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1 Introduction

Conjugate gradient methods are widely studied and used for unconstrained minimization
of function F : Rn → R, see [1]–[75], [77]–[117], [120]–[133]. These methods are descent
direction methods. It means that after introducing a starting approximation x1 ∈ Rn they
generate a sequence of points {xi} ⊂ Rn by the rule

xi+1 = xi + αisi, i ∈ N, (1)

where si ∈ Rn is a direction vector satisfying a descent condition sT
i g(xi) < 0 (g(xi) is a

gradient of the function F at a point xi), and αi > 0 is a step-length chosen in such a way
that the generalized Wolfe conditions

F (xi+1)− F (xi) ≤ ε1αis
T
i g(xi), (2)

ε2s
T
i g(xi) ≤ sT

i g(xi+1) ≤ ε3|sT
i g(xi)|, (3)

with 0 < ε1 < ε2 < 1 and ε3 ≥ 0, are satisfied, see [118]–[119]. If ε3 = ε2, we speak about
the strong Wolfe conditions and if ε3 = ∞, we speak about the weak Wolfe conditions. In
case that sT

i g(xi+1) = 0, the step length is exact, otherwise is inexact.
We will use a shortened notation Fi = F (xi), gi = g(xi), Gi = G(xi), i ∈ N , where

G(xi) is a Hessian matrix of the function F at a point xi, and use the following assumptions.
Firstly, the function F is twice continuously differentiable and satisfies the conditions

F (xi) ≥ F ∀xi ∈ Rn, (4)

‖G(xi)‖ ≤ G ∀xi ∈ Rn, (5)

where F and G are suitable constants. Secondly, we confine to methods where vectors
si ∈ Rn, i ∈ N , satisfy the condition

−sT
i gi ≥ ε0‖gi‖2, (6)

with ε0 > 0. It can be shown (see e.g. [24]) that this condition implies the inequality

∞∑

i=1

‖gi‖4

‖si‖2
< ∞. (7)

Definition 1 We say that a descent direction method is a conjugate gradient method if

s1 = −g1 and si+1 = −gi+1 + βisi for i ∈ N, (8)

where a parameter βi is chosen so that the direction vectors si, 1 ≤ i ≤ n, were mutually
G–orthogonal, i.e. sT

j Gsi = 0, 1 ≤ j < i ≤ n, if we apply this method to a strictly convex
quadratic function

Q(x) =
1

2
(x− x∗)T G(x− x∗)

with an exact choice of a step-length.
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If we denote di = xi+1 − xi = αisi and yi = gi+1 − gi, then for the quadratic function
Q we have yi = Gdi and the G–orthogonality condition of vectors si, si+1 can be written
as αis

T
i Gsi+1 = yT

i si+1 = 0 (we assume that αi 6= 0). This together with (8) lead to the
equation βiy

T
i si − yT

i gi+1 = 0 or

βi =
yT

i gi+1

yT
i si

. (9)

It can be shown (see e.g. [107]) that this value already assures mutual orthogonality
of direction vectors and gradients and finding a minimum of a strictly convex quadratic
function after a finite number of steps if a step-length is exact. We call this property a
quadratic termination.

If the step-length is exact, we can write by (8)

yT
i si = gT

i+1si − gT
i si = −gT

i si = gT
i gi − βi−1g

T
i si−1 = gT

i gi.

Moreover, if the minimized function is quadratic, then its gradients are mutually orthogo-
nal, and so

yT
i gi+1 = gT

i+1gi+1 − gT
i gi+1 = gT

i+1gi+1.

