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1 Introduction

Consider the minimax problem: Minimize function

F (x) = max
1≤i≤m

fi(x), (1)

where fi : Rn → R, 1 ≤ i ≤ m, are smooth functions satisfying the following two assump-
tions:

Assumption 1. Functions fi(x), 1 ≤ i ≤ m, are bounded from below on Rn, i.e., there is
F ∈ R such that fi(x) ≥ F , 1 ≤ i ≤ m, for all x ∈ Rn.

Assumption 2. Functions fi(x), 1 ≤ i ≤ m, are twice continuously differentiable on the
convex hull of the level set L(F ) = {x ∈ Rn : F (x) ≤ F} for a sufficiently large upper
bound F and they have bounded the first and second-order derivatives on convL(F ), i.e.,
constants g and G exist such that ‖∇fi(x)‖ ≤ g and ‖∇2fi(x)‖ ≤ G for all 1 ≤ i ≤ m and
x ∈ convL(F ).

In this report, we assume that problem (1) is partially separable, which means that func-
tions fi(x), 1 ≤ i ≤ m, depend on a small number of variables (ni, say, with ni = O(1),
1 ≤ i ≤ m).

Minimization of F is equivalent to the nonlinear programming problem with n + 1
variables x ∈ Rn, z ∈ R:

minimize z subject to fi(x) ≤ z, 1 ≤ i ≤ m. (2)

The necessary first-order (KKT) conditions for a solution of (2) have the form

m∑

i=1

ui∇fi(x) = 0,
m∑

i=1

ui = 1, ui ≥ 0, z − fi(x) ≥ 0, ui(z − fi(x)) = 0, (3)

where ui, 1 ≤ i ≤ m, are Lagrange multipliers. Problem (2) can be solved by an arbitrary
nonlinear programming method utilizing sparsity (sequential linear programming [5], [11];
sequential quadratic programming [7], [10]; interior-point [14], [21]; nonsmooth equation
[6], [15]). In this report, we introduce a feasible primal interior-point method that utilizes
a special structure of the minimax problem (1). The constrained problem (2) is replaced
by a sequence of unconstrained problems

minimize B(x, z; µ) = z + µ
m∑

i=1

ϕ(z − fi(x)), (4)

where ϕ : (0,∞) → R is a barrier function, z > F (x) and 0 < µ ≤ µ (we assume that
µ → 0 monotonically). In connection with barrier functions, we will consider the following
conditions.

Condition 1. ϕ(t), t ∈ (0,∞), is a twice continuously differentiable function such that
ϕ(t) is decreasing, strictly convex, with limt→0 ϕ(t) = ∞ and ϕ′(t) is increasing, strictly
concave, with limt→∞ ϕ′(t) = 0.
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Condition 2. ϕ(t), t ∈ (0,∞), has a negative third-order derivative and ϕ′(t)ϕ′′′(t) >
ϕ′′(t)2 for t > 0.

Condition 3. ϕ(t), t ∈ (0,∞), is a positive function.

Condition 1 is essential, we assume its validity for every barrier functions. Condition 2
serves for the estimation of norms of the Hessian matrices. Condition 3 is useful for
investigation of the global convergence.

The most known and frequently used logarithmic barrier function

ϕ(t) = log t−1 = − log t, (5)

satisfies Condition 1 and Condition 2, but does not satisfy Condition 3, since it is non-
positive for t ≥ 1. Therefore, additional barrier functions have been studied. In [1],
a truncated logarithmic barrier function is considered such that ϕ(t) is given by (5) for
t ≤ τ and ϕ(t) = a/t2 + b/t + c for t > τ , where a, b, c are chosen in such a way that
ϕ(t) is twice continuously differentiable in (0,∞), which implies that a = −τ 2/2, b = 2τ ,
c = − log τ − 3/2. Choosing τ = τ where τ = exp(−3/2) one has limt→∞ ϕ(t) = c = 0 and
Condition 3 is satisfied. In this report we consider four particular barrier functions, which
are introduced in Table 1 together with their derivatives.

ϕ(t) ϕ′(t) ϕ′′(t)
B1 − log t −1/t 1/t2

B2 − log t −1/t 1/t2 t ≤ τ
2τ/t− τ 2/(2t2) −2τ/t2 + τ 2/t3 4τ/t3 − 3τ 2/t4 t > τ

B3 log(t−1 + 1) −1/(t(t + 1)) (2t + 1)/(t(t + 1))2

B4 1/t −1/t2 2/t3

Table 1: Barrier functions (τ = exp(−3/2)).

All these barrier functions satisfy Condition 1, functions B1, B3, B4 satisfy Condition 2
and functions B2, B3, B4 satisfy Condition 3. Validity of Condition 2 can be easily proved
by using Table 1. For example, considering B3 we can write

ϕ′′′(t) = −2
3t2 + 3t + 1

t3(t + 1)3
< 0

and

ϕ′(t)ϕ′′′(t)− ϕ′′(t)2 = 2
3t2 + 3t + 1

t4(t + 1)4
− 4t2 + 4t + 1

t4(t + 1)4
=

2t2 + 2t + 1

t4(t + 1)4
> 0

for t ∈ (0,∞). Note that our theory refers to all barrier functions satisfying Condition 1
(not only B1–B4).

A primal interior-point method investigated in this report is based on line search min-
imization of a special barrier function derived from the minimax problem structure. Ap-
proximation of the Hessian matrix of this barrier function is obtained by either gradient
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differences (Newton’s method, NM) or partitioned variable metric updates (variable metric
method, VM). A special restart scheme is developed to guarantee the convergence in the
NM case. Furthermore, a great attention to the barrier parameter update is devoted. The
resulting algorithm whose efficiency is confirmed by extensive computational experiments
is described in detail.

The report is organized as follows. In Section 2, we introduce a primal interior-point
method (i.e. interior point method that uses explicitly computed approximations of La-
grange multipliers instead of their updates) and describe the corresponding algorithm. Sec-
tion 3 contains more details concerning this algorithm such as a restart strategy, numerical
differentiation, variable metric updates, and a barrier parameter decrease. In Section 4
we study theoretical properties of the primal interior-point method and prove that this
method is globally convergent if Assumption 1 and Assumption 2 hold. Section 5 contains
a short description of a smoothing method SM described in [20] and [22] (and in other
papers quoted therein), which is used for a comparison. Finally, in Section 6 we present
results of computational experiments confirming the efficiency of the proposed method.
Besides the SM method, we have used a primal-dual interior point method IP proposed in
[14] and a nonsmooth equation method NE described in [15] for a comparison. The last
two methods, intended for solving general nonlinear programming problems, were applied
to the equivalent problem (2).

2 Description of the method

Differentiating B(x, z; µ) given by (4), we obtain necessary conditions for a minimum in
the form

−µ
m∑

i=1

ϕ′(z − fi(x))∇fi(x) = 0, 1 + µ
m∑

i=1

ϕ′(z − fi(x)) = 0, (6)

where ϕ′(z − fi(x)) < 0 for all 1 ≤ i ≤ m. Denoting gi(x) = ∇fi(x), 1 ≤ i ≤ m,
A(x) = [g1(x), . . . , gm(x)] and

f(x) =




f1(x)
. . .

fm(x)


 , u(x, z; µ) =



−µϕ′(z − f1(x))

. . .
−µϕ′(z − fm(x))


 , e =




1
. . .
1


 , (7)

we can write (6) in the form

g(x, z; µ) = A(x) u(x, z; µ) = 0, γ(x, z; µ) = 1− eT u(x, z; µ) = 0. (8)

These nonlinear equations can be solved by the Newton method. For this purpose, we need
second-order derivatives of B(x, z; µ). One has

∂A(x)u(x, z; µ)

∂x
=

m∑

i=1

ui(x, z; µ)Gi(x) + µ
m∑

i=1

ϕ′′(z − fi(x)) gi(x)gT
i (x)

= G(x, z; µ) + A(x)V (x, z; µ)AT (x),
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∂A(x)u(x, z; µ)

∂z
= −µ

m∑

i=1

ϕ′′(z − fi(x)) gi(x) = −A(x)V (x, z; µ)e,

∂(1− eT u(x, z; µ))

∂x
= −µ

m∑

i=1

ϕ′′(z − fi(x)) gT
i (x) = −eT V (x, z; µ)AT (x),

∂(1− eT u(x, z; µ))

∂z
= µ

m∑

i=1

ϕ′′(z − fi(x)) = eT V (x, z; µ)e,

where Gi(x) = ∇2fi(x), 1 ≤ i ≤ m, G(x, z; µ) =
∑m

i=1 ui(x, z; µ)Gi(x), and

V (x, z; µ) = µ diag(ϕ′′(z − f1(x)), . . . , ϕ′′(z − fm(x))).

