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L.Lukšan, C. Matonoha, J. Vlček 1
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1 Introduction

Functions which we need to minimize are often nonsmooth since they contain absolute
values or point maxima of smooth functions. Typical examples are the norms ‖f(x)‖1

and ‖f(x)‖∞ of a smooth mapping f : Rn → Rm. Generalizations of these functions are
composite non-smooth functions of the form

F (x) = max
1≤i≤l

pT
i f(x), (1)

where pi ∈ Rm, 1 ≤ i ≤ l, and f : Rn → Rm is a smooth mapping (see [4]). In this
way we can express nonsmooth functions max1≤i≤m fi(x), ‖f(x)‖∞, ‖f+(x)‖∞, ‖f(x)‖1,
‖f+(x)‖1, where f+(x) = [max(f1(x), 0), . . . , max(fm(x), 0)]T , by a suitable choice of the
matrix P = [p1, . . . , pl].

In this contribution we focus our attention on a different class of structured non-smooth
functions, the so-called generalized minimax functions (see [16] and references therein)
defined by the following way.

Definition 1 We say that F (x) is a generalized minimax function if

F (x) = h(F1(x), . . . , Fm(x)), Fi(x) = max
1≤j≤ni

fij(x), 1 ≤ i ≤ m, (2)

where h : Rm → R and fij : Rn → R, 1 ≤ i ≤ m, 1 ≤ j ≤ ni, are smooth functions
satisfying the following assumptions.

Assumption 1. Functions Fi(x), 1 ≤ i ≤ m, are bounded from below on Rn: there are
F i ∈ R such that Fi(x) ≥ F i, 1 ≤ i ≤ m, for all x ∈ Rn.

Assumption 2. Function h(z) is twice continuously differentiable and convex satisfying

∂h(z)/∂zi ≥ hi > 0, 1 ≤ i ≤ m, (3)

for every z ∈ Z = {z ∈ Rm : zi ≥ F i, 1 ≤ i ≤ m} (vector z ∈ Rm will be called the
minimax vector).

Assumption 3. Functions fij(x), 1 ≤ i ≤ m, 1 ≤ j ≤ ni, are twice continuously
differentiable on the convex hull of the level set

L(F ) = {x ∈ Rn : Fi(x) ≤ F, 1 ≤ i ≤ m}
for a sufficiently large upper bound F and they have bounded the first and second-order
derivatives on convL(F ): there are g and G such that ‖∇fij(x)‖ ≤ g and ‖∇2fij(x)‖ ≤ G
for all 1 ≤ i ≤ m, 1 ≤ j ≤ ni and x ∈ convL(F ).

Sometimes, we use the following stronger assumption instead of Assumption 1.

Assumption 4. Functions fij(x), 1 ≤ i ≤ m, 1 ≤ j ≤ ni, are bounded from below on Rn:
there is F ∈ R such that fij(x) ≥ F , 1 ≤ i ≤ m, 1 ≤ j ≤ ni, for all x ∈ Rn. Note that
Assumption 4 implies Assumption 1.

1



Conditions put on the function h(z) are relatively strong, but many functions satisfy
them, e.g., the sum of maxima

h(z) =
m∑

i=1

zi.

It is clear that we can express all the nonsmooth functions mentioned above in this way.
Since |fi(x)| = max(fi(x),−fi(x)), function (2) covers the case when

F (x) = h(|f1(x)|, . . . , |fm(x)|).

The expression of functions ‖f(x)‖1, ‖f+(x)‖1 by (2) is much easier in comparison with
(1), since the matrix P contains 2m columns in these cases.

Unconstrained minimization of function (2) is equivalent to the nonlinear programming
problem: Minimize the function

h(z1, . . . , zm) (4)

with constraints
fij(x) ≤ zi, 1 ≤ i ≤ m, 1 ≤ j ≤ ni (5)

(conditions ∂h(z)/∂zi ≥ hi > 0, 1 ≤ i ≤ m, for z ∈ Z are sufficient for satisfying equalities
zi = Fi(x), 1 ≤ i ≤ m, at the minimum point). The necessary first-order (KKT) conditions
for a solution of (4)-(5) have the form

m∑

i=1

ni∑

j=1

uij∇fij(x) = 0,
ni∑

j=1

uij =
∂h(z)

∂zi

, 1 ≤ i ≤ m, (6)

uij ≥ 0, zi − fij(x) ≥ 0, uij(zi − fij(x)) = 0, 1 ≤ i ≤ m, 1 ≤ j ≤ ni, (7)

where uij, 1 ≤ i ≤ m, 1 ≤ j ≤ ni, are Lagrange multipliers.
Nonlinear programming problem (4)-(5) can be solved by using the primal interior point

method. For this reason we apply the Newton minimization method to the barrier function

Bµ(x, z) = h(z) + µ
m∑

i=1

ni∑

j=1

ϕ(zi − fij(x)), 0 < µ ≤ µ, (8)

assuming µ → 0, where ϕ : (0,∞) → R is a barrier which satisfies the following condition.

Condition 1. ϕ(t), t ∈ (0,∞), is a twice continuously differentiable function such that ϕ(t)
is decreasing, strictly convex, with limt→0 ϕ(t) = ∞, ϕ′(t) is increasing, strictly concave,
with limt→∞ ϕ′(t) = 0, and tϕ′(t) is bounded.

The following additional condition is useful for studying the global convergence.

Condition 2. ϕ(t), t ∈ (0,∞), is bounded from below: there is ϕ ≤ 0 such that ϕ(t) ≥ ϕ
for all t ∈ (0,∞) (the non-positive value ϕ ≤ 0 was chosen to simplify proofs in Section 5
and Section 6).