This fact implies that we can use three different denominators and two different numerators
in expression (9) without violation a quadratic termination property. Thus we obtain six
basic conjugate gradient methods:

βHS
i =

yT
i gi+1

yT
i si

, βPR
i =

yT
i gi+1

gT
i gi

, βLS
i =

yT
i gi+1

|gT
i si| (10)

(HS – Hestenes and Stiefel [62], PR – Polak and Ribiére [94], LS – Liu and Storey [74]),

βDY
i =

gT
i+1gi+1

yT
i si

, βFR
i =

gT
i+1gi+1

gT
i gi

, βCD
i =

gT
i+1gi+1

|gT
i si| (11)

(DY – Dai and Yuan [32], FR – Fletcher and Reeves [50], CD – conjugate descent [49]).
These methods can be divided into two groups by the numerator used. Methods of the

first group (HS, PR, LS) are more suitable for practical computations but they are globally
convergent only with necessary modifications. Methods of the second group (DY, FR, CD)
are globally convergent under certain assumptions (put on a choice of a step-length) but
the direction vectors stay worse conjugate if a step-length is inexact and the minimized
function is not quadratic.

The properties of methods (10) can be improved by eliminating negative values, so

βHS+
i = max(0, βHS

i ), βPR+
i = max(0, βPR

i ), βLS+
i = max(0, βLS

i ). (12)

We use nonnegative values in order to prevent possible cycling [96]. Methods (10) can also
be combined with methods (11). Such combined methods use relations
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βHSC
i = max(0, min(βHS

i , βDY
i )),

βPRC
i = max(0, min(βPR

i , βFR
i )), (13)

βLSC
i = max(0, min(βLS

i , βCD
i )).

Combined methods HSC, PRC, LSC are globally convergent under the same conditions as
methods DY, FR, CD. Furthermore, they are efficient for practical computations because
values βHS

i , βPR
i , βLS

i are used sufficiently often.

2 Modification of conjugate gradient methods

Relation (8) can be variously modified in order to improve effectiveness of conjugate gra-
dient methods. It is usually performed so that we add terms proportional to sT

i gi+1, which
vanish in case of the exact choice of a step-length and the quadratic termination property
stays unchanged. One possibility, used in [130], is to replace (8) with

s1 = −g1 and si+1 = −
(

1 + βi
gT

i+1si

gT
i+1gi+1

)
gi+1 + βisi for i ∈ N, (14)

where βi is one of the values in (10) or (11).

Theorem 1 Modified conjugate gradient method (14) has the quadratic termination prop-
erty. Moreover, for i ∈ N we have

−gT
i+1si+1 = gT

i+1gi+1. (15)

Proof If a step-length is exact, one has gT
i+1si = 0, so (14) will change into (8) and the

quadratic termination property will stay unchanged. Multiplying (14) by a vector gi+1, we
obtain equality (15). 2

If we substitute the value βCD
i into (14), we will get si+1 = −ϑCD

i gi+1 + βCD
i si, where

ϑCD
i = −yT

i si/g
T
i si. Method FR can be modified in a similar way, see [131]. These

modifications allow to weaken substantially conditions for global convergence.

Theorem 2 Consider modified methods DY, FR, CD given by the rule

s1 = −g1 and si+1 = −ϑigi+1 + βisi for i ∈ N, (16)

where the values βDY
i , βFR

i , βCD
i are determined by (11) and

ϑDY
i =

yT
i si

yT
i si

= 1, ϑFR
i =

yT
i si

gT
i gi

, ϑCD
i =

yT
i si

|gT
i si| . (17)

These methods have the quadratic termination property. If a function F : Rn → R satisfies
conditions (4)–(5) and if we use generalized Wolfe conditions (2)–(3) with 0 < ε1 < ε2 < 1
and 0 ≤ ε3 < ∞ during a choice of a step-length, then these methods are globally convergent.
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Proof If a step-length is exact, then yT
i si = −gT

i si = gT
i gi, or ϑDY

i = ϑFR
i = ϑCD

i = 1, so
(16) changes into (8) and the quadratic termination property stays unchanged. Now we
will prove global convergence.

(a) Since ϑDY
i = 1, method DY is unchanged using (16), so global convergence follows

from the theorem proved in [32].

(b) For modified method FR we have

gT
i+1si+1 = −yT

i si
gT

i+1gi+1

gT
i gi

+
gT

i+1gi+1

gT
i gi

gT
i+1si =

gT
i+1gi+1

gT
i gi

gT
i si < 0.