Using these expressions, we obtain a set of linear equations corresponding to a step of the
Newton method

[
G(x, z; µ) + A(x)V (x, z; µ)AT (x) −A(x)V (x, z; µ)e

−eT V (x, z; µ)AT (x) eT V (x, z; µ)e

] [
∆x
∆z

]
= −

[
g(x, z; µ)
γ(x, z; µ)

]
(9)

or equivalently

([
G(x, z; µ) 0

0 0

]
+

[
A(x)
−eT

]
V (x, z; µ) [ AT (x) − e ]

) [
∆x
∆z

]
= −

[
g(x, z; µ)
γ(x, z; µ)

]
. (10)

Note that matrix V (x, z; µ) is positive definite since ϕ′′(t) > 0 for t ∈ (0,∞) by Condition 1.
Increments ∆x and ∆z determined from (9) can be used for obtaining new quantities

x+ = x + α∆x, z+ = z + α∆z,

where α > 0 is a suitable step-size, which is a standard way for solving general nonlinear
programming problems. For special nonlinear programming problem (2), the structure of
B(x, z; µ) allows us to obtain a minimizer z(x; µ) ∈ R of the function B(x, z; µ) for a given
x ∈ Rn.

Lemma 1. Let Condition 1 be satisfied. Then function B(x, z; µ) : (F (x),∞) → R (with
x fixed) has a unique stationary point, which is its global minimizer. This stationary point
is characterized by the equation

eT u(x, z; µ) = 1. (11)

Solution z(x; µ) of this equation satisfies inequalities

F (x) + t(µ) = z(x; µ) ≤ z(x; µ) ≤ z(x; µ) = F (x) + t(µ), (12)

where values 0 < t(µ) ≤ t(µ), independent of x, can be obtained as unique solutions of
equations

1 + µϕ′(t(µ)) = 0, 1 + mµϕ′(t(µ)) = 0. (13)

Moreover
eT u(x, z(x; µ); µ) ≤ 1 ≤ eT u(x, z(x; µ); µ). (14)
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Proof. Denote B̃(z) = B(x, z; µ). Function B̃(z) : (F (x),∞) → R is convex in (F (x),∞),
since it is a sum of convex functions. Thus if a stationary point of B̃(z) exists, it is its
unique global minimizer. Since ϕ′(z(x; µ) − fi(x)) < 0 and ϕ′′(z(x; µ) − fi(x)) > 0 for all
1 ≤ i ≤ m by Condition 1, we can write

ϕ′(z(x; µ)− F (x)) ≥
m∑

i=1

ϕ′(z(x; µ)− fi(x)) ≥
m∑

i=1

ϕ′(z(x; µ)− F (x))

= mϕ′(z(x; µ)− F (x)). (15)

Thus if we choose z(x; µ) = F (x) + t(µ), z(x; µ) = F (x) + t(µ) in such a way that (13)
hold, we obtain inequalities

1 +
m∑

i=1

µϕ′(z(x; µ)− fi(x)) ≤ 0 ≤ 1 +
m∑

i=1

µϕ′(z(x; µ)− fi(x)), (16)

which are equivalent to (14). Inequalities (14) imply that the solution z(x; µ) of (11)
(the stationary point of B̃(z)) exists. Since function ϕ′(t) is increasing, we obtain F (x) <
z(x; µ) ≤ z(x; µ) ≤ z(x; µ). The above considerations are correct, since continuous function
ϕ′(t) maps (0,∞) onto (−∞, 0), which implies that equations (13) have unique solutions.
2

Corollary 1. Bounds t(µ) and t(µ) for t(x; µ) = z(x; µ)− F (x), corresponding to barrier
functions B1, B3 and B4, are given in Table 2. For barrier function B2, we can use bounds
t(µ) ≥ min(µ, τ) and t(µ) ≤ mµ.

t(µ) = z(x; µ)− F (x) t(µ) = z(x; µ)− F (x)
B1 µ mµ
B3 2µ/(1 +

√
1 + 4µ) 2mµ/(1 +

√
1 + 4mµ)

B4
√

µ
√

mµ

Table 2: Bounds for t(x; µ) = z(x; µ)− F (x).

Proof. (a) Consider the logarithmic barrier function B1. Then ϕ′(t) = −1/t, which
together with (13) gives t(µ) = µ and t(µ) = mµ.

(b) Consider the barrier function B2. Since ϕ′(t) = −1/t for t ≤ τ and

ϕ′(t) +
1

t
=

(
τ 2

t3
− 2τ

t2
+

1

t

)
=

1

t3
(t2 − 2τt + τ 2) =

1

t3
(t− τ)2 ≥ 0

for t > τ , we can conclude that ϕ′(t) of B2 is not less than ϕ′(t) of B1, which implies that
mµ, the upper bound of B1, is also the upper bound of B2. Since ϕ′(t) of B2 is equal to
ϕ′(t) of B1 for t ≤ τ , we can set t(µ) = µ if µ ≤ τ . At the same time, τ is a suitable lower
bound of B2 if µ > τ .
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(c) Consider the barrier function B3. Then ϕ′(t) = −1/(t2 + t) which together with (13)
gives µ/(t(µ)2 + t(µ)) = 1. Thus t(µ) is a positive solution of the quadratic equation
t2 + t− µ = 0 which can be written in the form

t(µ) =

√
1 + 4µ− 1

2
=

2µ

1 +
√

1 + 4µ
.

The upper bound can be obtained by the same way.

(d) Consider the barrier function B4. Then ϕ′(t) = −1/t2 which together with (13) gives
t(µ) =

√
µ and t(µ) =

√
mµ. 2

Solution z(x; µ) of nonlinear equation (11) can be obtained by efficient methods pro-
posed in [12], [13], which use localization inequalities (14). Therefore, we can assume
z = z(x; µ) with a sufficient precision, which implies that the last elements of the right-
hand sides in (9) – (10) are negligible. Assuming z = z(x; µ), we denote

B(x; µ) = B(x, z(x; µ); µ) = z(x; µ) + µ
m∑

i=1

ϕ(z(x; µ)− fi(x)), (17)

u(x; µ) = u(x, z(x; µ); µ), V (x; µ) = V (x, z(x; µ); µ) and G(x; µ) = G(x, z(x; µ); µ). In
this case, barrier function B(x; µ) depends only on x. In order to obtain a minimizer
(x, z) ∈ Rn+1 of B(x, z; µ), it suffices to minimize B(x; µ) over Rn.

Lemma 2. Consider barrier function (17). Then

∇B(x; µ) = A(x)u(x; µ) (18)

and

∇2B(x; µ) = G(x; µ) + A(x)V (x; µ)AT (x)− A(x)V (x; µ)eeT V (x; µ)AT (x)

eT V (x; µ)e
. (19)

Solution ∆x of the Newton equation

∇2B(x; µ)∆x = −∇B(x; µ) (20)

is equal to the corresponding vector obtained by solving (9) with z = z(x; µ).

Proof. Differentiating B(x; µ), we obtain

∇B(x; µ) = ∇z(x; µ) + µ
m∑

i=1

ϕ′(z(x; µ)− fi(x)) (∇z(x; µ)− gi(x))

= ∇z(x; µ)

(
1 + µ

m∑

i=1

ϕ′(z(x; µ)− fi(x))

)
− µ

m∑

i=1

ϕ′(z(x; µ)− fi(x)) gi(x)

= −µ
m∑

i=1

ϕ′(z(x; µ)− fi(x)) gi(x) = A(x)u(x; µ)
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since

1− eT u(x; µ) = 1 + µ
m∑

i=1

ϕ′(z(x; µ)− fi(x)) = 0.