The most known and frequently used logarithmic barrier ϕ(t) = log t−1 = − log t satis-
fies Condition 1, but does not satisfy Condition 2, since log t → ∞ as t → ∞. Therefore,
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additional barriers have been studied (see [11] and references therein). As examples, we
can introduce function

ϕ(t) = log(t−1 + 1), t ∈ (0,∞), (9)

which is positive (ϕ = 0), or function

ϕ(t) = − log t, 0 < t ≤ 1, (10)

ϕ(t) = −(t−1 − 4 t−1/2 + 3), t > 1, (11)

which is bounded from below (ϕ = −3). Both functions satisfy Condition 1 and Condi-
tion 2. Note that (8) implies

Bµ(x, z) ≥ h(z) + m µϕ, m =
m∑

i=1

ni, (12)

if Condition 2 holds.
A primal interior point method is based on the fact that it is easy to find a vector

z ∈ Rm satisfying constraints (5). Hence, it is not necessary to introduce slack variables,
add equality constraints, use a penalty function and iterate the Lagrangian multipliers. In
the subsequent sections, we describe two approaches which differ in the determination of
the minimax vector z ∈ Rm and the Algorithm which implements the second approach.
We use the notation

Aij(x) = ∇fij(x), Gij(x) = ∇2fij(x),

for 1 ≤ i ≤ m, 1 ≤ j ≤ ni, and focus our attention on the problems whose structure allows
us to use the sparse matrix technique.

The paper is organized as follows. In Section 2, we derive basic equations of the Newton
method applied to the nonlinear KKT system of the interior point subproblem. Section 3
contains a description of the primal interior-point method (i.e. interior point method that
uses explicitly computed approximations of Lagrange multipliers instead of their updates).
In Section 4, we introduce the basic algorithm and give more details concerning its im-
plementation covering numerical differentiation, variable metric updates, and a barrier
parameter decrease. In Section 5 and Section 6, we study theoretical properties of the pri-
mal interior-point method. Using standard weak assumptions, we prove that this method
is globally convergent if a bounded barrier is used. Then, using stronger assumptions, we
prove that it is globally convergent also for the logarithmic barrier. Finally, in Section 7
we present results of computational experiments confirming the efficiency of the primal
interior point method for special cases of generalized minimax problems.

2 Iterative determination of the minimax vector

The necessary conditions for (x, z) to be a minimum of function (8) have the form

∇xBµ(x, z) = −µ
m∑

i=1

ni∑

j=1

Aij(x)ϕ′(zi − fij(x)) = 0 (13)
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and
∂Bµ(x, z)

∂zi

= hi(z) + µ
ni∑

j=1

ϕ′(zi − fij(x)) = 0, 1 ≤ i ≤ m, (14)

where hi(z) = ∂h(z)/∂zi, 1 ≤ i ≤ m. For solving this system of n + m nonlinear equations
we can use the Newton method whose iteration step can be written in the form




W (x, z) −A1(x)v1(x, z) . . . −Am(x)vm(x, z)
−vT

1 (x, z)AT
1 (x) h11(z) + eT

1 v1(x, z) . . . h1m(z)
. . . . . . . . . . . .

−vT
m(x, z)AT

m(x) hm1(z) . . . hmm(z) + eT
mvm(x, z)







∆x
∆z1

. . .
∆zm




= −




∑m
i=1 Ai(x)ui(x, z)

h1(z)− eT
1 u1(x, z)

. . .
hm(z)− eT

mum(x, z)


 , (15)

where

W (x, z) =
m∑

i=1

ni∑

j=1

Gij(x)uij(x, z) +
m∑

i=1

ni∑

j=1

Aij(x)vij(x, z)AT
ij(x)

=
m∑

i=1

ni∑

j=1

Gij(x)uij(x, z) +
m∑

i=1

Ai(x)Vi(x, z)AT
i (x),

uij(x, z) = −µϕ′(zi − fij(x)), vij(x, z) = µϕ′′(zi − fij(x)), hij(z) =
∂2h(z)

∂zi∂zj

,

(note that uij(x, z) > 0, vij(x, z) > 0 by Condition 1) for 1 ≤ i ≤ m, 1 ≤ j ≤ ni, and
where Ai(x) = [Ai1(x), . . . , Aini

(x)], Vi(x, z) = diag(vi1(x, z), . . . , vini
(x, z)),

ui(x, z) =




ui1(x, z)
. . .

uini
(x, z)


 , vi(x, z) =




vi1(x, z)
. . .

vini
(x, z)


 , ei =




1
. . .
1


 ,

for 1 ≤ i ≤ m. This formula can be easily verified by the differentiation of (13) and (14)
by x and z. Setting

C(x, z) = [A1(x)v1(x, z), . . . , Am(x)vm(x, z)], g(x, z) =
m∑

i=1

Ai(x)ui(x, z),

∆z =




∆z1

. . .
∆zm


 , c(x, z) =




h1(z)− eT
1 u1(x, z)

. . .
hm(z)− eT

mum(x, z)


 ,

H(z) = ∇2h(z), V (x, z) = diag(eT
1 v1(x, z), . . . , eT

mvm(x, z)),

we can rewrite equation (15) in the form
[

W (x, z) −C(x, z)
−CT (x, z) H(z) + V (x, z)

] [
∆x
∆z

]
= −

[
g(x, z)
c(x, z)

]
. (16)
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Now let us have a large-scale (the number of variables n is large), but partially separable
(the functions fij(x), 1 ≤ i ≤ m, 1 ≤ j ≤ ni, depend on a small number of variables)
problem. Then we can assume that the matrix W (x, z) is sparse and it can be efficiently
decomposed. Two cases will be investigated.

First, if m is small (for example in the minimax problems, where m = 1), we use the
fact that [

W −C
−CT H + V

]−1

=

[
W−1 −W−1C(CT W−1C −H − V )−1CT W−1 −W−1C(CT W−1C −H − V )−1

−(CT W−1C −H − V )−1CT W−1 −(CT W−1C −H − V )−1

]

(we assume that W is nonsingular, since it can be slightly perturbed if it is singular). The
solution is determined from the formulas

∆z = (CT W−1C −H − V )−1(CT W−1g + c), (17)

∆x = W−1(C∆z − g). (18)

In this case we need to decompose the large sparse matrix W of order n and the small
dense matrix CT W−1C −H − V of order m.

In the second case we assume that the numbers ni, 1 ≤ i ≤ m, are small and the matrix
H(z) is diagonal (as in the sums of absolute values) so the matrix

W (x, z)− C(x, z)D−1(x, z)CT (x, z), D(x, z) = H(z) + V (x, z),

is sparse (matrix D is positive definite, since H(z) is positive semidefinite by Assumption 2
and diagonal matrix V (x, z) has positive diagonal elements). Then we can use the fact
that [

W −C
−CT D

]−1

=

[
(W − CD−1CT )−1 (W − CD−1CT )−1CD−1

D−1CT (W − CD−1CT )−1 D−1 + D−1CT (W − CD−1CT )−1CD−1

]
.

