i=1

ui(xk; µk)gi(xk)

∥∥∥∥∥ ≤ ε,

and
zi(xk; µk)− |fi(xk)| ≤ 2µ, |ui(xk; µk)| ≤ 1,

∣∣∣∣∣ui(xk; µk)− fi(xk)

|fi(xk)|

∣∣∣∣∣ ≤
2µ

|fi(xk)|
for 1 ≤ i ≤ m.

Proof. The first inequality is a consequence of the termination condition (Step 2 of
Algorithm 1). The second one follows from (10), since

zi(xk; µk) = µk +
√

µ2
k + f 2

i (xk) ≤ 2µ + |fi(xk)|
(µk = µ if Algorithm 1 terminates). The third inequality follows immediately from
(11) and the last inequality is a consequence of the second one, since (11) implies

∣∣∣∣∣ui(xk; µk)− fi(xk)

|fi(xk)|

∣∣∣∣∣ =

∣∣∣∣∣
fi(xk)

zi(xk; µk)
− fi(xk)

|fi(xk)|

∣∣∣∣∣ =
zi(xk; µk)− |fi(xk)|

zi(xk; µk)

≤ 2µ

zi(xk; µk)
≤ 2µ

|fi(xk)| .

2

Theorem 2 demonstrates that the first three KKT conditions can be satisfied with
a prescribed precision and indicates that the last one could be inaccurate if |fi(xk)|
is small. This indication was confirmed by our computational experiments. Using
µ = 10−8, we obtained 1− |ui| ≈ 10−8 for |fi| ≈ 1 and 1− |ui| ≈ 10−2 for |fi| ≈ 10−6.

5 Computational experiments

The primal interior-point method was tested by using the two collections of 22 relatively
difficult problems with an optional dimension chosen from [16], which can be down-
loaded (together with the above report) from www.cs.cas.cz/~luksan/test.html as

14

Test 14 and Test 15. The functions fi(x), 1 ≤ i ≤ m, given in [16] serve for defining
the objective function

F (x) =
∑

1≤i≤m

|fi(x)|. (31)

We have used the parameters ε = 10−6, µ = 10−8, δ = 0.9, δ = 1.1, ∆ = 1000,

ρ = 10−4, ρ1 = 0.1, ρ2 = 0.9, β = 0.1, β = 0.5, γ = 2.0, τ = 0.01 in Algorithm 1 as

defaults (the step bound ∆ was sometimes tuned).
The first set of the tests concerns a comparison of the primal interior point method

(using various trust-region and line-search strategies) with several other methods for
sparse minimax optimization. Medium-size test problems with 200 variables were used.
The results of computational experiments are reported in two tables, where only sum-
mary results (over all 22 test problems) are given. Here Method is the method used: T1
the primal interior-point method with Algorithm A and the Gill-Murray decomposition,
T2 the primal interior-point method with Algorithm A and the Bunch-Parlett decom-
position, T3 the primal interior-point method with Algorithm B and the Gill-Murray
decomposition, LS the primal interior-point method with line search and restarts de-
scribed in [15], IP the primal-dual interior point method described in [?], BV the bundle
variable metric method described in [17]. All these methods were realized in two modi-
fications: NM denotes the discrete Newton method with the Hessian matrix computed
using the differences by the way described in [3] and VM denotes the variable met-
ric method with the partitioned updates described in [11]. At the same time NIT is
the total number of iterations, NFV is the total number of function evaluations, NFG
is the total number of gradient evaluations, NR is the total number of restarts, NL is
the number of problems, for which the lowest known local minimum was not found
(even if parameters µ and ∆ were tuned), NF is the number of problems, for which
no local minimum was found (either a premature termination occurred or the number
of function evaluations exceeded the upper bound), NT is the number of problems for
which parameters were tuned and Time is the total computational time in seconds.