Differentiating the last equality, one has

µ
m∑

i=1

ϕ′′(z(x; µ)− fi(x)) (∇z(x; µ)− gi(x)) = 0,

which gives

∇z(x; µ) =
A(x)V (x; µ)e

eT V (x; µ)e
.

Thus

∇2B(x; µ) =
m∑

i=1

ui(x; µ) Gi(x) + µ
m∑

i=1

ϕ′′(z(x; µ)− fi(x)) (gi(x)−∇z(x; µ)) gT
i (x)

= G(x; µ) + A(x)V (x; µ)AT (x)− A(x)V (x; µ)eeT V (x; µ)AT (x)

eT V (x; µ)e
.

Using the second equation of (9) with eT u(x; µ) = 1, we obtain

∆z =
eT V (x; µ)AT (x)

eT V (x; µ)e
∆x,

which after substituting into the first equation gives
(
G(x; µ) + A(x)V (x; µ)AT (x)− A(x)V (x; µ)eeT V (x; µ)AT (x)

eT V (x; µ)e

)
∆x = −A(x)u(x; µ).

This is exactly equation (20). 2

Note that we use (9) rather than (20) for a direction determination since nonlinear
equation (11) is solved with precision δ and, therefore, in general 1− eT u(x; µ) differs from
zero.

Lemma 3. Let ∆x solve (20) (or (9) with z = z(x; µ)). If matrix G(x; µ) is positive
definite, then (∆x)T∇B(x; µ) < 0 (direction vector ∆x is descent for B(x; µ)).

Proof. Equation (20) implies

(∆x)T∇2B(x; µ)∆x = −(∆x)T∇B(x; µ).

Thus (∆x)T∇B(x; µ) < 0 if ∇2B(x; µ) is positive definite. But

vT∇2B(x; µ)v = vT G(x; µ)v +

(
vT A(x)V (x; µ)AT (x)v − (vT A(x)V (x; µ)e)2

eT V (x; µ)e

)

≥ vT G(x; µ)v
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for an arbitrary v ∈ Rn by (19) and by the Schwarz inequality (since V (x; µ) is positive
definite). Thus (∆x)T∇B(x; µ) < 0 if G(x; µ) is positive definite. 2

Consider the logarithmic barrier function B1. Then

V (x; µ) =
1

µ
U2(x; µ),

where U(x; µ) = diag(u(x; µ)1, . . . , u(x; µ)m), which implies that ‖V (x; µ)‖ → ∞ as µ → 0.
Thus ∇2B(x; µ) can be ill-conditioned for µ small enough (see (19)). For this reason, it is
necessary to use a lower bound µ for µ (more details are given in Section 3). The following
lemma gives upper bounds for ‖∇2B(x; µ)‖ if Condition 2 holds.

Lemma 4. Let Assumption 2, Condition 1 and Condition 2 be satisfied. If µ ≥ µ > 0,
then

‖∇2B(x; µ)‖ ≤ m(G + g2‖V (x; µ)‖) ≤ m(G + g2V ),

where V = µϕ′′(t(µ)).

Proof. Using (19) and Assumption 4, we obtain

‖∇2B(x; µ)‖ ≤
∥∥∥G(x; µ) + A(x)V (x; µ)AT (x)

∥∥∥

≤
∥∥∥∥∥

m∑

i=1

ui(x, µ)Gi(x)

∥∥∥∥∥ +

∥∥∥∥∥
m∑

i=1

Vi(x; µ)gi(x)gT
i (x)

∥∥∥∥∥
≤ mG + mg2‖V (x; µ)‖.

Since V (x; µ) is diagonal and fi(x) ≤ F (x) for all 1 ≤ i ≤ m, one has

‖V (x; µ)‖ = µϕ′′(z(x; µ)− F (x)) ≤ µϕ′′(t(µ)).

Now we prove that µϕ′′(t(µ)) is a non-increasing function of µ, which implies that µϕ′′(t(µ)) ≤
µϕ′′(t(µ)). Differentiating (13) by µ, we obtain

ϕ′(t(µ)) + µϕ′′(t(µ))t′(µ) = 0 ⇒ t′(µ) = − ϕ′(t(µ))

µϕ′′(t(µ))
> 0, (21)

where t′(µ) is a derivative of t(µ) by µ. Thus, using Condition 2 and the fact that ϕ′′(t(µ)) >
0, we can write

d(µϕ′′(t(µ)))

dµ
= ϕ′′(t(µ)) + µϕ′′′(t(µ))t′(µ) = ϕ′′(t(µ))− ϕ′′′(t(µ))

ϕ′(t(µ))

ϕ′′(t(µ))
≤ 0.

2

Corollary 2. If µ is sufficiently small, we can use bounds V = µ−1 for B1 and B2,

V = 2µ−1 for B3 and V = 2µ−1/2 for B4.
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Proof. We use expressions for ϕ′′(t) given in Table 1 and bounds for t(µ) proposed in
Corollary 1.

(a) Consider barrier function B1. In this case µϕ′′(t(µ)) = µϕ′′(µ) = µ−1.

(b) Consider barrier function B2. If µ < τ , then t(µ) < τ . Thus B2 is equal to B1 and we
can use the previous bound.

(c) Consider barrier function B3. Assuming µ ≤ 3/4, we can write

µϕ′′(t(µ)) = µ
2t(µ) + 1

(t(µ)2 + t(µ))2
=

1

µ

(
1 + 2

√
1 + 4µ− 1

2

)
≤ 2

µ
,

since t(µ)2 + t(µ) = µ (see proof of Corollary 1).

(d) Consider barrier function B4. In this case µϕ′′(t(µ)) = µϕ′′(µ1/2) = 2µ/µ3/2 = 2µ−1/2.
2

As we can deduce from Corollary 1 and Corollary 2, properties of barrier function B4
depend on µ1/2 instead of µ. For this reason, we have used µ2 instead of µ in barrier
function B4 in our computational experiments.

Now we return to the direction determination. To simplify the notation, we write
equation (9) in the form [

H −a
−aT α

] [
d
δ

]
= −

[
g
γ

]
(22)

where
H = G + A(x)V (x, z; µ)AT (x), G = G(x, z; µ), (23)

and a = A(x)V (x, z; µ)e, α = eT V (x, z; µ)e, g = A(x)u(x, z; µ), γ = 1− eT u(x, z; µ). Since

[
H −a
−aT α

]−1

=
[
H−1 −H−1a(aT H−1a− α)−1aT H−1 −H−1a(aT H−1a− α)−1

−(aT H−1a− α)−1aT H−1 −(aT H−1a− α)−1

]
,

we can write [
d
δ

]
= −

[
H −a
−aT α

]−1 [
g
γ

]
=

[
H−1(δa− g)

δ

]
, (24)

where
δ = (aT H−1a− α)−1(aT H−1g + γ).

Matrix H is sparse if A(x) has sparse columns. If H is not positive definite, it is advan-
tageous to change it before a computation of the direction vector. Thus we use the sparse
Gill-Murray decomposition

H + E = LDLT , (25)

where E is a positive semidefinite diagonal matrix that assures positive definiteness of
LDLT . Using the Gill-Murray decomposition, we solve two equations

LDLT c = a, LDLT v = g (26)
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and set

δ =
aT v + γ

aT c− α
, d = δc− v. (27)

In (23), we assume that G = G(x, z; µ), where G(x, z; µ) is either given analytically
or determined by using automatic differentiation, see [9]. In practical computations, G is
frequently an approximation of G(x, z; µ) obtained by using either gradient differences or
variable metric updates. In the first case, G is computed by differences A(x+δvj)u(x; µ)−
A(x)u(x; µ) for a suitable set of vectors vj, j = 1, 2, . . . , n, where n ¿ n if G is sparse.
Determination of vectors vj, j = 1, 2, . . . , n, is equivalent to a graph coloring problem, see
[3]. The corresponding code is proposed in [2]. In the second case, G is defined by the
expression

G =
m∑

i=1

ui(x; µ)Gi, (28)

where approximations Gi of ∇2fi(x) are computed by using variable metric updates de-
scribed in [8]. More details are given in the next section.

Now we are in a position to describe the basic algorithm, in which the direction vector
is modified in such a way that

−gT d ≥ ε0‖g‖‖d‖, c‖g‖ ≤ ‖d‖ ≤ c‖g‖, (29)

where ε0, c, c are suitable constants.