The solution is determined from the formulas

∆x = −(W − CD−1CT )−1(g + CD−1c), (19)

∆z = D−1(CT ∆x− c). (20)

In this case we need to decompose the large sparse matrix W − CD−1CT of order n. The
inversion of the diagonal matrix D of order m is trivial.

In every step of the primal interior point method with the iterative determination of
the minimax vector we know the value of the parameter µ and the vectors x ∈ Rn, z ∈ Rm

such that zi > Fi(x), 1 ≤ i ≤ m. Using (17)–(18) or (19)–(20), we determine direction
vectors ∆x, ∆z and select a step-size α in such a way that

Bµ(x + α∆x, z + α∆z) < Bµ(x, z) (21)
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and zi + α∆zi > Fi(x + α∆x), 1 ≤ i ≤ m. Finally, we set x+ = x + α∆x, z+ = z + α∆z
and determine a new value µ+ < µ.

Inequality (21) is satisfied for sufficiently small values of the step-size α, if the matrix
of system (16) is positive definite.

Theorem 1 Let the matrix G =
∑m

i=1

∑ni
j=1 Gij(x)uij(x, z) be positive definite. Then the

matrix of system (16) is positive definite.

Proof. The matrix of equation (16) is positive definite if and only if the matrix D = H+V
as well as its Schur complement W −CD−1CT are both positive definite. The matrix D =
H+V is positive definite since H is positive semidefinite and V is positive definite. Now we
use the fact that the matrix V −1−D−1 is positive semidefinite, since the matrix H = D−V
is positive semidefinite (see [10]). Thus vT (W −CD−1CT )v ≥ vT (W −CV −1CT )v ∀v ∈ Rn

so it suffices to prove that the matrix W − CV −1CT is positive definite. But

W − CV −1CT = G +
m∑

i=1

(
AiViA

T
i − AiViei(e

T
i Viei)

−1(AiViei)
T
)
,

the matrices AiViA
T
i − AiViei(e

T
i Viei)

−1(AiViei)
T , 1 ≤ i ≤ m, are positive semidefinite by

the Schwarz inequality and the matrix G is positive definite by assumption. 2

3 Direct determination of the minimax vector

Minimization of the barrier function can be considered as the two-level optimization

z(x; µ) = arg min
z∈Rm

Bµ(x, z), (22)

x∗ = arg min
x∈Rn

B(x; µ), B(x; µ)
∆
= Bµ(x, z(x; µ)). (23)

Equation (22) serves for the determination of the optimal vector z(x; µ) ∈ Rm correspond-
ing to a given vector x ∈ Rn. Assuming x fixed, function Bµ(x, z) is strictly convex (as a
function of vector z), since it is a sum of convex function h(z) and strictly convex functions
µϕ(zi− fij(x)), 1 ≤ i ≤ m, 1 ≤ j ≤ ni. As a stationary point, its minimum is the solution
of the set of equations (14). We prove existence and uniqueness of this solution for the
logarithmic barrier, for which ϕ′(t) = −1/t.

Theorem 2 The system of equations

hi(z)−
ni∑

j=1

µ

zi − fij(x)
= 0, hi(z) =

∂h(z)

∂zi

, 1 ≤ i ≤ m, (24)

with x ∈ Rn fixed, has the unique solution z(x; µ) ∈ Z ⊂ Rm such that

Fi(x) < zi ≤ zi(x; µ) ≤ zi, 1 ≤ i ≤ m, (25)

with
zi = Fi(x) + µ/hi, zi = Fi(x) + niµ/hi,

where hi > 0 are bounds used in (3) and hi = hi(z1, . . . , zm).

6



Proof. Let zi = Fi(x) + niµ/hi, hi = hi(z1, . . . , zm), zi = Fi(x) + µ/hi for 1 ≤ i ≤ m. If
(24) holds, then

hi −
niµ

zi − Fi(x)
≤ 0 ⇒ zi − Fi(x) ≤ niµ/hi

and
hi − µ

zi − Fi(x)
≥ 0 ⇒ zi − Fi(x) ≥ µ/hi,

which proves (25). Choosing an arbitrary (sufficiently small) number ε > 0, the function
Bµ(x, z) attains its minimum on the compact set

Zε(x; µ) = {z ∈ Rm : zi − εµ/hi ≤ zi ≤ zi + εniµ/hi, 1 ≤ i ≤ m} ⊂ int Z,

since it is continuous on int Z. Now we will show that this minimum cannot lie on the
boundary of Zε(x; µ). It is clear that for every point of this boundary there is at least
one index 1 ≤ i ≤ m such that either zi = zi − εµ/hi or zi = zi + εniµ/hi holds. If
zi = zi − εµ/hi, then

∂Bµ(x, z)

∂zi

= hi(z)−
ni∑

j=1

µ

zi − fij(x)
≤ hi − µ

zi − εµ/hi − Fi(x)

= hi − µ

(1− ε)µ/hi

= − εhi

1− ε
< 0,

so a small increase of the variable zi can decrease the function value of Bµ(x, z). If zi =
zi + εniµ/hi, then

∂Bµ(x, z)

∂zi

= hi(z)−
ni∑

j=1

µ

zi − fij(x)
≥ hi −

niµ

zi + εniµ/hi − Fi(x)

= hi −
niµ

(1 + ε)niµ/hi

=
εhi

1 + ε
> 0,

so a small decrease of the variable zi can decrease the function value of Bµ(x, z). The
above considerations imply that the minimum of the function Bµ(x, z) is an interior point
of the set Zε(x; µ) and since Bµ(x, z) is continuously differentiable on Zε(x; µ), necessary
conditions (24) have to be satisfied. Since the number ε > 0 can be chosen arbitrarily, the
solution satisfies inequalities Fi(x) < zi ≤ zi(x; µ) ≤ zi, 1 ≤ i ≤ m. The uniqueness of this
solution follows from the strict convexity of Bµ(x, z). 2

Similar results can be obtained for other barriers as well. Using barrier (9), we get
equations

hi(z)−
ni∑

j=1

µ

(zi − fij(x))(zi − fij(x) + 1)
= 0, 1 ≤ i ≤ m,

and inequalities of the form (25) with bounds

zi = Fi(x) +
2µ/hi

1 +
√

1 + 4µ/hi

, zi = Fi(x) +
2niµ/hi

1 +
√

1 + 4niµ/hi

,
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see [11] (where also a bounded barrier similar as (10)–(11) is investigated).
System of equations (14) can be solved by the Newton method started, e.g., from the

point z such that zi = zi, 1 ≤ i ≤ m. If the Hessian matrix of the function h(z) is diagonal,
then system (14) is decomposed on m scalar equations, which can be efficiently solved, e.g.
by methods described in [7], [8] (see [11]).