Since gT
1 s1 = −gT

1 g1, we obtain equality (15) with sequential substituting into the
previous relation (by induction). Thus modified method FR is identical to modified
method CD and equality (15) is fulfilled for both methods.

(c) For modified method CD, equality (15) is fulfilled. Therefore, direction vectors si,
i ∈ N , are descent and (6) holds with ε0 = 1, which implies inequality (7). Because
generalized Wolfe conditions (2)–(3) are used during a choice of a step-length, we
have

yT
i si = gT

i+1si − gT
i si ≤ ε3|gT

i si| − gT
i si = (1 + ε3)|gT

i si|,
or ϑi ≤ 1+ ε3. If we use this estimate together with relations (15)–(17), we can write

‖si+1‖2 =

(
−ϑigi+1 +

‖gi+1‖2

|gT
i si| si

)T (
−ϑigi+1 +

‖gi+1‖2

|gT
i si| si

)

= ϑ2
i ‖gi+1‖2 − 2ϑi

‖gi+1‖2

|gT
i si| gT

i+1si +
‖gi+1‖4

|gT
i si|2 ‖si‖2

≤ (1 + ε3)
2‖gi+1‖2 + 2ε2(1 + ε3)‖gi+1‖2 +

‖gi+1‖4

|gT
i si|2 ‖si‖2,

or
‖si+1‖2

‖gi+1‖4
≤ (1 + ε3)(1 + 2ε2 + ε3)

‖gi+1‖2
+
‖si‖2

‖gi‖4
.

Now suppose that
lim inf

i→∞
‖gi‖ = 0

does not hold. Then there exists a constant ε > 0 such that ‖gi‖ ≥ ε ∀i ∈ N , so from the
previous inequality it follows that

‖si+1‖2

‖gi+1‖4
≤ (1 + ε3)(1 + 2ε2 + ε3)

ε2
+
‖si‖2

‖gi‖4
≤ (1 + ε3)(1 + 2ε2 + ε3)

ε2
(i + 1)

(we assume without loss of generality that ε2‖s1‖2/‖g1‖4 ≤ (1 + ε3)(1 + 2ε2 + ε3)). Thus

∞∑

i=1

‖gi‖4

‖si‖2
≥ ε2

(1 + ε3)(1 + 2ε2 + ε3)

∞∑

i=1

1

i
= ∞,
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which is in contradiction with inequality (7). 2

It follows from Theorem 2 that modification (16) allows to weaken conditions for global
convergence of methods FR [1] and CD [30]. It suffices to choose a step-length by general-
ized Wolfe conditions (2) and (3), where ε3 ≥ 0 is arbitrarily large but finite number. This
condition does not differ much from the weak Wolfe conditions, where ε3 = ∞.

Relation (16) can also be used to improve conjugation of direction vectors in methods
PR and LS.

Theorem 3 Consider modifications of methods HS, PR, LS given by the rule

s1 = −g1 and si+1 = −ϑigi+1 + βisi for i ∈ N,

where the values βHS
i , βPR

i , βLS
i are determined by (10) and

ϑHS
i =

yT
i si

yT
i si

= 1, ϑPR
i =

yT
i si

gT
i gi

, ϑLS
i =

yT
i si

|gT
i si| . (18)

Then the quadratic termination property stays unchanged and moreover,

yT
i si+1 = 0 for i ∈ N. (19)

Proof As in the proof of Theorem 2 we have ϑHS
i = ϑPR

i = ϑLS
i = 1, if a step-length is

exact. So (16) changes into (8) and the quadratic termination property stays unchanged.
Method HS, for which (19) holds, is unchanged. In case of methods PR and LS we obtain

yT
i si+1 = −yT

i si

gT
i gi

yT
i gi+1 +

yT
i gi+1

gT
i gi

yT
i si = 0

and

yT
i si+1 = − yT

i si

|gT
i si|y

T
i gi+1 +

yT
i gi+1

|gT
i si| y

T
i si = 0.