Algorithm 1.

Data: Termination parameter ε > 0, precision for the nonlinear equation solver
δ > 0, bounds for the barrier parameter 0 < µ < µ, rate of the barrier
parameter decrease 0 < λ < 1, restart parameters 0 < c < c and ε0 > 0,
line search parameter ε1 > 0, rate of the step-size decrease 0 < β < 1, step
bound ∆ > 0.

Input: Sparsity pattern of matrix A(x). Initial estimation of vector x.

Step 1: Initiation. Set µ = µ. Determine the sparsity pattern of matrix H(x) from
the sparsity pattern of matrix A(x). Carry out a symbolic decomposition of
H(x). Compute values fi(x), 1 ≤ i ≤ m, and F (x) = max1≤i≤m fi(x). Set
k := 0 (iteration count) and r := 0 (restart indicator).

Step 2: Termination. Solve nonlinear equation (11) with a precision δ to obtain value
z(x; µ) and vector u(x; µ) = u(x, z(x; µ); µ). Compute matrix A := A(x) and
vector g := g(x; µ) = A(x)u(x; µ). If µ ≤ µ and ‖g‖ ≤ ε, then terminate the
computation. Otherwise set k := k + 1.

Step 3: Approximation of the Hessian matrix. Set G = G(x; µ) or compute an
approximation G of the Hessian matrix G(x; µ) by using either gradient
differences or variable metric updates.

Step 4: Direction determination. Determine matrix H by (23). Determine vector d
from (26)-(27) by using the Gill-Murray decomposition (25) of matrix H.
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Step 5: Restart. If r = 0 and (29) does not hold, choose a positive definite diagonal
matrix D by formula (32) introduced in Section 3, set G := D, r := 1 and
go to Step 4. If r = 1 and (29) does not hold, set d := −g (steepest descent
direction) and r := 0.

Step 6: Step-length selection. Define maximum step-length α = min(1, ∆/‖d‖).
Find a minimum integer l ≥ 0 such that B(x+βlαd; µ) ≤ B(x; µ)+ε1β

lαgT d
(note that nonlinear equation (11) has to be solved at all points x + βjαd,
0 ≤ j ≤ l). Set x := x + βlαd. Compute values fi(x), 1 ≤ i ≤ m, and
F (x) = max1≤i≤m fi(x).

Step 7: Barrier parameter update. Determine a new value of the barrier parameter
µ ≥ µ (not greater than the current one) by one of the procedures described
in Section 3. Go to Step 2.

The above algorithm requires several notes. The restart strategy in Step 5 implies that
the direction vector d is uniformly descent and gradient-related (see (29)). Since function
B(x; µ) is smooth, the line search utilized in Step 6 always finds a step size satisfying the
Armijo condition B(x + αd; µ) ≤ B(x; µ) + ε1αgT d. The use of the maximum step-length
∆ has no theoretical significance but is very useful for practical computations. First, the
problem functions can sometimes be evaluated only in a relatively small region (if they
contain exponentials) so the maximum step-length is necessary. Secondly, the problem can
be very ill-conditioned far from the solution point, thus large steps are unsuitable. Finally,
if the problem has more local solutions, a suitably chosen maximum step-length can cause a
better local solution to be reached. Therefore, the maximum step-length ∆ is a parameter,
which is most frequently tuned.

An important part of Algorithm 1 is the barrier parameter update. There are several
influences that should be taken into account, which make updating procedures rather
complicated. More details are given in Section 3.

Finally, note that the proposed interior-point method is very similar algorithmically
(but not theoretically) to the smoothing method described in [20] and [22]. Thus Algo-
rithm 1 can be easily adapted to an algorithm implementing the smoothing method (see
Section 5). These methods are compared in Section 6.

3 Implementation details

In Section 2, we have proved (Lemma 3) that direction vector d obtained by solving equation
(22) is descent for ∇B(x; µ) if matrix G(x; µ) is positive definite. Unfortunately, positive
definiteness of this matrix is not assured in general. A similar problem appears in a
connection with the Newton method for smooth unconstrained optimization. Therefore,
trust-region methods were developed for this reason. We have tested several trust-region
methods, but the line-search approach with suitable restarts turns to be more efficient.
In this case, matrix G ≈ G(x; µ) is replaced by a positive definite diagonal matrix D =
diag(Dii) if (29) (with g = g(x; µ) = A(x)u(x; µ)) does not hold. Thus the Hessian matrix
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∇2B(x; µ) is replaced by the matrix

B = D + A(x)V (x; µ)AT (x)− A(x)V (x; µ)eeT V (x; µ)AT (x)

eT V (x; µ)e
(30)

(see (19)). Let 0 < D ≤ Dii ≤ D for all 1 ≤ i ≤ n. Then the minimum eigenvalue of
B is not less than D (see proof of Lemma 3) and, using the same way as in the proof of
Lemma 4, we can write

‖B‖ ≤
∥∥∥D + A(x)V (x; µ)AT (x)

∥∥∥ ≤ D + mg2‖V (x; µ)‖ ≤ D + mg2V , (31)

where bounds V for individual barrier functions are given by Corollary 2 (procedure used
in Step 7 of Algorithm 1 assures that µ ≥ µ). Using (31), we can write

κ(B) ≤ (D + mg2V )/D.

If d solves equation Bd + g = 0, then (29) hold with ε0 ≤ 1/κ(B), c ≤ D and c ≥ Dκ(B)
(see [4]). If these inequalities are not satisfied, the case when (29) does not hold can appear.
In this case we simply set d = −g (this situation appears rarely when ε0, c and 1/c are
sufficiently small).

The choice of matrix D in restarts strongly affects the efficiency of Algorithm 1 for
problems with indefinite Hessian matrices (if G = G(x; µ) or G is computed by numerical
differentiation). We have tested various possibilities including the simple choice D = I,
which proved to be unsuitable. The best results were obtained by the heuristic procedure
proposed in [19] for equality constrained optimization and used in [14] in a connection with
interior-point methods for nonlinear programming. This procedure uses formulas

Dii = D, if
‖g‖
10
|Hii| < D,

Dii =
‖g‖
10
|Hii|, if D ≤ ‖g‖

10
|Hii| ≤ D, (32)

Dii = D, if D <
‖g‖
10
|Hii|,

where D = 0.005, D = 500.0 and H is given by (23).

Lemma 5. Direction vectors dk, k ∈ N , generated by Algorithm 1 are uniformly descent
and gradient-related ((29) hold for all k ∈ N). If Assumption 1, Assumption 2, and
Condition 1 hold, then the Armijo line search (Step 6 of Algorithm 1) assures that a
constant c exists such that

B(xk+1; µk)−B(xk; µk) ≤ −c‖g(xk; µk)‖2 ∀k ∈ N. (33)
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Proof. Inequalities (29) are obvious (they are assured by the restart strategy) and in-
equality (33) is proved, e.g., in [4] (note that ∇B(xk; µk) = g(xk; µk) by Lemma 2). 2

Matrix G appearing in Step 3 of Algorithm 1 can be computed by using partitioned
variable metric updates described in [8]. This way assures that matrix G is positive definite
so restarts are unnecessary. In our implementation, we use safeguarded scaled BFGS
updates. In this case, G is given by (28). Let Rn

i ⊂ Rn, 1 ≤ i ≤ m, be subspaces
defined by independent variables of functions fi and Zi ∈ Rn×ni be matrices whose columns
form canonical orthonormal bases in these subspaces (they are columns of the unit matrix
of order n). Then we can define reduced approximations of the Hessian matrices G̃i =
ZT

i GiZi, 1 ≤ i ≤ m. New reduced approximations of the Hessian matrices, used in the
next iteration, are computed by the formulas

G̃+
i =

1

γ̃i

(
G̃i − G̃is̃is̃

T
i G̃i

s̃T
i G̃is̃i

)
+

ỹiỹ
T
i

s̃T
i ỹi

, s̃T
i ỹi > 0,

G̃+
i = G̃i, s̃T

i ỹi ≤ 0,

where
s̃i = ZT

i (x+ − x), ỹi = ZT
i (∇fi(x

+)−∇fi(x)), 1 ≤ i ≤ m,

and where either γ̃i = 1 or γ̃ = s̃T
i G̃is̃i/s̃

T
i ỹi. (we denote by + quantities from the next

iteration). The particular choice of γ̃i is determined by the controlled scaling strategy
described in [17]. In the first iteration we set G̃i = I, 1 ≤ i ≤ m, where I are unit matrices
of suitable orders. Finally, G+

i = ZiG̃
+
i ZT

i , 1 ≤ i ≤ m.
A very important part of Algorithm 1 is the barrier parameter update. There are two

requirements, which play opposite roles. First, µ → 0 should hold, since this is the main
property of every interior-point method. On the other hand, round-off errors can cause that
z(x; µ) = F (x) when µ is too small (since F (x)+t(µ) ≤ z(x; µ) ≤ F (x)+t(µ) and t(µ) → 0
as µ → 0 by Lemma 1), which leads to a breakdown (division by z(x; µ)−F (x) = 0). Thus
a lower bound µ for the barrier parameter has to be used (we recommend value µ = 10−10

in double precision arithmetic).
Algorithm 1 is also sensitive to the way in which the barrier parameter decreases.

