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Abstract:

The determination of phycobilisomes diffusivity (diffusion coefficient D) on thylakoid membrane
from fluorescence recovery after photobleaching (FRAP) experiments is usually done by ana-
lytical models. However, analytical models need some unrealistic conditions to be supposed.
This study describes the development of a method based on finite difference approximation of
the process governed by the Fickian diffusion equation and on the minimization of an objec-
tive function representing the disparity between the experimental and simulated time-varying
concentration profiles. Our method improves on other models by accounting for experimentally
measured time-varying Dirichlet boundary conditions, and can include a reaction term as well.
As a result we obtain both the overall (time averaged) diffusion coefficient D and the sequence
of diffusivities Dj based on two successive fluorescence profiles in j-th time interval. Due to
the noisy data, we cope with an inverse ill-posed problem and a regularization technique is
mandatory.
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1 Introduction

The organization and dynamics of many photosynthetic pigment-protein complexes in the
photosynthetic membrane is frequently studied using fluorescence confocal microscopy by
means of Fluorescence Recovery After Photobleaching (FRAP) measuring technique [12].
FRAP has been used since 1970s to study lateral mobility on the cell surface. Later it has
been extended to the investigation of protein dynamics within the living cells [10] including
thylakoid membrane proteins [8, 6]. Based on spatio-temporal FRAP images, the mobility
of photosynthetic complexes in a native intact membrane, i.e. the diffusivity or diffusion
coefficient D,3 is reconstructed using either a closed form model or simulation based model
[9, 5]. The FRAP images are in general very noisy, with small signal to noise ratio (SNR),
which requires an adequate technique assuring the reliable results.4

Our study describes the development of a method aiming to determine the phycobil-
isomes diffusivity on thylakoid membrane from FRAP experiments. As we know, this is
usually done by experimental curve fitting to the analytical (closed form) models, see e.g.
[1, 8, 6]. However, the closed form models need some unrealistic assumptions. For exam-
ple, C. W. Moulineaux et al. [8] have exploited the rotational symmetry of the cells by
bleaching a plane across the short axis of the cell. This approach allowed construction of
bleaching profiles along the long axis. Supposing that: (i) x ∈ R, i.e. the infinite domain,
(ii) the initial bleaching profile is Gaussian: y(x, t0) = y0,0 exp

−2x2

r02
, where r0 is the half-

width of the bleach at time t0 = 0, y0,0 is the maximum depth at time t0, i.e. the depth
(y0,0 < 0) of the first post-bleach signal at the center (x = 0), and (iii) boundary conditions
correspond to the complete recovery: y → 0 as t → ∞, y → 0 as x → ∞; then the solution
y(x, t) of diffusion equation ∂y

∂t
= D ∂2y

∂x2 and the maximum depth at time t, i.e. y(0, t) are
as follows:

y(x, t) =
y0,0r0√

r02 + 8Dt
exp

−2x2

r02 + 8Dt
, y(0, t) =

y0,0r0√
r02 + 8Dt

.

The calculation of diffusion coefficient D then resides in the weighted linear regression: a
plot of ( y0,0

y(0,t)
)2 against time should give a straight line with the tangent 8D

r02
.

As the analytical approach has several limitations (e.g. restriction to the cell geometry,
full recovery is required, bleach profile must be gaussian-like, etc.) we model the process by
the Fickian diffusion equation (with realistic initial and boundary conditions) instead. The
estimation of diffusivity is further formulated as an optimization problem consisting in the
minimization of an objective function representing the disparity between the experimental
and simulated time-varying concentration profiles.

3I. F. Sbalzarini in [10] distinguishes between the molecular diffusion constant and the apparent diffusion
constant; while the former is directly measured by single-molecule techniques, the latter is determined by
coarse-grained methods such as FRAP, averaging over a certain observation volume.