2

Formula (16) does not assure a descent of direction vectors of methods HS, PR, LS.
This requirement is guaranteed by relation (14) or by formula

s1 = −g1 and si+1 = −gi+1 + βisi − γiyi for i ∈ N, (20)

where the values βHS
i , βPR

i , βLS
i are determined by (10) and

γHS
i =

gT
i+1si

yT
i si

, γPR
i =

gT
i+1si

gT
i gi

, γLS
i =

gT
i+1si

|gT
i si| , (21)

see [132]. Multiplying (20) by a vector gi+1 we can easily check a validity of (15). From
the practical point of view, formula (20) is less efficient than (14).
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Basic conjugate gradient methods can also be combined so that we choose

βi =
λ1

i g
T
i+1yi + λ2

i g
T
i+1gi+1

µ1
i y

T
i si + µ2

i g
T
i gi − µ3

i g
T
i si

=
gT

i+1(gi+1 − λ1
i gi)

µ1
i y

T
i si + µ2

i g
T
i gi − µ3

i g
T
i si

, (22)

where λ1
i , λ2

i , µ1
i , µ2

i , µ3
i are nonnegative numbers such that λ1

i +λ2
i = 1 and µ1

i +µ2
i +µ3

i = 1.
One possibility is the choice λ1

i = min(1, ‖gi+1‖/‖gi‖), see [117], [122], which leads to
modifications

βHSM
i =

gT
i+1ỹi

yT
i si

, βPRM
i =

gT
i+1ỹi

gT
i gi

, βLSM
i =

gT
i+1ỹi

|gT
i si| , (23)

where

ỹi = gi+1 −min

(
1,
‖gi+1‖
‖gi‖

)
gi. (24)

Effectiveness of conjugate gradient methods can be improved by suitable restarts. This
is performed so that we test fulfilling a prescribed condition after computation of a direction
vector. If this condition is not satisfied, then the computed direction vector is replaced
with a negative gradient (which corresponds to a choice βi = 0). It is very convenient
to test a uniform descent condition −gT

i+1si+1 ≥ ε0‖gi+1‖‖si+1‖, where ε0 > 0 is a small
number (e.g. ε0 = 10−8). Such a modified conjugate gradient method is globally convergent
without occurring restarts too often. If methods (11) are used, then it is suitable to test
a conjugation of direction vectors. In this case, we interrupt the iteration process if the
condition

yT
i si+1 ≤ η1‖si+1‖‖yi‖ (25)

does not hold, where the value η1 depends on the Wolfe conditions chosen. It is also
possible to test orthogonality of gradients. The iteration process is restarted if

gT
i gi+1 ≤ η2‖gi+1‖‖gi‖ (26)

does not hold, where the value η2 again depends on the Wolfe conditions chosen. If the
number of variables is sufficiently large, then it is worth interrupting the iteration process
after every n steps counted from the last restart.

3 Numerical experiments

We present a numerical comparison of conjugate gradient methods for minimization of 60
test functions taken from [76] with 1000 variables (NIT is a total number of iterations,
NFV is a total number of function evaluations, F is a total number of failures, and T is
a total computational time in seconds). The first table contains the results for methods
using strong Wolfe conditions (2)–(3) with ε1 = 10−4, ε2 = 10−1 and ε3 = 10−1; the value
η1 = 0.05 is used in condition (25). The second table contains the results for methods using
weak Wolfe conditions (2)–(3) with ε1 = 10−4, ε2 = 0.9 and ε3 = ∞; the value η1 = 0.2
is used in condition (25). The third table contains the results for methods using a special
line search described in [57].