Considering logarithmic barrier function B1 and denoting by s(x; µ) = z(x; µ)e − f(x)
vector of slack variables, we can see from (7) that ui(x; µ)si(x; µ) = µ, 1 ≤ i ≤ m. In
this case, interior-point methods assume that µ decreases linearly (see [21]). We have
tested various possibilities for the barrier parameter update including simple geometric
sequences, which proved to be unsuitable. Better results were obtained by the following
two procedures:

Procedure A.

Phase 1: If ‖g(xk; µk)‖ ≥ g, we set µk+1 = µk, i.e., the barrier parameter is not
changed.
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Phase 2: If ‖g(xk; µk)‖ < g, we set

µk+1 = max
(
µ̃k+1, µ, 10 εM |F (xk+1)|

)
, (34)

where F (xk+1) = max1≤i≤m fi(xk+1), εM is a machine precision, and

µ̃k+1 = min
[
max(λµk, µk/(σµk + 1)), max(‖g(xk; µk)‖2, 10−2k)

]
, (35)

where g(xk; µk) = A(xk)u(xk; µk). Values µ = 10−10, λ = 0.85, and σ = 100
are chosen as defaults.

Procedure B.

Phase 1: If ‖g(xk; µk)‖2 ≥ ρµk, we set µk+1 = µk, i.e., the barrier parameter is not
changed.

Phase 2: If ‖g(xk; µk)‖2 < ρµk, we set

µk+1 = max(µ, ‖gk‖2). (36)

Values µ = 10−10 and ρ = 0.1 are chosen as defaults.

The choice of g in Procedure A is not critical. We can set g = ∞ but a lower value is
sometimes more suitable (especially for smoothing methods described in Section 5). More
details are given in Section 6. The reason for using formula (34) was mentioned above.
Formula (35) requires several notes. The first argument of the minimum controls the rate
of the barrier parameter decrease, which is linear (geometric sequence) for small k (term
λµk) and sublinear (harmonic sequence) for large k (term µk/(σµk + 1)). Thus the second
argument, which assures that µ is small in the neighborhood of the solution, plays an
essential role for large k. Term 10−2k assures that µ = µ does not hold for small k. This
situation can arise when ‖g(xk; µk)‖ is small, even if xk is far from the solution. The idea
of Procedure B follows from the requirement that B(x; µ) should be sufficiently minimized
for a current value of µ. Thus parameter µk is changed only if ‖g(xk; µk)‖ is sufficiently
small.

4 Global convergence

In the subsequent considerations, we assume that δ = ε = µ = 0 and all computations
are exact (εM = 0 in (34)). We will investigate an infinite sequence {xk}∞1 generated by
Algorithm 1.

Lemma 6 Let Assumption 1, Assumption 2, and Condition 1 be satisfied. Then the values
{µk}∞1 , generated by Algorithm 1, form a non-increasing sequence such that µk → 0.

Proof. We prove that the number of consecutive steps in Phase 1 of the procedure for
the barrier parameter decrease is finite. Then the number of steps in Phase 2 is infinite
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and since µk decreases in these steps either by geometric or by harmonic sequence, one has
µk → 0.

(a) First we prove that B(x; µ) is bounded from below if µ is fixed. This assertion holds
trivially if Condition 3 is satisfied. If this is not the case, then

B(x; µ)− F = z(x; µ)− F + µ
m∑

i=1

ϕ(z(x; µ)− fi(x)) ≥ z(x; µ)− F + mµϕ(z(x; µ)− F ).

Convex function ψ(t) = t + mµϕ(t) has a unique minimum at the point t = t(µ), since
ψ′(t(µ)) = 1 + mµϕ′(t(µ)) = 0 by (13). Thus

B(x; µ)− F ≥ t(µ) + mµϕ(t(µ))

or B(x; µ) ≥ B where B = F + t(µ) + mµϕ(t(µ)).

(b) In Phase 1, the value of µ is fixed. Since function B(x; µ) is continuous, bounded
from below by (a), and since (33) (with µk = µ) holds, it can be proved (see [4]) that
‖g(xk; µ)‖ → 0 if Phase 1 contains an infinite number of consecutive steps. Thus a step
(with index l) belonging to Phase 1 exists such that either ‖g(xl; µ)‖ < g in Procedure A
or ‖g(xl; µ)‖ < ρµ in Procedure B. This is a contradiction with the definition of Phase 1.
2

Now we clarify the dependence of z(x; µ) and B(x; µ) on the parameter µ. For this
purpose, we assume that z(x; µ) and B(x; µ) are functions of µ and write z(x, µ) = z(x; µ)
and B(x, µ) = B(x; µ).

Lemma 7. Let Condition 1 be satisfied and z(x, µ) be a solution of equation (11) (for fixed
x and variable µ), i.e., 1− eT u(x, z(x, µ)) = 0. Then

∂z(x, µ)

∂µ
> 0,

∂B(x, µ)

∂µ
=

m∑

i=1

ϕ(z(x, µ)− fi(x)).

Proof. Differentiating equation (11), which has the form

1 + µ
m∑

i=1

ϕ′(z(x, µ)− fi(x)) = 0,

we obtain
m∑

i=1

ϕ′(z(x, µ)− fi(x)) + µ
m∑

i=1

ϕ′′(z(x, µ)− fi(x))
∂z(x, µ)

∂µ
= 0,

which gives
∂z(x, µ)

∂µ
=

1

µ2
∑m

i=1 ϕ′′(z(x, µ)− fi(x))
> 0.

Differentiating function

B(x, µ) = z(x, µ) + µ
m∑

i=1

ϕ(z(x, µ)− fi(x)),
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one has

∂B(x, µ)

∂µ
=

∂z(x, µ)

∂µ
+

m∑

i=1

ϕ(z(x, µ)− fi(x)) + µ
m∑

i=1

ϕ′(z(x, µ)− fi(x))
∂z(x, µ)

∂µ

=
∂z(x, µ)

∂µ

(
1 + µ

m∑

i=1

ϕ′(z(x, µ)− fi(x))

)
+

m∑

i=1

ϕ(z(x, µ)− fi(x))

=
m∑

i=1

ϕ(z(x, µ)− fi(x)).

2

Now we prove that B(x; µ), z(x; µ), and F (x) are bounded and B(x, µ) is a Lipschitz
continuous function of µ.

Lemma 8. Let Assumption 1, Assumption 2, and Condition 1 be satisfied. Let {xk}∞1 and
{µk}∞1 be sequences generated by Algorithm 1. Then sequences {B(xk; µk)}∞1 , {z(xk; µk)}∞1 ,
and {F (xk)}∞1 are bounded. Moreover, there is L ≥ 0 such that

B(xk+1; µk+1) ≤ B(xk+1; µk)− L(µk+1 − µk) (37)

for all k ∈ N .

Proof. Boundedness from below simply follows from Assumption 1, inequality (12) and
the proof of Lemma 6. If Condition 3 holds, then boundedness from above and (37) with
L = 0 follow from (12), Lemma 7 and (33), since barrier terms are nonnegative. Assume
now that Condition 3 does not hold.
(a) Denote C = min(B,F ). As in the proof of Lemma 6, we can write

B(x; µ)− C ≥ (z(x; µ)− C)/2 + (z(x; µ)− C)/2 + mµϕ(z(x; µ)− C).