4Let us mention that the fluorescence confocal microscope allows the selection of a thin cross-section of
the sample by rejecting the information coming from the out-of-focus planes. However, the small energy
level emitted by the fluorophore and the amplification performed by the photon detector introduces a
measurement noise.
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2 Problem formulation

2.1 Theory

FRAP (Fluorescence Recovery After Photobleaching) technique allows detection of diffu-
sivity of autofluorescence compound like proteins (e.g. phycobiliproteins) and also other
non-fluorescence compound that are fluorescently tagged (e.g. green fluorescence proteins
- GFP). This method is based on application of short, intense laser irradiation (the so
called bleach) to a small target region (Region Of Interest - ROI) of the cell that causes
irreversible loss in fluorescence in this area without any damage in intracellular structures.
After the ”bleach” (or ”bleaching”), the observed recovery in fluorescence in the ”bleached
area” reflects diffusion of fluorescence compounds from the area outside the bleach.

For an arbitrary bleach spot and assuming (i) local homogeneity, i.e. assuring that the
concentration profile of fluorescent particles is smooth, (ii) isotropy, i.e. diffusion coefficient
is space-invariant, (iii) an unrestricted supply of unbleached particles outside of the target
region, i.e. assuring the complete recovery,5 the unbleached particle concentration C as a
function of spatial coordinate r⃗ and time t is modeled with the following diffusion-reaction
equation on two-dimensional domain Ω:

∂C

∂t
−∇ · (D∇C) = R(C) , (1)

where D is the fluorescent particle diffusivity within the domain Ω and R(C) is a reaction
term.

The initial condition and time varying Dirichlet boundary conditions are:

C0 = f(r⃗, t0) in Ω, C(t) = g(r⃗, t) in ∂Ω× [t0, T ]. (2)

The reaction term R(C) is often viewed as negligible under assumptions that diffusion of
fluorescence compounds (proteins) is not restricted (e.g. by some binding to the medium)
and that photobleaching of these molecules during recovery is negligible. Consequently,
if R(C) is neglected, Eq. (1) becomes the Fickian diffusion equation. In contrast, under
continual photobleaching during image acquisition, this reaction term could be described
as a first order reaction:

R(C) = −kS C , (3)

where kS is a rate constant describing bleaching during scanning [5].
It is of utmost importance to identify the relation between concentration of particles

C and fluorescent signal ϕ. Although Eq. (1) and objective function J , cf. (10), works
with concentrations, in fact we measure the fluorescence intensity level and not directly
C. If the relation C = kFϕ holds, where kF is a constant, than we can work with the
measured signal without necessity of any recalculation. On the contrary, if kF is space or
time dependent, then we should design an experiment and estimate this dependence.

5The recovery is not always complete. It is usually modelled by introducing some correction term.
More consistent method resides in the special time dependent Neumann boundary condition in form of a
saturation curve.
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Before bleaching, some number of so-called pre-bleach measurements are performed.
Notice that the pre-bleach profile Cpre represents a steady-state constant concentration
profile which has to be gradually recovered for t → ∞. Thereafter, based on the pre-bleach
data ϕpre(e.g. its average value), we reach the coefficient kF as follows:

kF =
Cpre

ϕpre

.

Consequently, in order to have experimental values Cexp representing the concentration
profiles after bleaching, we have to divide the post-bleach fluorescence signal by its pre-
bleach value, as it is explained in the following.

2.2 One-dimensional model

For a linear bleach spot perpendicular to a longer axis (let this axis be denoted as r) and
assuming local homogeneity and isotropy, the recovery of unbleached particle concentration
as a function of spatial coordinate r and time t is modeled with a linear, diffusion-reaction
equation

∂C

∂t
−D

∂2C

∂r2
= R(C) . (4)

If we adopt the form of reaction term according to (3), and introduce the dimensionless
spatial coordinate x, the dimensionless diffusion coefficient p, the dimensionless time τ and
the dimensionless concentration y by

r := xL , D := p D0 , t := τ
L2

D0

, y :=
C

Cpre

=
ϕ

ϕpre

, (5)

where L is the length of our specimen in direction perpendicular to bleach spot, D0 is a
constant with some characteristic value (unit: m2s−1), and Cpre is a pre-bleach concentra-
tion of C, we finally obtain the following form of dimensionless diffusion-reaction equation
on one-dimensional domain, i.e. for x ∈ [0, 1]

∂y

∂τ
− p

∂2y

∂x2
= −kSL

2

D0

y . (6)

The initial condition and time varying Dirichlet boundary conditions are:

y(x, τ0) = f(x), x ∈ [0, 1], (7)

y(0, τ) = g0(τ), y(1, τ) = g1(τ), τ ≥ τ0. (8)

2.3 Experimental data

Based on FRAP experiments, see Fig. 1 [6], we have a 2D matrix of dimension (N+1,M+
m+ 1) with pre-bleach and post-bleach experimental values

yexp(xi, τj), i = 0 . . . N, j = −m. . .M, (9)
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which can be read by columns as the concentration profiles (along x axis) in M +m + 1
discrete time points (m corresponds to the number of columns with pre-bleach data). Recall
that τ0 corresponds to the first post-bleach measurement, and x0 = 0, xN = 1.