If we are able to find a solution of system (14) for an arbitrary vector x ∈ Rn, we
can restrict our attention to the unconstrained minimization of the function B(x; µ) =
Bµ(x, z(x; µ)), which has n variables. It is suitable to know the gradient and the Hessian
matrix of this function.

Theorem 3 One has

∇B(x; µ) =
m∑

i=1

Ai(x)ui(x; µ) = A(x)u(x; µ), (26)

where A(x) = [A1(x), . . . , Am(x)], u(x; µ) = [uT
1 (x; µ), . . . , uT

m(x; µ)]T , and also

∇2B(x; µ) = W (x; µ)− C(x; µ) (H(z(x; µ)) + V (x; µ))−1 CT (x; µ), (27)

where W (x; µ) = W (x, z(x; µ)), C(x; µ) = C(x, z(x; µ)), V (x; µ) = V (x, z(x; µ)), and
ui(x; µ) = ui(x, z(x; µ)), 1 ≤ i ≤ m (see the previous section). If the matrix H(z(x; µ)) is
diagonal, we can express (27) in the form

∇2B(x; µ) = G(x; µ) +
m∑

i=1

Ai(x)Vi(x; µ)AT
i (x)

−
m∑

i=1

Ai(x)Vi(x; µ)eie
T
i Vi(x; µ)AT

i (x)

∂2h(z(x; µ))/∂z2
i + eT

i Vi(x; µ)ei

, (28)

where G(x; µ) = G(x, z(x; µ)) and Vi(x; µ) = Vi(x, z(x; µ)), 1 ≤ i ≤ m (see the previous
section).

Proof. Differentiating function

B(x; µ) = h(z(x; µ)) + µ
m∑

i=1

ni∑

j=1

ϕ(zi(x; µ)− fij(x)), (29)

we obtain

∇B(x; µ) =
m∑

i=1

∂h(z(x; µ))

∂zi

∂zi(x; µ)

∂x
−

m∑

i=1

ni∑

j=1

uij(x; µ)

(
∂zi(x; µ)

∂x
− ∂fij(x)

∂x

)

=
m∑

i=1

∂zi(x; µ)

∂x


∂h(z(x; µ))

∂zi

−
ni∑

j=1

uij(x; µ)


 +

m∑

i=1

ni∑

j=1

∂fij(x)

∂x
uij(x; µ)

=
m∑

i=1

ni∑

j=1

Aij(x)uij(x; µ) =
m∑

i=1

Ai(x)ui(x; µ)
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by (14), where

uij(x; µ) = −µϕ′(zi(x; µ)− fij(x)), 1 ≤ i ≤ m, 1 ≤ j ≤ ni. (30)

Formula (27) can be derived by an additional differentiation of relations (14) and (26) using
(30). A simpler way is based on the use of formula (19). Since (14) implies c(x, z(x; µ)) = 0,
we can substitute c = 0 into (19) to obtain the relation

∆x = −
(
W (x, z)− C(x, z) (H(z) + V (x, z))−1 CT (x, z)

)−1
g(x, z)

with z = z(x; µ), which confirms a validity of formula (27) (more details are given in [11]).
2

To determine the Hessian matrix inverse, we can use relations (17)–(18) which, after
substitution c(x, z(x; µ)) = 0, give

(∇2B(x; µ))−1 = W−1(x; µ)−W−1(x; µ)C(x; µ)
(
CT (x; µ)W−1(x; µ)C(x; µ)−H(z(x; µ))− V (x; µ)

)−1

CT (x; µ)W−1(x; µ). (31)

If system (14) is not solved with a sufficient precision, we use (19)–(20) rather than (27)
and (17)–(18) rather than (31), where the actual vector c(x, z(x; µ)) 6= 0 is substituted.

In every step of the primal interior point method with the direct determination of the
minimax vector we know the value of the parameter µ and the vector x ∈ Rn. Solving
system (14) we determine the vector z(x; µ), using Hessian matrix (27) or its inverse (31)
we determine a direction vector ∆x and select a step-size α in such a way that

Bµ(x + α∆x, z(x + α∆x; µ)) < Bµ(x, z(x; µ)) (32)

(the vector z(x+α∆x; µ) is obtained as a solution of system (14), in which x is replaced by
x + α∆x). Finally, we set x+ = x + α∆x and determine a new value µ+ < µ. Conditions
for the direction vector ∆x to be descent are the same as in Theorem 1. It suffices when
the matrix G(x; µ) is positive definite.

4 Implementation

In this section, we restrict our attention on the direct determination of the minimax vector.
There are two possibilities, the line search implementation or the trust-region implementa-
tion. The first one was used in [11] for large-scale minimax optimization and the second one
in [12] for large-scale l1 optimization. These papers contain all necessary details concerning
both implementations. Here we briefly describe the line search implementation realized by
the following algorithm, in which the direction vector d = ∆x is modified in such a way
that

−gT d ≥ ε0‖g‖‖d‖, c‖g‖ ≤ ‖d‖ ≤ c‖g‖, (33)
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where g = A(x)u(x; µ) and ε0, c, c are suitable constants.

Algorithm 1.

Data: Termination parameter ε > 0, precision for the nonlinear equation solver
δ > 0, bounds for the barrier parameter 0 < µ < µ, rate of the barrier
parameter decrease 0 < λ < 1, restart parameters 0 < c < c and ε0 > 0,
line search parameter ε1 > 0, rate of the step-size decrease 0 < β < 1, step
bound ∆ > 0, way of direction determination D (D = 1 or D = 2).

Input: Sparsity pattern of matrix A(x). Initial estimation of vector x.

Step 1: Initiation. Set µ = µ. If D = 1, determine the sparsity pattern of matrix
W = W (x; µ) from the sparsity pattern of matrix A(x) and carry out a
symbolic decomposition of W . If D = 2, determine the sparsity pattern of
matrices W = W (x; µ) and C = C(x; µ) from the sparsity pattern of matrix
A(x) and carry out a symbolic decomposition of matrix W − CD−1CT .
Compute values fij(x), 1 ≤ i ≤ m, 1 ≤ j ≤ ni, Fi(x) = max1≤j≤ni

fij(x),
1 ≤ i ≤ m, and F (x) = h(F1(x), . . . , Fm(x)). Set k := 0 (iteration count)
and r := 0 (restart indicator).