The convex function ψ̃(t) = t/2+mµϕ(t) has a unique minimum at a point t = t̃(µ) ≥ t(µ)
(this follows from Condition 1, since ϕ′(t) is a negative, concave and increasing function
such that limt→∞ ϕ′(t) = 0). Thus

B(x; µ)− C ≥ (z(x; µ)− C)/2 + t̃(µ)/2 + mµϕ(t̃(µ))

or

z(x; µ)− C ≤ 2(B(x; µ)− C)− t̃(µ)− 2mµϕ(t̃(µ)) ≤ 2(B(x; µ)− C) + η, (38)

where η = max(0,−2mµϕ(t̃(µ))). The formula for η follows from the fact that t̃′(µ) satisfies
the same equation (21) as t′(µ). Thus t̃(µ) increases as µ increases and since ϕ′(t̃(µ)) < 0,
we obtain −µϕ(t̃(µ)) ≥ −µϕ(t̃(µ)).
(b) Using the mean value theorem and Lemma 7, we obtain

B(xk+1; µk+1)−B(xk+1; µk) =
m∑

i=1

ϕ(z(xk+1, µ̃k)− fi(xk+1))(µk+1 − µk)

≤
m∑

i=1

ϕ(z(xk+1; µk)− fi(xk+1))(µk+1 − µk)

≤ mϕ(z(xk+1; µk)− C)(µk+1 − µk), (39)
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where 0 < µk+1 ≤ µ̃k ≤ µk ≤ µ. Condition 1 assures an existence of a number a > 0 such
that ϕ(t) ≥ −at (at is a tangent of ϕ(t)). Thus inequalities (33), (38) and (39) imply

B(xk+1; µk+1)− C ≤ B(xk+1; µk)− C + mϕ(z(xk+1; µk)− C)(µk+1 − µk)

≤ B(xk+1; µk)− C + ma(z(xk+1; µk)− C)(µk − µk+1)

≤ B(xk+1; µk)− C + ma[2(B(xk+1; µk)− C) + η](µk − µk+1)

= (1 + λδk)(B(xk+1; µk)− C) + λδkη/2

≤ (1 + λδk)(B(xk; µk)− C) + λδkη/2,

where λ = 2ma and δk = µk − µk+1. Then

B(xk+1; µk+1)− C +
η

2
≤

k∏

i=1

(1 + λδi)(B(x1; µ1)− C +
η

2
)

≤
∞∏

i=1

(1 + λδi)(B(x1; µ1)− C +
η

2
)

and since ∞∑

i=1

λδi = λ(µ1 − lim
k→∞

µk) = λµ1

the above product is finite. This together with (12) and (38) proves that sequences
{B(xk; µk)}∞1 , {z(xk; µk)}∞1 , and {F (xk)}∞1 are bounded from above.
(c) Using (39), we can write

B(xk+1; µk+1)−B(xk+1; µk) ≤ mϕ(z(xk+1; µk)− C)(µk+1 − µk)

≤ mϕ(F (xk+1) + t(µk)− C)(µk+1 − µk)

≤ mϕ(F + t(µ)− C)(µk+1 − µk)
∆
= −L(µk+1 − µk),

for all k ∈ N , where existence of F follows from boundedness of {F (xk)}∞1 . 2

The proof of Lemma 8 does not depend on bounds g and G, since we can use a weaker
inequality B(xk+1; µk) ≤ B(xk; µk) instead of (33). Thus an upper bound F (independent
of g and G) exists such that F (xk) ≤ F for all k ∈ N and we can use F in Assumption 2.
Note that we can set F = B(x1; µ1) if Condition 3 holds.

Theorem 1. Let Assumption 1, Assumption 2, and Condition 1 be satisfied. Consider a
sequence {xk}∞1 generated by Algorithm 1 (with δ = ε = µ = 0). Then

lim
k→∞

m∑

i=1

ui(xk; µk)gi(xk) = 0,
m∑

i=1

ui(xk; µk) = 1

and

ui(xk; µk) ≥ 0, z(xk; µk)− fi(xk) ≥ 0, lim
k→∞

ui(xk; µk)(z(xk; µk)− fi(xk)) = 0

for 1 ≤ i ≤ m.
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Proof. Equality 1 − eT u(xk; µk) = 0 holds since δ = 0. Inequalities ui(xk; µk) ≥ 0,
z(xk; µk)−fi(xk) ≥ 0 follow from (7) (since ϕ′(t) is negative for t > 0) and from Lemma 1.

(a) Since (33) and (37) hold, we can write

B(xk+1; µk+1)−B(xk; µk) = (B(xk+1; µk+1)−B(xk+1; µk)) + (B(xk+1; µk)−B(xk; µk))

≤ −L(µk+1 − µk)− c‖g(xk; µk)‖2,

which implies

B ≤ lim
k→∞

B(xk; µk) ≤ B(x1; µ1)− L
∞∑

k=1

(µk+1 − µk)− c
∞∑

k=1

‖g(xk; µk)‖2

= B(x1; µ1) + Lµ1 − c
∞∑

k=1

‖g(xk; µk)‖2,

where B = F + t(µ) + mµϕ(t(µ)) (see proof of Lemma 6). Thus one has

∞∑

k=1

‖g(xk; µk)‖2 ≤ 1

c
(B(x1; µ1)−B + Lµ1) < ∞,

which implies g(xk; µk) =
∑m

i=1 ui(xk; µk)gi(xk) → 0.

(b) Let 1 ≤ i ≤ m be chosen arbitrarily. Since ui(xk; µk) ≥ 0, z(xk; µk) − fi(xk) ≥ 0, one
has

lim sup
k→∞

ui(xk; µk)(z(xk; µk)− fi(xk)) ≥ lim inf
k→∞

ui(xk; µk)(z(xk; µk)− fi(xk)) ≥ 0.

It suffices to prove that these inequalities are satisfied as equalities. Assume on the contrary
that there is an infinite subset N1 ⊂ N such that ui(xk; µk)(z(xk; µk)−fi(xk)) ≥ ε ∀k ∈ N1,
where ε > 0. Since F ≤ fi(xk) ≤ F (xk) ≤ F ∀k ∈ N1, there exists an infinite subset
N2 ⊂ N1 such that F (xk)− fi(xk), k ∈ N2, converge.

(c) Assume first that F (xk)− fi(xk)
N2→ δ > 0. Since

z(xk; µk)− fi(xk) ≥ F (xk)− fi(xk) ≥ δ/2

for sufficiently large k ∈ N2, one has

ui(xk; µk) = −µkϕ
′(z(xk; µk)− fi(xk)) ≤ −µkϕ

′(δ/2)
N2→ 0,

since µk → 0 by Lemma 6. Since values z(xk; µk) − fi(xk), k ∈ N2, are bounded by

Assumption 1 and Lemma 8, we obtain ui(xk; µk)(z(xk; µk) − fi(xk))
N2→ 0, which is a

contradiction.

(d) Assume now that F (xk) − fi(xk)
N2→ 0. Since z(xk; µk) − F (xk) → 0 as µk → 0 by

Lemma 1, we can write

z(xk; µk)− fi(xk) = (z(xk; µk)− F (xk)) + (F (xk)− fi(xk))
N2→ 0.

At the same time, (6) and (7) imply that values ui(xk; µk), k ∈ N2, are bounded. Thus

ui(xk; µk)(z(xk; µk)− fi(xk))
N2→ 0, which is a contradiction. 2
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Corollary 3. Let assumptions of Theorem 1 hold. Then every cluster point x ∈ Rn of
sequence {xk}∞1 satisfies KKT conditions (3), where u ∈ Rm is a cluster point of sequence
{u(xk; µk)}∞1 .

Assuming that values δ, ε, µ are nonzero and logarithmic barrier function B1 is used,
we can prove the following theorem informing us about the precision obtained, when Al-
gorithm 1 terminates.