Consequently yexp(xi, τ0), i = 0 . . . N, represents the initial condition, and yexp(0, τj),
resp. yexp(1, τj), j = 0 . . .M, the left and right Dirichlet boundary conditions, respectively.

Figure 1: Fluorescence intensity (in arbitrary units) vs. Distance [µm]. Experimental data
from FRAP experiment with red algae Porphyridium cruentum describing the phycobili-
somes mobility on thylakoid membrane [6].

2.4 Determination of diffusivity as a parameter estimation problem

The problem of autofluorescence compound (e.g. phycobilisomes) diffusivity determination
based on time series of FRAP experimental data will be further formulated as a parameter
estimation problem. We construct an objective function J representing the disparity be-
tween the experimental and simulated time-varying concentration profiles, and then within
a suitable method we look for such a value p minimizing J . The usual form of an objec-
tive function is the sum of squared differences between the experimentally measured and
numerically simulated time-varying concentration profiles:

J =
N∑
i=0

M∑
j=0

[yexp(xi, τj)− ysim(xi, τj)]
2 , (10)
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where ysim(xi, τj) are simulated values resulting from the solution of PDE (6) with the
initial and boundary conditions (7)-(8) for the known parameter p.

Taking into account the biological reality residing in possible time dependence of phy-
cobilisomes diffusivity, we further consider two cases. First, we can take both sums for i
and j in (10) together. In this case, the scalar p is a result of a minimization problem for
J . Secondly, we can consider each j-th time row separately. In this case, the M solutions
p1, . . . , pM with values J1, . . . , JM correspond to each minimization problem for fixed j in
sum (10) and we have a ’dynamics’ of diffusivity p evolution.

Our problem is ill-posed in the sense that the solution, i.e. the diffusion coefficients
Dj = pj D0, j = 1, . . . ,M , does not depend continuously on the data. This led us to the
necessity of some stabilizing procedure and the formulation of another cost function, see
e.g. [3, 4, 11]

J =
N∑
i=0

M∑
j=0

[yexp(xi, τj)− ysim(xi, τj)]
2 + α (p− pest)

2 , (11)

where α ≥ 0 is a regularization parameter, and pest is an estimation of our result. Note
that taking α = 0, function (11) turns to (10), so in next sections we will consider only
expression (11) for function J .

3 Implementation

In this section we describe how we have implemented both the direct problem, i.e. solution
of problem (6)-(8), and the parameter estimation problem, i.e. minimization of J in (11).
For the sake of clarity we further neglect the bleaching during scanning, i.e. we put kS = 0.

Minimization of the objective function J with respect to p represents a one-dimensional
optimization problem. We use a suitable optimization method from the so-called UFO
system [7] to solve the problem

min J(p), subject to p > 0.

After choosing initial p(0), the algorithm generates a sequence of iterates {p(l), l > 0}
leading to a value p∗ which minimizes J . For our experimental results in Section 4 we
assume that p(0) = pest. The computed value p∗ is an approximation of the solution p in
case of the scalar or pj in case of considering each j-th time row separately, j = 1 . . .M ,
respectively.

Taking into account the above mentioned problem residing in a measurement noise, we
try to cope with by two methods:

1. ”removing” noise from all experimental values (both pre- and post-bleach data) by
their smoothing using the Fourier transformation,

2. applying the regularization technique based on minimization of functional (11) in-
stead of (10), i.e. taking α > 0.
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In order to compute a function value J(p(l)) in (11) for a given p(l) in the l-th itera-
tion, we need to know both the experimental values yexp(xi, τj), and the simulated values
ysim(xi, τj), i = 0 . . . N, j = 0 . . .M. It means that in each l-th iteration we need to solve
the problem (let put further ysim ≡ y for simplicity)