Step 2: Termination. Solve nonlinear equations (14) with precision δ to obtain
vectors z(x; µ) and u(x; µ). Compute matrix A := A(x) and vector
g := g(x; µ) = A(x)u(x; µ). If µ ≤ µ and ‖g‖ ≤ ε, then terminate the
computation. Otherwise set k := k + 1.

Step 3: Approximation of the Hessian matrix. Set G = G(x; µ) or compute an
approximation G of the Hessian matrix G(x; µ) by using either gradient
differences or variable metric updates (more details are given below).

Step 4: Direction determination. If D = 1, determine vector d = ∆x from (17)-(18)
by using the Gill-Murray decomposition of matrix W . If D = 2, determine
vector d = ∆x from (19)-(20) by using the Gill-Murray decomposition of
matrix W − CD−1CT .

Step 5: Restart. If r = 0 and (33) does not hold, select a positive definite diagonal
matrix D̃, set G = D̃, r := 1 and go to Step 4 (more details are given in
[11]). If r = 1 and (33) does not hold, set d := −g (the steepest descent
direction). Set r := 0.

Step 6: Step-length selection. Define the maximum step-length α = min(1, ∆/‖d‖).
Find a minimum integer l ≥ 0 such that B(x+βlαd; µ) ≤ B(x; µ)+ε1β

lαgT d
(note that nonlinear equations (14) has to be solved at all points x + βjαd,
0 ≤ j ≤ l). Set x := x+βlαd. Compute values fij(x), 1 ≤ i ≤ m, 1 ≤ j ≤ ni,
Fi(x) = max1≤j≤ni

fij(x), 1 ≤ i ≤ m, and F (x) = h(F1(x), . . . , Fm(x)).

Step 7: Barrier parameter update. Determine a new value of the barrier parameter
µ ≥ µ (not greater than the current one) by one of the procedures described
below. Go to Step 2.
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In Step 3 of Algorithm 1 we assume that G = G(x; µ), where G(x; µ) is either given
analytically or determined by using automatic differentiation, see [5]. In practical com-
putations, G is frequently an approximation of G(x; µ) obtained by using either gradient
differences or variable metric updates. In the first case, G is computed by differences
A(x + δwj)u(x; µ) − A(x)u(x; µ) for a suitable set of vectors wj, j = 1, 2, . . . , n, where
n ¿ n if G is sparse. Determination of vectors wj, j = 1, 2, . . . , n, is equivalent to a graph
coloring problem, see [3]. The corresponding code is proposed in [2]. In the second case,
G is defined by the expression

G =
m∑

i=1

ni∑

j=1

uij(x; µ)Gij, (34)

where approximations Gij of ∇2fij(x) are computed by using variable metric updates
described in [6]. In our implementation we use safeguarded scaled BFGS updates. Let
Rn

ij ⊂ Rn, 1 ≤ i ≤ m, 1 ≤ j ≤ ni, be subspaces defined by independent variables of
functions fij and Zij be matrices whose columns form canonical orthonormal bases in these
subspaces (they are columns of the unit matrix of order n). Then we can define reduced
approximations of the Hessian matrices G̃ij = ZT

ijGijZij, 1 ≤ i ≤ m, 1 ≤ j ≤ ni. New
reduced approximations of the Hessian matrices, used in the next iteration, are computed
by the formulas

G̃+
ij =

1

γ̃ij


G̃ij −

G̃ij s̃ij s̃
T
ijG̃ij

s̃T
ijG̃ij s̃ij


 +

ỹij ỹ
T
ij

s̃T
ij ỹij

, s̃T
ij ỹij > 0,

G̃+
ij = G̃ij, s̃T

ij ỹij ≤ 0,

where

s̃ij = ZT
ij(x

+ − x), ỹij = ZT
ij(∇fij(x

+)−∇fij(x)), 1 ≤ i ≤ m, 1 ≤ j ≤ ni,

and where either γ̃ij = 1 or γ̃ij = s̃T
ijG̃ij s̃ij/s̃

T
ij ỹij (we denote by + quantities from the next

iteration). The particular choice of γ̃ij is determined by the controlled scaling strategy
described in [13]. In the first iteration we set G̃ij = Iij, where Iij are unit matrices of
suitable orders. Finally, G+

ij = ZijG̃
+
ijZ

T
ij , 1 ≤ i ≤ m, 1 ≤ j ≤ ni.

Restart in Step 5 of Algorithm 1 assures that the direction vectors are uniformly descent
and gradient-related ((33) holds). If Assumptions 1–3 are satisfied, then the Armijo line
search (Step 6 of Algorithm 1) guarantees that a constant c exists such that

B(xk+1; µk)−B(xk; µk) ≤ −c‖g(xk; µk)‖2 ∀k ∈ N, (35)

see [4] (note that g(xk; µk) = ∇B(xk; µk) by Theorem 3). If only Assumptions 1–2 hold,
the Armijo line search implies weaker inequality

B(xk+1; µk)−B(xk; µk) ≤ 0 ∀k ∈ N. (36)

Restarts are sometimes used when Gk = G(xk; µk), since Gk can be indefinite in this case.
If Gk is determined using partitioned variable metric (safeguarded BFGS) updates, then
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Gk is positive definite and restarts are unnecessary. More details concerning restarts are
given in [11].

A very important part of Algorithm 1 is the barrier parameter update. There are two
requirements, which play opposite roles. First, µ → 0 should hold, since this is the main
property of every interior-point method. On the other hand, round-off errors can cause that
zi(x; µ) = Fi(x) when µ is too small (since Fi(x) < zi(x; µ) ≤ zi(x; µ) and zi(x; µ) → Fi(x)
as µ → 0 for all barriers mentioned in Section 1), which leads to a breakdown (division by
zi(x; µ)− Fi(x) = 0 in computation of ϕ′(zi(x; µ)− Fi(x))). Thus a lower bound µ for the
barrier parameter has to be used (we recommend the value µ = 10−10 in a double precision
arithmetic).