From the data stated in Tables 1-3 we can deduce several conclusions:
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Method HS Method PR Method LS
Realization NIT NFV F T NIT NFV F T NIT NFV F T

(10) 139774 212632 - 49.26 174261 283226 2 58.61 168932 265329 2 53.94
(13) 119210 180182 - 40.63 161040 249186 2 55.91 147376 226064 2 46.45
(14) 124991 192584 - 45.04 135756 205897 - 45.66 135960 206329 - 46.86
(16) 139774 212632 - 49.17 141557 225649 - 50.20 142055 221960 - 47.20
(20) 138044 225193 - 50.52 146081 234783 - 52.39 145463 234396 - 52.22
(23) 135025 201969 - 44.91 170704 276052 2 55.48 172540 272644 2 58.91

Method DY Method FR Method CD
Realization NIT NFV F T NIT NFV F T NIT NFV F T

(11) 205447 267994 4 52.13 227498 321939 5 64.92 257187 346818 5 73.49
(14) 269027 367475 6 68.78 211859 277978 4 53.12 215700 282033 5 56.02
(16) 205447 267994 4 52.17 211783 278629 4 55.93 210948 272413 5 54.56

(11) + (25) 136535 218387 1 46.86 150147 234202 2 50.67 140509 222035 1 44.91
(14) + (25) 142833 228778 1 47.40 147208 221234 2 45.91 141765 221279 2 51.25
(16) + (25) 136535 218387 1 46.75 139604 223049 - 48.05 141318 217956 1 48.50

Table 1: The strong Wolfe conditions.

Method HS Method PR Method LS
Realization NIT NFV F T NIT NFV F T NIT NFV F T

(10) 278645 350503 2 65.84 239625 315005 1 49.40 254874 338751 1 56.36
(13) 309881 386999 3 77.77 275419 354945 2 60.77 318272 404547 4 73.03
(14) 298873 371150 3 74.45 249197 309460 1 59.55 267303 332440 1 60.00
(16) 278645 350503 2 66.50 99198 229502 - 47.72 300630 374527 3 71.94
(20) 419046 619145 6 116.39 303858 406525 3 75.53 303835 405806 3 71.49
(23) 313271 362428 4 77.94 264157 348745 1 63.61 285764 375206 3 66.36

Method DY Method FR Method CD
Realization NIT NFV F T NIT NFV F T NIT NFV F T

(11) 267710 272646 4 56.38 371666 451181 5 89.36 450286 509099 10 106.05
(14) 513154 588460 9 123.89 275391 280049 4 58.13 286283 291727 5 63.76
(16) 267710 272646 4 56.31 270054 274863 4 57.53 276589 281664 4 60.75

(11) + (25) 192988 206408 1 51.00 249538 302095 2 61.09 255854 301273 1 59.34
(14) + (25) 368022 439971 6 75.36 231142 245748 2 55.53 195636 209153 1 50.39
(16) + (25) 192988 206408 1 50.84 186556 199588 1 47.20 196423 210158 1 51.24

Table 2: The weak Wolfe conditions.
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Method HS Method PR Method LS
Realization NIT NFV F T NIT NFV F T NIT NFV F T

(10) 100585 300068 - 72.78 104260 308173 - 74.28 102661 307106 - 69.94
(13) 89728 268513 - 62.41 89847 268416 - 58.94 96601 289303 - 69.89
(14) 93631 282202 - 60.84 98031 293426 - 71.72 105638 315271 1 83.44
(16) 100614 300229 - 72.70 103395 308503 - 61.99 92335 276284 - 62.92
(20) 101023 300800 1 73.56 94165 280980 - 69.16 101486 301235 - 79.20
(23) 93373 277795 - 68.81 96783 288230 - 63.99 101383 303307 - 71.19

Method DY Method FR Method CD
Realization NIT NFV F T NIT NFV F T NIT NFV F T

(11) 163046 489494 5 96.78 165868 496121 5 98.31 177997 530560 4 107.88
(14) 169538 502837 2 122.53 162684 486854 4 94.77 161931 484030 4 92.84
(16) 163046 489494 5 96.88 162315 485926 5 92.76 165392 494846 4 99.43

(11) + (25) 108705 328674 1 81.20 96632 292572 1 58.92 135110 404208 1 83.34
(14) + (25) 119501 356686 2 88.36 105748 320766 1 74.63 108234 328114 1 83.95
(16) + (25) 109326 328889 1 81.29 109797 332741 1 81.97 108563 329042 1 78.84

Table 3: The special Hager–Zhang line search.