Theorem 2. Consider sequence {xk}∞1 generated by Algorithm 1 with the logarithmic bar-
rier function B1. Let Assumption 1 and Assumption 2 hold. Then, choosing δ > 0, ε > 0,
µ > 0 arbitrarily, there is an index k ≥ 1 such that

‖g(xk; µk)‖ ≤ ε, |1− eT u(xk; µk)| ≤ δ,

and

ui(xk; µk) ≥ 0, z(xk; µk)− fi(xk) ≥ 0, ui(xk; µk)(z(xk; µk)− fi(xk)) ≤ µ

for all 1 ≤ i ≤ m.

Proof. Equality |1 − eT u(xk; µk)| ≤ δ follows immediately from the fact that equation
eT u(xk; µk) = 1 is solved with the precision δ. Inequalities ui(xk; µk) ≥ 0, z(xk; µk) −
fi(xk) ≥ 0 follow from (7) and Lemma 1 as in the proof of Theorem 1. Since µk → 0 by
Lemma 6 and g(xk; µk) → 0 by Theorem 1, there is an index k ≥ 1 such that µk ≤ µ and
‖g(xk; µk)‖ ≤ ε (thus Algorithm 1 terminates at the k-th iteration). Using (7) and the fact
that ϕ′(t) = −1/t for B1, we obtain

ui(xk; µk)(z(xk; µk)− fi(xk)) =
µk

z(xk; µk)− fi(xk)
(z(xk; µk)− fi(xk)) = µk ≤ µ.

2

Theorem 2 also holds for B2 and B3, since ϕ′(t) ≥ ϕ′B1(t) for these barrier functions (see
proof of Corollary 1). For B4 the upper bound is proportional to

√
µ, which again indicates

that we should use µ2 instead of µ in (17) in this case.

5 Smoothing method for large sparse minimax optimization

In this section, we briefly describe a smoothing method for large sparse minimax optimiza-
tion which is algorithmically very similar to the proposed interior-point method and which
will be used for a comparison. This smoothing method investigated in [20] and [22] (and
in other papers quoted therein) uses smoothing function

S(x; µ) = µ log
m∑

i=1

exp

(
fi(x)

µ

)
= F (x) + µ log

m∑

i=1

exp

(
fi(x)− F (x)

µ

)
, (40)

where F (x) is given by (1) and µ > 0 (we assume that µ → 0 monotonically). The following
result is proved in [20].
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Lemma 9. Consider smoothing function (40). Then

∇S(x; µ) = A(x)Ũ(x; µ)e (41)

and

∇2S(x; µ) = G̃(x; µ) +
1

µ
A(x)Ũ(x; µ)AT (x)− 1

µ
A(x)Ũ(x; µ)eeT Ũ(x; µ)AT (x), (42)

where G̃(x; µ) =
∑m

i=1 ũi(x; µ)Gi(x), Ũ(x; µ) = diag(ũ1(x; µ), . . . , ũm(x; µ)), and

ũi(x; µ) =
exp(fi(x)/µ)∑m

j=1 exp(fj(x)/µ)
=

exp((fi(x)− F (x))/µ)∑m
j=1 exp((fj(x)− F (x))/µ)

(43)

for 1 ≤ i ≤ m, which implies eT ũ(x; µ) = 1.

Note that (42) together with the Schwarz inequality implies

vT∇2S(x; µ)v = vT G̃(x; µ)v +
1

µ

(
vT A(x)Ũ(x; µ)AT (x)v − (vT A(x)Ũ(x; µ)e)2

eT Ũ(x; µ)e

)

≥ vT G̃(x; µ)v.

Thus ∇2S(x; µ) is positive definite if G̃(x; µ) is positive definite.
Using Lemma 9, we can write one step of the Newton method in the form x+ = x + αd

where ∇2S(x; µ)d = −∇S(x; µ) or

(
H̃ − 1

µ
g̃g̃T

)
d = −g̃, (44)

where

H̃ = G̃(x; µ) +
1

µ
A(x)Ũ(x; µ)AT (x) (45)

and g̃ = A(x)Ũ(x; µ)e. It is evident that matrix H̃ has the same sparsity pattern as H in
(23). Since (

H̃ − 1

µ
g̃g̃T

)−1

= H̃−1 +
H̃−1g̃g̃T H̃−1

µ− g̃T H̃−1g̃
,

the solution of (44) can be written in the form

d =
µ

g̃T H̃−1g̃ − µ
H̃−1g̃. (46)

If H̃ is not positive definite, it is advantageous to change it before computation of the
direction vector. Thus we use the sparse Gill-Murray decomposition H̃ + Ẽ = L̃D̃L̃T , solve
equation

L̃D̃L̃T v = g̃ (47)
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and set
d =

µ

g̃T v − µ
v. (48)

More details concerning the smoothing method can be found in [20] and [22], where the
proof of its global convergence is introduced.

The above considerations and formulas form a basis for the algorithm, which is very
similar to Algorithm 1. This algorithm differs from Algorithm 1 in Step 2, where no non-
linear equation is solved (since vector ũ(x; µ) is computed directly from (43)), in Step 4,
where (26)-(27) are replaced by (47)-(48), and in Step 6, where B(x; µ) is replaced by
S(x; µ). Note that µ in (40) has a different meaning from µ in (17) so procedures for
updating these parameters need not be identical. Nevertheless, the procedure described
in Section 3 was successful in connection with the smoothing method (we have also tested
procedures proposed in [20] and [22], but they were less efficient). Note finally, that the
smoothing method described in this section has also insufficiencies concerning finite preci-
sion computations. If µ is small, than many evaluations of exponentials lead to underflows.
This effect decreases the precision of computed gradients, which brings a problem with the
termination of the iterative process. For this reason, a lower bound µ has to be used,
which is usually greater than the corresponding bound in the interior point method (we
recommend µ = 10−6 for the smoothing method).

6 Computational experiments

The primal interior-point method was tested by using two collections of 22 relatively diffi-
cult problems with optional dimension chosen from [18], which can be downloaded (together
with the above report) from www.cs.cas.cz/~luksan/test.html as Test 14 and Test 15.
Functions fi(x), 1 ≤ i ≤ m, given in [18], serve for defining objective functions

F (x) = max
1≤i≤m

fi(x) (49)

and
F (x) = max

1≤i≤m
|fi(x)| = max

1≤i≤m
[max(fi(x),−fi(x))] . (50)

Function (49) is not used in connection with Test 15, since Assumption 1 is not satisfied
(sometimes F (x) → −∞) in this case.

In Algorithm 1, Procedure A, Procedure B, we have used parameters ε = 10−6, δ =
10−6, µ = 10−10, µ = 1, g = ∞, λ = 0.85, σ = 100, ρ = 0.1, c = 10−10, c = 1010, ε0 = 10−8,

ε1 = 10−4, β = 0.5, ∆ = 1000 as defaults (values µ and ∆ were sometimes tuned). In the
implementation of the smoothing method described in Section 5, we have used the same
values with the following three exceptions: µ = 10−6, g = 1, λ = 0.95.

The first set of tests concerns a comparison of four primal interior point methods (Al-
gorithm 1) based on barrier functions B1-B4, with the smoothing method SM (see (40)),
the primal-dual interior point method IP described in [14], and the non-smooth equation
method NE described in [15]. All these methods are implemented in the interactive system
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for universal functional optimization UFO [16] as line-search subroutines for discrete mini-
max optimization. There are two modifications: NM denotes the discrete Newton methods
where the Hessian matrix is computed using gradient differences by the way described in
[3] and VM denotes the variable metric methods with partitioned updates described in
[8]. All mentioned subroutines use the same modules for numerical differentiation, stepsize
selection, and variable metric updates. Thus the results are quite comparable. The meth-
ods listed above were tested by using medium-size test problems with 200 variables. The
results of computational experiments are reported in three tables, where only summary
results (over all 22 test problems) are given. Here Method is the method used, NIT is the
total number of iterations, NFV is the total number of function evaluations, NFG is the total
number of gradient evaluations, NR is the total number of restarts, NL is the number of
problems for which the lowest known local minimum was not found (even if parameters µ

and ∆ were tuned), NF is the number of problems for which no local minimum was found
(either a premature termination occurred or the number of function evaluations exceeded
the upper bound), NT is the number of problems for which the parameters were tuned,
and Time is the total computational time in seconds. It is necessary to note that both the
primal interior point and the smoothing algorithms used Procedure A in almost all cases.
Only the variable metric versions of the primal interior point methods reported in Table 3
used Procedure B, which was more advantageous in this case.