Algorithm 1 is also sensitive to the way in which the barrier parameter decreases.
Denoting by sij(x; µ) = zi(x; µ) − fij(x), 1 ≤ i ≤ m, 1 ≤ j ≤ ni, slack variables, we
can see from (30) that uij(x; µ)sij(x; µ) = µ, 1 ≤ i ≤ m, 1 ≤ j ≤ ni, if the logarithmic
barrier is used. In this case, interior-point methods assume that µ decreases linearly (see
[17]). We have tested various possibilities for the barrier parameter update including simple
geometric sequences, which proved to be unsuitable. Better results were obtained by the
following two procedures, where g(xk; µk) = A(xk)u(xk; µk) and g is a suitable constant.

Procedure A.

Phase 1: If ‖g(xk; µk)‖ ≥ g, we set µk+1 = µk, i.e., the barrier parameter is not
changed.

Phase 2: If ‖g(xk; µk)‖ < g, we set

µk+1 = max
(
µ̃k+1, µ, 10 εM |F (xk+1)|

)
, (37)

where F (xk+1) = h (F1(xk+1), . . . , Fm(xk+1)), εM is the machine precision,
and

µ̃k+1 = min
[
max(λµk, µk/(σµk + 1)), max(‖g(xk; µk)‖2, 10−2k)

]
. (38)

The values µ = 10−10, λ = 0.85, and σ = 100 are chosen as defaults.

Procedure B.

Phase 1: If ‖g(xk; µk)‖2 ≥ ρµk, we set µk+1 = µk, i.e., the barrier parameter is not
changed.

Phase 2: If ‖g(xk; µk)‖2 < ρµk, we set

µk+1 = max(µ, ‖gk(xk; µk)‖2). (39)

The values µ = 10−10 and ρ = 0.1 are chosen as defaults.

The choice of g in Procedure A is not critical. We can set g = ∞ but a lower value is
sometimes more suitable. Formula (38) requires several notes. The first argument of the
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minimum controls the rate of the barrier parameter decrease, which is linear (geometric
sequence) for small k (term λµk) and sublinear (harmonic sequence) for large k (term
µk/(σµk+1)). Thus the second argument, which assures that µ is small in the neighborhood
of the solution, plays an essential role for large k. Term 10−2k assures that µ = µ does not
hold for small k. This situation can arise when ‖g(xk; µk)‖ is small, even if xk is far from
the solution. The idea of Procedure B follows from the requirement that B(x; µ) should
be sufficiently minimized for a current value of µ. Thus the parameter µk is changed only
if ‖g(xk; µk)‖ is sufficiently small.

5 Global convergence for bounded barriers

In this section, we first assume that function ϕ(t) is bounded from below, δ = ε = µ = 0
and all computations are exact. We will investigate an infinite sequence {xk}∞1 generated
by Algorithm 1.

Lemma 1 Let Assumption 1, Assumption 2, Condition 1, Condition 2 be satisfied. Let
{xk}∞1 and {µk}∞1 be sequences generated by Algorithm 1. Then sequences {B(xk; µk)}∞1 ,
{z(xk; µk)}∞1 , and {F (xk)}∞1 are bounded. Moreover, there is L ≥ 0 such that

B(xk+1; µk+1) ≤ B(xk+1; µk) + L(µk − µk+1) ∀k ∈ N. (40)

Proof. (a) Since function ϕ(t) is bounded from below, Assumption 1, Assumption 2,
Condition 2 and (12) imply that

B(x; µ) ≥ h(z(x; µ)) + m µϕ ≥ h(F 1, . . . , Fm) + mµ ϕ
∆
= B.

Furthermore, using (25), we obtain zi ≥ Fi(x) ≥ F i, 1 ≤ i ≤ m, and the boundedness from
below is proved.

(b) Differentiating function (29) and using (14) one has

∂B(x; µ)

∂µ
=

m∑

i=1

∂h(z(x; µ))

∂zi

∂zi(x; µ)

∂µ
+ µ

m∑

i=1

ni∑

j=1

ϕ′(zi(x; µ)− fij(x))
∂zi(x; µ)

∂µ

+
m∑

i=1

ni∑

j=1

ϕ (zi(x; µ)− fij(x)) =
m∑

i=1

ni∑

j=1

ϕ (zi(x; µ)− fij(x)) ≥ mϕ.

(c) Using the mean value theorem and (b), we obtain

B(xk+1; µk+1)−B(xk+1; µk) =
m∑

i=1

ni∑

j=1

ϕ (zi(xk+1; µ̃k)− fij(x)) (µk+1 − µk)

≤ mϕ (µk+1 − µk)
∆
= L(µk − µk+1)

which together with (36) gives B(xk+1; µk+1) ≤ B(xk; µk) + L(µk − µk+1) ∀k ∈ N . Thus

B(xk; µk) ≤ B(x1; µ1) + L(µ1 − µk) ≤ B(x1; µ1) + Lµ1
∆
= B ∀k ∈ N.
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Furthermore, using (12), Assumption 2, Condition 2 and (a), one has

B ≥ B(xk; µk) ≥ h(z(xk; µk)) + mµ ϕ ≥ B +
m∑

i=1

hi(zi(xk; µk)− F i)

≥ B + hi(zi(xk; µk)− F i), 1 ≤ i ≤ m,

which gives Fi(xk) ≤ zi(xk; µk) ≤ (B − B)/hi + F i for 1 ≤ i ≤ m and k ∈ N . Thus the
boundedness from above is proved. 2

The assertion of Lemma 1 does not depend on bounds g and G, since we do not
use Assumption 3. Thus an upper bound F (independent of g and G) exists such that
F (xk) ≤ F for all k ∈ N . This bound can be used for the definition of the level set in
Assumption 3.

Lemma 2 Let assumptions of Lemma 1 and Assumption 3 be satisfied. Then the values
{µk}∞1 , generated by Algorithm 1, form a non-increasing sequence such that µk → 0.