• It is advantageous to use the strong Wolfe conditions with ε2 = 10−1 (this value was
obtained experimentally) at a realization of conjugate gradient methods, particularly
methods HS, PR, LS, and their modifications.

• In case that we use the strong Wolfe conditions, method HS gives the best results.
Combination (13) or modifications (14) and (16) (particularly (14)) improve effec-
tiveness of methods HS, PR, LS. Modification (20) improves effectiveness of methods
PR and LS. Modification (23) slightly improves effectiveness of method HS.

• In case that we use the strong Wolfe conditions, methods DY, FR, CD give worse
results than methods HS, PR, LS. The properties of methods DY, FR, CD are con-
siderably improved if they are restarted each time condition (25) is not fulfilled. The
choice of a value η1 in (25) depends on the Wolfe conditions used (a suitable value
must be determine experimentally).

• In general, modifications (14) and (16) considerably improve effectiveness of methods
FR and CD. This observation is independent of a choice of the Wolfe conditions which
confirms a significance of Theorem 2. If we supplement the stated modifications
with conjugation test (25), then the resulting methods are competitive with the best
modifications of methods HS and PR. Modification (14) is unsuitable for method
DY.

• In case that we use the weak Wolfe conditions, method PR gives better results than
methods HS (particularly if we use modification (16)). Modifications (20) and (23)
are unsuitable.

• A special choice of a step-length described in [57] allows to find a more accurate
solution. Properties of individual methods and their modifications are in this case in
accord with the previous conclusions.
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[76] L.Lukšan, J.Vlček: Sparse and partially separable test problems for unconstrained and equal-
ity constrained optimization. Report V-767. Prague, ICS AS CR, 1998.

[77] A.Miele, J.W.Cantrell: Study on a memory gradient method for the minimization of func-
tions. J. Optimization Theory and Applications 3 (1969) 459-185.

[78] G.P.McCormick, K.Ritter: Alternative Proofs of the convergence properties of the conjugate-
gradient method. J. Optimization Theory and Applications 13 (1975) 497-518.

[79] M.F.McGuire, P.Wolfe: Evaluating a restart procedure for conjugate gradients. Report RC-
4382, IBM Research Center, Yorktown Heights, 1973.

13



[80] H.Mukai: Readily implementable conjugate gradient methods. Mathematical Programming
17 (1979) 298-319.

[81] Y.Narushima, H.Yabe: Global convergence of a memory gradient method for unconstrained
optimization. Computational Optimization and Applications 35 (2006) 325-346.

[82] J.L.Nazareth: A conjugate direction algorithm without line searches. J. Optimization Theory
and Applications 23 (1977) 373-387.

[83] J.L.Nazareth: A relationship between the BFGS and conjugate gradient algorithms and its
implications for the new algorithms. SIAM J. Numerical Analysis 16 (1979) 794-800.

[84] J.L.Nazareth: Conjugate gradient methods less dependent on conjugacy. SIAM Review 28
(1986) 501-511.

[85] J.L.Nazareth: A view of conjugate gradient-related algorithms for nonlinear optimization. In:
Proceedings of the AMS-IMS-SIAM Summer Research Conference on Linear and Nonlinear
Conjugate Gradient-Related Methods, University of Washington, Seattle, WA (July 9-13,
1995).

[86] J.L.Nazareth: Conjugate-gradient methods. IN: Encyclopedia of Optimization (C.Floudas,
P.Pardalos, eds.) Kluwer Academic Publishers, Boston, 1999.

[87] J.L.Nazareth, J.Nocedal: Properties of conjugate gradient methods with inexact line
searches. Systems Optimization Laboratory, Department of Operations Research, Stanford
Univarsity, Report No. SOL-78-1, 1978.