∂y

∂τ
− p(l)

∂2y

∂x2
= 0 , (12)

with the initial and boundary conditions defined by the experimental data

y(x, τ0) = yexp(x, τ0) for x ∈ [0, 1], (13)

y(0, τ) = yexp(0, τ), y(1, τ) = yexp(1, τ) for τ ≥ τ0. (14)

Problem (12)-(14) for simulated data y(xi, τj) was solved numerically using the following
two finite difference schemes for uniformly distributed nodes with the space steplength ∆h
and the variable time steplength ∆τ [2]: (i) the explicit scheme of order ∆τ +∆h2

yi,j = βyi−1,j−1 + (1− 2β)yi,j−1 + βyi+1,j−1

and (ii) the Crank-Nicholson (CN) implicit scheme of order ∆τ 2 +∆h2

−β

2
yi−1,j + (1 + β)yi,j −

β

2
yi+1,j =

β

2
yi−1,j−1 + (1− β)yi,j−1 +

β

2
yi+1,j−1.

Here β = ∆τ
∆h2 p and yi,j ≡ y(xi, τj) are the computed values in nodes, which enter Eq. (11)

as ysim(xi, τj). Recall that for the explicit scheme the condition β ≤ 1/2 must hold.
Concerning the steplengths used in the numerical schemes, we set the space steplength

to be ∆h = 1/N (smaller splitting ∆h = 1/(κsN) with κs ∈ N can also be considered).
The time steplength ∆τ is variable but should be ideally of the same order as ∆h2 (or ∆h
in the CN scheme) and in the explicit scheme has to fulfill the relation ∆τ ≤ ∆h2

2p
. In order

to get from the (j−1)-th time row to the j-th, we need to perform κt = ⌈ TD0

L2∆τ
⌉ substeps of

the above chosen scheme, where κt ∈ N is the smallest integer that is not less than TD0

L2∆τ
.

4 Experimental results

In this section we illustrate the difficulties caused by the ill-posedness of our problem. We
have performed numerical experiments with the real experimental data for N = 286 and
M = 59 described in [6], set initial p(0) = 1, and consider each j-th time row separately, i.e.
j is fixed in sum (11). We report the results using the CN scheme (they are independent
of the used scheme).

In Fig. 2 we can see big jumps in computed approximated values pj, j = 1, . . . ,M
when using no smoothing of experimental data neither using regularization. No significant
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Figure 2: Dimensionless diffusivities pj =
Dj

D0
: Values p1, . . . , p59.

changes are depicted after smoothing the experimental data which is in agreement with
theory (smoothing techniques usually do not improve the solution of ill-posed problems).
In contrast, regularization technique seems to cope with ill-posedness quite well. How-
ever, when using this approach we would like to know more about the noise. In (11) it
corresponds to a regularization parameter α or estimated expected value pest. As already
mentioned, we set pest = p(0) = 1 and for our experimental results, we took α = 0.1 and
α = 1. The solution then becomes smoother and tends to the estimated value pest for
larger α (larger weight of the regularization term).

5 Conclusions

The purpose of this paper was to present the real problem residing in the estimation
of diffusivity of phycobilisomes on thylakoid membrane based on spatio-temporal FRAP
images. While the state-of-the-art methods in FRAP measurement of photosynthetic com-
plexes mobility are usually based on the curve fitting to an analytical (closed form) models,
which need some unrealistic conditions to be supposed, our method is based on finite differ-
ence approximation of diffusion process and on the minimization of an objective function
evaluating both the disparity between the experimental and simulated time-varying con-
centration profiles and the smoothness of the time evolution of diffusivity. This approach
naturally takes into account the time-dependent Dirichlet boundary conditions and can
include also a reaction term (e.g. modeling the low level bleaching during scanning) and
the time varying fluorescence signal as well.
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Our program is actually under testing, however, for the previously known diffusion
coefficient and the synthetic data corrupted by the Gaussian noise it computes correct
results. Afterward, we determined the diffusivities for the real data of FRAP measurements
(with the red algae Porphyridium cruentum). The range of result 10−15m2s−1 (10−3µm2s−1)
is in agreement with reference values.

In the near future, we would like to improve our method by an adequate assessment
of the measurement noise and by an implementation of a more rigorous regularization
algorithm.
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