M NIT NFV NFG NR NL NF NT TIME

T1-NM 2784 3329 23741 1 - - 4 3.70
T2-NM 2392 2755 19912 2 - 1 8 3.19
T3-NM 3655 4161 32421 4 1 1 7 6.52
LS-NM 5093 12659 30350 1 1 - 6 4.58
DI-NM 4565 6301 37310 212 2 - 12 30.63
T1-VM 2784 3329 23741 1 - - 4 3.70
T2-VM 2392 2755 19912 2 - 1 8 3.19
T3-VM 3655 4161 32421 4 1 1 7 6.52
LS-VM 5093 12659 30350 1 1 - 6 4.58
DI-VM 4565 6301 37310 212 2 - 12 30.63
BV-VM 34079 34111 34111 22 1 1 11 25.72

Table 1: Test 14 – 22 problems with 200 variables

15

M NIT NFV NFG NR NL NF NT TIME

T1-NM 3331 4213 18989 17 - - 6 3.74
T2-NM 3170 4027 17452 17 - 1 12 3.68
T3-NM 5424 6503 31722 11 1 1 10 7.83
LS-NM 8183 20245 52200 36 2 - 9 10.90
DI-NM 4565 6301 37310 212 2 - 12 30.63
T1-VM 2784 3329 23741 1 - - 4 3.70
T2-VM 2392 2755 19912 2 - 1 8 3.19
T3-VM 3655 4161 32421 4 1 1 7 6.52
LS-VM 5093 12659 30350 1 1 - 6 4.58
DI-VM 4565 6301 37310 212 2 - 12 30.63
BV-NM 34499 34745 34745 22 1 - 11 13.14

Table 2: Test 15 – 22 problems with 200 variables

The results introduced in the above tables indicate that the trust-region strate-
gies are more efficient than the restarted line-search strategies in connection with the
interior-point method for l1 optimization. These observations differ from conclusions
concerning the interior-point method for minimax optimization proposed in [15], where
the matrix ∇2B has a different structure. The trust-region interior-point method T1 is
less sensitive to the choice of parameters and requires a lower number of iterations and
a shorter computational time in comparison with the bundle variable metric method B
proposed in [17]. Method T1 also finds the best known local minimum (if l1 problems
have several local solutions) more frequently (see the column NL in the above tables).

The second set of the tests concerns a comparison of the interior-point method,
realized as the dog-leg method with the Gill-Murray decomposition, with the bundle
variable metric method described in [17]. Large-scale test problems with 1000 variables
are used. The results of computational experiments are given in Tables 3 and 4, where
P is the problem number, NIT is the number of iterations, NFV is the number of
function evaluations, NFG is the number of gradient evaluations and F is the function
value reached. The last row of every table contains the summary results including the
total computational time in seconds. The bundle variable metric method was chosen
for the comparison, since it is based on a quite different principle and can also be used
for the large sparse l1 optimization.

16

Trust-region interior-point method Bundle variable metric method

P NIT NFV NFG F NIT NFV NFG F

1 1594 1598 6380 0.166502E-09 7819 7842 7842 0.174023E-20
2 415 516 2912 0.106432E-08 127 130 130 0.735523E-17
3 32 33 231 0.604855E-07 89 89 89 0.359364E-14
4 27 39 196 269.499 81 81 81 269.499
5 30 31 186 0.107950E-06 39 39 39 0.122456E-14
6 32 33 462 0.611870E-07 100 100 100 0.110358E-12
7 18 20 171 336.937 211 211 211 336.937
8 18 19 342 761774. 36 39 39 761774.
9 212 259 3834 327.680 6181 6181 6181 327.682