[88] A.Neumaier: On convergence and restart conditions for a nonlinear conjugate gradient
method. Preprint 1997.

[89] J.Nocedal: Updating quasi-Newton matrices with limited storage. Mathematics of Compu-
tation 35 (1980) 773-782.

[90] J.Nocedal: Theory of Algorithm for Unconstrained Optimization. Acta Numerica, Cam-
bridge University Press (1991) 199-242.

[91] J.Nocedal: Conjugate Gradient Methods and Nonlinear Optimization. In: Proceedings of the
AMS-IMS-SIAM Summer Research Conference on Linear and Nonlinear Conjugate gradient-
Related Methods, University of Washington, Seattle, WA (July 9-13, 1995).

[92] J.Nocedal: Large scale unconstrained optimization. In: State of the Art in Numerical Anal-
ysis (A. Watson, I. Du., eds.) Oxford University Press, (1997) 311-338.

[93] J.M.Perry: A class of conjugate gradient algorithms with a two-step variable-metric mem-
ory. Discussion Paper 269, Center for Mathematical Studies in Economics and Management
Sciences, Northwestern University, Evanston, Illinois, 1977.

[94] E.Polak, G.Ribière: Note sur la convergence de directions conjugeés. Rev. Francaise Infor-
mat. Recherche Opertionelle, 3e Annee 16 (1969) 35-43.

[95] B.T.Polyak: The conjugate gradient method in extreme problems. USSR Comp. Math. Math.
Phys. 9 (1969) 94-112.

14



[96] M.J.D.Powell: Some convergence properties of the conjugate gradient method. Mathematical
Programming 11 (1976) 42-49.

[97] M.J.D.Powell: Restart procedures of the conjugate gradient method. Mathematical Pro-
gramming 2 (1977) 241-254.

[98] M.J.D.Powell: Nonconvex minimization calculations and the conjugate gradient method. In:
Numerical Analysis (Dundee, 1983), Lecture Notes in Mathematics, Vol. 1066, Springer-
Verlag, Berlin, (1984) 122-141.

[99] M.J.D.Powell: Convergence properties of algorithms for nonlinear optimization. SIAM Re-
view 28 (1986) 487-500.

[100] R.Pytlak: On the convergence of conjugate gradient algorithm. IMA J. of Numerical Anal-
ysis 14 (1989) 443-460.

[101] R.Pytlak: Global convergence of the method of shortest residuals by Y.Dai and Y.Yuan.
Numerische Mathematik 91 (2002) 319-321.

[102] R.Pytlak, T.Tarnawski: Preconditioned conjugate gradient algorithms for nonconvex prob-
lems. Pacific Journal of Optimization 2 (2006) 81-104.

[103] S.Sanmayias, E.Vercher: A generalized conjugate gradient algorithm. J. Optimization The-
ory and Applications 98 (1998) 489-502.

[104] D.F.Shanno: On the convergence of a new conjugate gradient algorithm. SIAM J. Numerical
Analysis 15 (1978) 1247-1257.

[105] D.F.Shanno: Conjugate gradient methods with inexact searches. Math. Oper. Res. 3 (1978)
244-256.

[106] D.F.Shanno: Globally convergent conjugate gradient algorithms. Mathematical Program-
ming 33 (1985) 61-67.

[107] J.R.Shewchuk: An introduction to the conjugate gradient method without the agonizing
pain. See http://www.cs.cmu.edu/˜jrs/jrspapers.html, 1994.

[108] Z.Shi, J.Guo: A new family of conjugate gradient methods. J. of Computational and Applied
Mathematics 224 (2009) 444-457.

[109] Z.Shi, J.Shen: Convergence of Liu-Storey conjugate gradient method. European J. of Op-
erational Research 182 (2007) 552-560.

[110] J.Stoer: On the relation between quadratic termination and convergence properties of min-
imization algorithms. Numerische Mathematik 28 (1977) 343-366.