Method NIT NFV NFG NR NL NF NT Time

B1-NM 1682 3771 11173 325 - - 4 1.75
B2-NM 2145 6613 14333 627 - - 8 2.42
B3-NM 2015 6825 12662 599 - - 7 1.88
B4-NM 5650 10561 33675 648 1 - 8 4.19
SM-NM 4213 12632 32451 823 1 - 8 7.78
IP-NM 1715 3558 16943 74 1 - 10 6.05
NE-NM 5159 22195 42161 2363 2 - 14 32.86
B1-VM 1316 2873 1338 - - - 2 0.91
B2-VM 2225 3835 2247 2 - - 3 1.34
B3-VM 1784 3443 1806 2 - - 3 1.17
B4-VM 4638 8866 4658 4 - - 3 2.05
SM-VM 7192 20710 7214 - 1 - 8 6.42
IP-VM 1805 4023 1805 12 1 - 9 5.25
NE-VM 2756 5667 2756 27 1 - 9 5.31

Table 3: Test 14: Function (49) with 200 variables
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Method NIT NFV NFG NR NL NF NT Time

B1-NM 2026 5686 17096 358 - - 6 3.52
B2-NM 3094 15109 24233 1704 - - 6 4.89
B3-NM 3249 14141 24334 1374 - - 7 4.72
B4-NM 5553 30984 47543 3082 - - 9 9.31
SM-NM 3502 9497 31084 613 1 - 9 8.99
IP-NM 1792 3167 16531 158 2 - 13 8.84
NE-NM 3171 11074 25936 1256 2 - 16 18.25
B1-VM 3212 5262 3233 1 1 - 3 1.63
B2-VM 3261 5971 3283 1 1 - 3 2.49
B3-VM 2880 5491 2902 - 1 - 3 2.02
B4-VM 4612 10054 4634 3 1 - 4 2.19
SM-VM 3247 6865 3268 1 2 - 6 3.92
IP-VM 2860 7017 2861 6 2 - 8 8.28
NE-VM 3396 7009 3396 18 2 - 14 7.94

Table 4: Test 14: Function (50) with 200 variables

Method NIT NFV NFG NR NL NF NT Time

B1-NM 9031 12176 48216 2752 - - 6 10.01
B2-NM 7973 13513 39626 5499 2 - 8 9.90
B3-NM 10787 15066 53645 7575 1 - 8 12.99
B4-NM 13865 21989 75100 10834 1 - 10 12.28
SM-NM 13186 26036 79195 4785 3 2 9 29.27
IP-NM 2046 3188 14327 1008 1 1 7 9.30
NE-NM 2914 5616 20241 1087 3 - 18 21.36
B1-VM 2432 5040 2454 1 1 - 1 2.27
B2-VM 2533 6662 2551 5 - - 2 3.16
B3-VM 4277 11033 4298 1 - - 3 4.28
B4-VM 5823 23001 5840 8 - - 6 4.43
SM-VM 10769 19835 10791 1 2 - 4 23.06
IP-VM 2056 3883 2056 - 1 - 4 7.95
NE-VM 2425 3896 2425 18 3 - 12 11.77

Table 5: Test 15: Function (50) with 200 variables

The results introduced in these tables imply several conclusions. First, the use of
variable metric updates is more advantageous for computing Hessian approximations than
the application of gradient differences. This follows from the fact that the test problems
used are strongly nonconvex. Thus the Newton methods are frequently restarted, which
decreases their efficiency and, moreover, their parameters (µ and ∆) have to be tuned
more frequently. Variable metric implementations of the primal interior point method
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(Algorithm 1) are very robust. They rarely require decrease of ∆ to obtain the lowest
known local minimum (among other possible local minima).

Secondly, the use of barrier function B1 gives better results in a comparison with the
use of B2, B3 and especially B4, even if the latter barrier functions have better theoretical
properties (Condition 3 holds). Thus we restrict our considerations only to primal interior-
point methods based on the logarithmic barrier function B1.

Finally, primal interior-point methods seem to be more efficient than other methods
tested. Smoothing methods SM are more sensitive to the choice of their parameters, con-
verge more slowly and require greater CPU time (since computation of exponentials is time
consuming). Primal-dual interior-point methods for general nonlinear programming prob-
lems IP convert the original problem to the problem with n + 1 basic variables, m (or 2m
for function (50)) slack variables and the same number of equality constraints. Thus the
size of linear algebra subproblems and the resulting CPU time is considerably larger. Note
that our implementation of primal-dual interior-point methods for general nonlinear pro-
gramming problems uses constant penalty parameter (see [14]), which has to be sometimes
tuned. Thus the number NT is slightly greater for IP. The same considerations concern
nonsmooth equation methods for general nonlinear programming problems NE, which are
even less efficient than methods IP.

The second set of tests concerns a comparison of the primal interior-point methods (NM
and VM) that use logarithmic barrier function B1 with the smoothing methods (NM and
VM) and the primal-dual interior point methods (NM and VM). Large-scale test problems
with 1000 variables are used. The results of computational experiments are given in six
tables, where P is the problem number, NIT is the number of iterations, NFV is the number
of function evaluations, NFG is the number of gradient evaluations and F is the function
value reached. The last two rows of every table contain summary results including the
number of problems for which parameters were tuned and the total computational time in
seconds.

The results introduced in these tables confirm conclusions following from the previous
tables. Primal interior-point methods (especially the VM implementation) seem to be more
efficient than smoothing methods and primal-dual interior point methods in all indicators.
The computational time is significantly shorter, the number of the lowest known local
minima attained is greater and also the number of iterations is much smaller in the case
of primal interior-point methods. We believe that the efficiency of the primal interior-
point methods could be even improved by using more sophisticated procedures for the
barrier parameter decrease, more complicated variable metric updates, different strategies
for restarts or suitable trust region realizations.
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Table 6: Test 14: Function (49) with 1000 variables
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Table 7: Test 14: Function (49) with 1000 variables
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Table 8: Test 14: Function (50) with 1000 variables
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Table 9: Test 14: Function (50) with 1000 variables
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Table 10: Test 15: Function (50) with 1000 variables
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0.
45

99
90

22
22

22
0.

45
99

90
15

34
68

35
0.

23
06

07
26

2
28

5
26

3
0.

23
06

07
20

20
20

0.
23

06
08

16
35

73
36

0.
66

66
67

E
-0

1
45

74
46

0.
66

66
69

E
-0

1
46

46
46

0.
66

66
67

E
-0

1
17

69
26

9
70

0.
51

87
57

E
-1

1
56

11
0

57
0.

94
36

89
E

-1
5

93
95

93
0.

15
83

63
E

-0
9

18
26

0
34

0
26

1
0.

53
29

07
E

-1
4

10
36

20
55

10
37

0.
00

00
0

32
7

14
70

32
7

1.
73

66
9

19
48

52
49

0.
26

47
19

E
-1

0
46

83
47

0.
86

61
58

E
-1

0
71

71
71

0.
21

70
62

E
-0

8
20

26
5

19
75

26
6

0.
71

05
42

E
-1

3
10

7
12

1
10

8
0.

56
84

34
E

-1
2

15
7

17
3

15
7

0.
41

46
77

E
-0

7
21

47
17

8
47

0.
90

00
00

12
9

59
9

13
0

0.
90

00
00

77
13

0
77

0.
90

00
00

22
80

17
4

81
2.

35
48

7
74

19
8

75
2.

35
48

7
41

44
41

2.
35

48
7

Σ
78

60
12

48
9

78
80

N
T

=
3

65
57

12
49

3
65

77
N
T

=
8

18
56

56
97

18
56

N
T

=
7

T
i
m
e

=
29

.8
6

T
i
m
e

=
75

.0
5

T
i
m
e

=
11

1.
38

Table 11: Test 15: Function (50) with 1000 variables

30



References

[1] A.Ben-Tal, G.Roth: A truncated log barrier algorithm for large-scale convex programming
and minimax problems: Implementation and computational results. Optimization Methods
and Software 6 (1996) 283-312.
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