10 970 1176 17460 0.386416E-01 14369 14369 14369 0.740271E-01
11 82 90 498 10.7765 319 319 319 10.7765
12 35 36 144 982.273 115 117 117 982.273
13 27 28 112 0.277182E-06 16 17 17 0.139178E-18
14 1 12 6 0.129382E-08 3 3 3 0.129382E-08
15 202 246 812 1.96106 3948 3957 3957 1.97013
16 161 169 972 0.435729E-15 4505 4556 4556 0.475529E-03
17 484 564 2910 0.165706E-11 441 443 443 0.857271E-06
18 2093 2538 12564 0.105340E-05 1206 1216 1216 0.129694E-03
19 15 16 96 59.5986 182 182 182 59.5986
20 1226 1529 7362 0.154869E-11 7828 7830 7830 0.102202E-04
21 21 22 132 2.13866 29 30 30 2.13866
22 1423 1770 8544 1.00000 337 341 341 1.00000

Σ 9118 10774 66332 TIME=42.56 47981 48092 48092 TIME=155.67

Table 3: Test 14 – 22 problems with 1000 variables

17

Trust-region interior-point method Bundle variable metric method

P NIT NFV NFG F NIT NFV NFG F

1 1464 1477 5860 0.123345E-12 359 540 540 0.815757E-08
2 121 181 605 4.00000 453 473 473 0.153343E-07
3 27 31 168 0.775716E-09 114 114 114 0.374913E-08
4 65 76 264 648.232 53 54 54 648.232
5 6 7 42 0.655031E-14 285 285 285 0.422724E-05
6 8 9 126 0.754396E-13 560 560 560 0.649530E-08
7 73 111 296 12029.9 542 650 650 12029.9
8 83 100 252 0.230723E-06 939 942 942 0.380433E-03
9 532 609 3731 2777.75 4428 4429 4429 2780.11

10 103 148 618 658.048 1389 1389 1389 658.048
11 3452 3674 13812 0.821565E-14 411 454 454 0.838373E-09
12 652 773 3918 3117.36 1879 1882 1882 3125.85
13 165 212 996 14808.8 727 728 728 14808.8
14 162 201 1134 566.112 514 514 514 566.112
15 67 93 476 181.926 654 654 654 181.926
16 268 328 1883 66.5333 1376 1376 1376 66.5333
17 122 147 1107 0.146536E-13 9092 9092 9092 0.337978E-08
18 78 89 474 0.619504E-13 3160 3160 3160 0.754900
19 29 31 330 0.382360E-12 15933 15944 15944 0.239244E-08
20 69 86 420 0.131734E-10 1509 1699 1699 0.756975E-08
21 118 195 708 1326.92 425 426 426 1327.95
22 80 112 486 2993.36 9875 9875 9875 2993.37

Σ 7744 8690 37706 TIME=30.03 54677 55240 55240 TIME=155.90

Table 4: Test 15 – 22 problems with 1000 variables

The results introduced in Tables 3 and 4 confirm conclusions following from the
previous tables. The trust-region interior-point method seems to be more efficient than
the bundle variable metric method in all indicators. Especially, the computational time
is much shorter and also the number of the best known local minima attained is greater
in the case of the trust-region interior-point method. We believe that the efficiency
of the interior-point method could be improved by using a better procedure for the
barrier parameter update.

18

References

[1] Byrd R.H., Nocedal J., and Waltz R.A., 2000, Feasible interior methods using slacks for
nonlinear optimization. Report No. OTC 2000/11, Optimization Technology Center.

[2] T.F.Coleman, B.S.Garbow, J.J.Moré: Software for estimating sparse Hessian matrices.
ACM Transactions on Mathematical Software 11 (1985) 363-377.

[3] Coleman T.F. and Moré J.J., 1984, Estimation of sparse Hessian matrices and graph
coloring problems. Mathematical Programming, 28, 243-270.

[4] Conn A.R., Gould N.I.M., and Toint P.L., 2000, Trust-region methods (SIAM).

[5] Dennis J.E. and Mei H.H.W., 1975, An unconstrained optimization algorithm which
uses function and gradient values. Report No. TR 75-246.