[111] J.Sun, J.Zhang: Global convergence of conjugate gradient methods without line search.
Ann. Oper. Res., 163 (2001) 161-173.

[112] C.Tang, Z Wei, G.Li: A new version of the Liu-Storey conjugate gradient method. Applied
Mathematics and Computation 189 (2007) 302-313.

15



[113] D.Touati-Ahmed and C. Storey: Efficient hybrid conjugate gradient techniques. J. Opti-
mization Theory and Applications 64 (1990) 379-397.

[114] C.Wang, S.Lian: Global convergence properties of two new dependent Fletcher-Reeves
conjugate gradient methods. Applied Mathematics and Computation 181 (2006) 920-931.

[115] C.Wang, Y.Zhang: Global convergence properties of s-related conjugate gradient methods.
Chinese Science Bulletin, 43 (1998) 1959-1965.

[116] Z.Wei, G.Li, L.Qi: New nonlinear conjugate gradient formulas for large-scale unconstrained
optimization problems Applied Mathematics and Computation 179 (2006) 407-430.

[117] Z.Wei, S.Yao, L.Liu: The convergence properties of some new conjugate gradient methods.
Applied Mathematics and Computation 183 (2006) 1341-1350.

[118] P.Wolfe: Convergence conditions for ascent methods. SIAM Review 11 (1969) 226-235.

[119] P.Wolfe: Convergence conditions for ascent methods II: Some corrections. SIAM Review,
13 (1971) 185-188.

[120] P.Wolfe: A method of conjugate subgradients for minimizing nondifferentiable functions.
Mathematical Programming Study 3 (1975) 145-173.

[121] H.Yabe, M.Takano: Global convergence properties of nonlinear conjugate gradient methods
with modified secant conditions. Computational Optimization and Applications 28 (2004)
203-225.

[122] S.Yao, Z.Wei, H.Huang: A note about WYL’s conjugate gradient method and its applica-
tions. Applied Mathematics and Computation 191 (2007) 381-388.

[123] G.Yu, Y.Zhao, Z.Wei: A descent nonlinear conjugate gradient method for large-scale un-
constrained optimization. Applied Mathematics and Computation 187 (2007) 636-643.

[124] Y.Yuan: Analysis on the conjugate gradient method. Optimization Methods and Software
2 (1993) 19-29.

[125] Y.Yuan: On the truncated conjugate gradient method. Mathematical Programming A-87
(2000) 561-573.

[126] Y.Yuan, J.Stoer: A subspace study on conjugate algorithms. Z. Angew. Math. Mech. 75
(1995) 69-77.

[127] L.Zhang: Two modified Dai-Yuan nonlinear conjugate gradient methods. Numerical Algo-
rithms (2009). To appear.

[128] J.Zhang, N.Deng, L.Chen: New quasi-Newton equation and related methods for uncon-
strained optimization. J. Optimization Theory and Applications 102 (1999) 147-167.

[129] J.Zhang, C.Xu: Properties and numerical performance of quasi-Newton methods with mod-
ified quasi-Newton equations. J. of Computational and Applied Mathematics 137 (2001)
269-278.

16



[130] L.Zhang, W.Zhou: Two descent hybrid conjugate gradient methods for optimization. J. of
Computational and Applied Mathematics 216 (2008) 251-264.

[131] L.Zhang, W.Zhou, D.Li: Global convergence of a modified Fletcher-Reeves conjugate gra-
dient method with Armijo-type line search. Numerische Mathematik 104 (2006) 561-572.

[132] L.Zhang, W.Zhou, D.Li: A descent modified Polak-Ribiere-Polyak conjugate gradient
method and its global convergence. IMA J. of Numerical Analysis 26 (2006) 629-640.

[133] G.Zoutendijk: Nonlinear Programming. Computational Methods. In: Integer and Nonlinear
Programming (J. Abadie, ed.), North-Holland, Amsterdam, 1970 37-86.

17