Proof. In Phase 1, the value of µ is fixed. Since the function B(x; µ) is continuous,
bounded from below by Lemma 1, and since (35) (with µk = µ) holds, it can be proved
(see [4]) that ‖g(xk; µ)‖ → 0 if Phase 1 contains an infinite number of consecutive steps.
Thus a step (with index l) belonging to Phase 1 exists such that either ‖g(xl; µ)‖ < g in
Procedure A or ‖g(xl; µ)‖2 < ρµ in Procedure B. This is a contradiction with the definition
of Phase 1. 2

Theorem 4. Let assumptions of Lemma 1 and Assumption 3 be satisfied. Consider a
sequence {xk}∞1 generated by Algorithm 1 (with δ = ε = µ = 0). Then

lim
k→∞

m∑

i=1

ni∑

j=1

uij(xk; µk)∇fij(xk) = 0,
ni∑

j=1

uij(xk; µk) = hi(z(xk; µk)),

uij(xk; µk) ≥ 0, zi(xk; µk)− fij(xk) ≥ 0,

lim
k→∞

uij(xk; µk)(zi(xk; µk)− fij(xk)) = 0

for 1 ≤ i ≤ m and 1 ≤ j ≤ ni.

Proof. (a) Equalities eT ui(xk; µk) = hi(z(xk; µk)), 1 ≤ i ≤ m, hold since δ = 0. Inequali-
ties uij(xk; µk) ≥ 0 and zi(xk; µk)− fij(xk) ≥ 0 follow from (30) and (25).

(b) Since (35) and (40) hold, we can write

B(xk+1; µk+1)−B(xk; µk) = (B(xk+1; µk+1)−B(xk+1; µk))

+ (B(xk+1; µk)−B(xk; µk))

≤ L (µk − µk+1)− c ‖g(xk; µk)‖2,
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which (since limk→∞ µk = 0 by Lemma 2) implies

B ≤ lim
k→∞

B(xk+1; µk+1) ≤ B(x1; µ1) + L
∞∑

k=1

(µk − µk+1)− c
∞∑

k=1

‖g(xk; µk)‖2

= B(x1; µ1) + Lµ1 − c
∞∑

k=1

‖g(xk; µk)‖2,

where B is a lower bound defined in the proof of Lemma 1. Thus one has
∞∑

k=1

‖g(xk; µk)‖2 ≤ 1

c
(B(x1; µ1)−B + Lµ1) < ∞,

which implies that g(xk; µk) =
∑m

i=1

∑ni
j=1 uij(xk; µk)∇fij(xk) → 0.

(c) Let 1 ≤ i ≤ m and 1 ≤ j ≤ ni be chosen arbitrarily. Using the definition of uij(xk; µk)
and boundedness of tϕ′(t), we obtain

uij(xk; µk)(zi(xk; µk)− fij(xk)) = −µkϕ
′(zi(xk; µk)− fij(xk))(zi(xk; µk)− fij(xk))

≤ c µk → 0

by Lemma 2 (c is an upper bound for −tϕ′(t)). 2

Corollary 1. Let assumptions of Theorem 4 hold. Then every cluster point x ∈ Rn of the
sequence {xk}∞1 satisfies KKT conditions (6)-(7), where z and u (with elements zi and uij,
1 ≤ i ≤ m, 1 ≤ j ≤ ni) are cluster points of sequences {z(xk; µk)}∞1 and {u(xk; µk)}∞1 .

Now, assuming that the values δ, ε, µ are nonzero, we can prove the following theorem
informing us about the precision obtained, when Algorithm 1 terminates.

Theorem 5. Consider the sequence {xk}∞1 generated by Algorithm 1. Let assumptions of
Lemma 1 and Assumption 3 hold. Then, choosing δ > 0, ε > 0, µ > 0 arbitrarily, there is
an index k ≥ 1 such that

‖g(xk; µk)‖ ≤ ε, |hi(z(xk; µk))−
ni∑

j=1

uij(xk; µk)| ≤ δ,

uij(xk; µk) ≥ 0, zi(xk; µk)− fij(xk) ≥ 0,

uij(xk; µk)(zi(xk; µk)− fij(xk)) ≤ c µ

for all 1 ≤ i ≤ m and 1 ≤ j ≤ ni (note that c = 1 for all barriers mentioned in Section 1).

Proof. The inequality |hi(z(xk; µk))− eT ui(xk; µk)| ≤ δ follows immediately from the fact
that equations eT ui(xk; µk) = hi(z(xk; µk)), 1 ≤ i ≤ m, are solved with the precision δ.
Inequalities uij(xk; µk) ≥ 0, zi(xk; µk)− fij(xk) ≥ 0 follow from the definition of uij(xk; µk)
and from (25) as in the proof of Theorem 4. Since µk → 0 by Lemma 2 and g(xk; µk) → 0 by
Theorem 4, there is an index k ≥ 1 such that µk ≤ µ and ‖g(xk; µk)‖ ≤ ε (thus Algorithm 1
terminates at the k-th iteration). Using the definition of uij(xk; µk), we obtain

uij(xk; µk)(zi(xk; µk)− fij(xk)) = −µkϕ
′(zi(xk; µk)− fij(xk))(zi(xk; µk)− fij(xk))

≤ c µk ≤ c µ.

2
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6 Global convergence for the logarithmic barrier

In this section, we first assume that ϕ(t) = − log t, δ = ε = µ = 0 and all computations
are exact. We will investigate an infinite sequence {xk}∞1 generated by Algorithm 1.

Lemma 3 Let Assumption 2, Assumption 4 be satisfied and ϕ(t) = − log t. Then B(x; µ)
is bounded from below.

Proof. Using (8), Assumption 2 (convexity of h(z) and (3)) and Assumption 4, we can
write

B(x; µ) = h(z(x; µ))− µ
m∑

i=1

ni∑

j=1

log (zi(x; µ)− fij(x))

≥ h(F 1, . . . , Fm) +
m∑

i=1

hi (zi(x; µ)− F i)−
m∑

i=1

niµ log (zi(x; µ)− F )

≥ H +
m∑

i=1

hi (zi(x; µ)− F )−
m∑

i=1

niµ log (zi(x; µ)− F ) ,

where H = h(F 1, . . . , Fm) − ∑m
i=1 hi (F i − F ). Convex functions ψi(t) = hit − niµ log(t)

have unique minima at the points ti = niµ/hi, 1 ≤ i ≤ m. Thus

B(x; µ) ≥ H +
m∑

i=1

hi

niµ

hi

(
1− log

(
niµ

hi

))

≥ H +
m∑

i=1

hi min

(
0,

niµ

hi

(
1− log

(
niµ

hi

)))

≥ H +
1

2

m∑

i=1

hi min

(
0,

2niµ

hi

(
1− log

(
2niµ

hi

)))
∆
= B.

2

Now we clarify the dependence of z(x; µ) and B(x; µ) on the parameter µ.