[6] Duff I.S., Munksgaard M., Nielsen H.B., and Reid J.K., 1979, Direct solution of sets
of linear equations whose matrix is sparse and indefinite. J. Inst. Maths. Applics., 23,
235-250.

[7] Fletcher R., 1987, Practical Methods of Optimization (second edition, New York: Wiley).

[8] Fletcher R. and Sainz de la Maza E., 1989, Nonlinear programming and nonsmooth
optimization by successive linear programming. Mathematical Programming, 43, 235-
256.

[9] Gill P.E. and Murray W, 1974, Newton type methods for unconstrained and linearly
constrained optimization. Mathematical Programming, 7, 311-350.

[10] Gill P.E., Murray W., and Saunders M.A., 2005, SNOPT: An SQP algorithm for large-
scale constrained optimization. SIAM Review, 47, 99-131.

[11] A.Griewank, P.L.Toint: Partitioned variable metric updates for large-scale structured
optimization problems. Numerical Mathematics 39 (1982) 119-137.

[12] Lukšan L., Matonoha C., and Vlček J., 2004, Interior point method for nonlinear non-
convex optimization. Numerical Linear Algebra with Applications, 11, 431-453.

[13] Lukšan L., Matonoha C., and Vlček J., 2004, In: M. Kř́ıžek, P. Neittaanmäki, R.
Glovinski, and S. Korotov (Eds.) Nonsmooth equation method for nonlinear noncon-
vex optimization. (Conjugate Gradient Algorithms and Finite Element Methods, Berlin:
Springer Verlag).

[14] Lukšan L., Matonoha C., and Vlček J., 2004, A shifted Steihaug-Toint method for
computing a trust-region step. Technical Report V-914. Prague, ICS AS CR.

[15] Lukšan L., Matonoha C., and Vlček J., 2005, Primal interior-point method for large
sparse minimax optimization. Technical Report V-941. Prague, ICS AS CR.

[16] Lukšan L. and Vlček J., 1998, Sparse and partially separable test problems for uncon-
strained and equality constrained optimization. Report V-767, Prague, ICS AS CR.

19

[17] Lukšan L. and Vlček J., 2006, Variable metric method for minimization of partially
separable nonsmooth functions. Pacific Journal on Optimization, 2,9-70.

[18] Moré J.J. and Sorensen D.C., 1983, Computing a trust region step. SIAM Journal on
Scientific and Statistical Computations, 4, 553-572.

[19] Powell M.J.D., 1970, In: J.B. Rosen, O.L. Mangasarian, and K. Ritter (Eds.) A new
algorithm for unconstrained optimization (Nonlinear Programming, London: Academic
Press).

[20] Powell M.J.D., 1983, In: G.K. Chui, L.L. Schumaker, and J.D. Ward (Eds.) General
Algorithms for Discrete Nonlinear Approximation Calculations (Approximation Theory
IV, New York: Academic Press).

[21] Powell M.J.D., 1984, On the global convergence of trust region algorithms for uncon-
strained optimization. Mathematical Programming, 29, 297-303.

[22] Rojas M., Santos S.A., and Sorensen D.C., 2000, A new matrix-free algorithm for the
large-scale trust-region subproblems. SIAM J. Optimization, 11, 611-646.

[23] Steihaug T., 1983, The conjugate gradient method and trust regions in large-scale opti-
mization. SIAM Journal on Numerical Analysis, 20, 626-637.

[24] Toint P.L., 1981, In: I.S. Duff (Ed.) Towards an efficient sparsity exploiting Newton
method for minimization (Sparse Matrices and Their Uses, London: Academic Press,
57-88).

[25] Vanderbei J. and Shanno D.F., 1999, An interior point algorithm for nonconvex nonlinear
programming. Computational Optimization and Applications, 13, 231-252.

[26] Yuan Y., 1985, On the Superlinear Convergence of a Trust Region Algorithm for Nons-
mooth Optimization. Mathematical Programming, 31, 269-285.

20