Lemma 4. Let Assumption 2 be satisfied and z(x; µ) be a solution of linear system (24).
Then

∂B(x; µ)

∂µ
= −

m∑

i=1

ni∑

j=1

log (zi(x; µ)− fij(x)) .

If Hessian matrix H(z(x; µ)) is diagonal, then ∂z(x; µ)/∂µ > 0.

Proof. (a) Differentiating the function

B(x; µ) = h(z(x; µ))− µ
m∑

i=1

ni∑

j=1

log (zi(x; µ)− fij(x))
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and using (24), one has

∂B(x; µ)

∂µ
=

m∑

i=1

∂h(z(x; µ))

∂zi

∂zi(x; µ)

∂µ
−

m∑

i=1

ni∑

j=1

µ

zi(x; µ)− fij(x)

∂zi(x; µ)

∂µ

−
m∑

i=1

ni∑

j=1

log (zi(x; µ)− fij(x))

= −
m∑

i=1

ni∑

j=1

log (zi(x; µ)− fij(x)) .

(b) Differentiating equation (24), which has the form

∂h(z(x; µ))

∂zi

−
ni∑

j=1

µ

zi(x; µ)− fij(x)
= 0,

we obtain

m∑

k=1

∂2h(z(x; µ))

∂zi∂zk

∂zk(x; µ)

∂µ
+

ni∑

j=1

µ

(zi(x; µ)− fij(x))2

∂zi(x; µ)

∂µ
−

ni∑

j=1

1

zi(x; µ)− fij(x)
= 0,

which gives

m∑

k=1

hik(z(x; µ))
∂zk(x; µ)

∂µ
+




ni∑

j=1

vij(x; µ)


 ∂zi(x; µ)

∂µ
=

1

µ

ni∑

j=1

uij(x; µ) =
1

µ
hi(z(x; µ)),

or

(µH(z(x; µ)) + µV (x; µ))
∂z(x; µ)

∂µ
=

∂h(z(x; µ))

∂z
.

If Hessian matrix H(z(x; µ)) is diagonal, then also H(z(x; µ)) + V (x; µ) is diagonal with
positive diagonal elements, which together with (3) imply that ∂z(x; µ)/∂µ > 0. 2

Now we prove that B(x; µ), z(x; µ), and F (x) are bounded and B(x; µ) is a Lipschitz
continuous function of µ.

Lemma 5. Let assumptions of Lemma 3 be satisfied and Hessian matrix H(z(x; µ)) be
diagonal. Let {xk}∞1 and {µk}∞1 be sequences generated by Algorithm 1. Then sequences
{B(xk; µk)}∞1 , {z(xk; µk)}∞1 , and {F (xk)}∞1 are bounded. Moreover, there is L ≥ 0 such
that

B(xk+1; µk+1) ≤ B(xk+1; µk) + L(µk − µk+1) ∀k ∈ N. (41)

Proof. Boundedness from below simply follows from Assumption 1, inequalities (25) and
Lemma 3.
(a) As in the proof of Lemma 3, we can write

B(x; µ) ≥ H +
1

2

m∑

i=1

hi (zi(x; µ)− F )
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+
1

2

m∑

i=1

hi (zi(x; µ)− F )−
m∑

i=1

niµ log (zi(x; µ)− F )

≥ H +
1

2

m∑

i=1

hi (zi(x; µ)− F ) +
1

2

m∑

i=1

hi

2niµ

hi

(
1− log

(
2niµ

hi

))

≥ H +
1

2

m∑

i=1

hi (zi(x; µ)− F ) +
1

2

m∑

i=1

hi min

(
0,

2niµ

hi

(
1− log

(
2niµ

hi

)))

≥ B +
h

2

m∑

i=1

(zi(x; µ)− F ) ,

where h = min(h1, . . . , hm). Thus

m∑

i=1

(zi(x; µ)− F ) ≤ 2

h
(B(x; µ)−B) . (42)

(b) Using the mean value theorem and the first part of Lemma 4, we obtain

B(xk+1; µk+1)−B(xk+1; µk) =
m∑

i=1

ni∑

j=1

log (zi(xk+1; µ̃k)− fij(x)) (µk − µk+1)

≤
m∑

i=1

ni log (zi(xk+1; µ̃k)− F ) (µk − µk+1)

≤ n

e

m∑

i=1

(zi(xk+1; µ̃k)− F ) (µk − µk+1), (43)

where µk+1 ≤ µ̃k ≤ µk and n = max(n1, . . . , nm). The last inequality follows from the
relation log t ≤ t/e (where e = exp(1)), which holds for all t > 0. But zi(xk+1; µ̃k) ≤
zi(xk+1; µk) by the second part of Lemma 4. Thus using (42), we can write

B(xk+1; µk+1) ≤ B(xk+1; µk) +
n

e

m∑

i=1

(zi(xk+1; µk)− F ) (µk − µk+1)

≤ B(xk+1; µk) +
2n

eh
(B(xk+1; µk)−B)(µk − µk+1),

which using (36) implies

B(xk+1; µk+1)−B ≤ (1 + λδk)(B(xk+1; µk)−B) ≤ (1 + λδk)(B(xk; µk)−B),

where λ = 2n/(eh) and δk = µk − µk+1. Then

B(xk+1; µk+1)−B ≤
k∏

i=1

(1 + λδi)(B(x1; µ1)−B)

≤
∞∏

i=1

(1 + λδi)(B(x1; µ1)−B)
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and since ∞∑

i=1

λδi ≤ λ(µ− lim
k→∞

µk) ≤ λµ,

the above product is finite. This together with (25) and (42) proves that sequences
{B(xk; µk)}∞1 , {z(xk; µk)}∞1 , and {F (xk)}∞1 are bounded from above.
(c) Using (43) and (25), we can write

B(xk+1; µk+1)−B(xk+1; µk) ≤
m∑

i=1

ni log (zi(xk+1; µ̃k)− F ) (µk − µk+1)

≤
m∑

i=1

ni log

(
F +

niµ

hi

− F

)
(µk − µk+1)

∆
= L(µk − µk+1), (44)

for all k ∈ N , where existence of F follows from boundedness of {F (xk)}∞1 . 2

The assertion of Lemma 5 does not depend on bounds g and G, since we do not
use Assumption 3. Thus an upper bound F (independent of g and G) exists such that
F (xk) ≤ F for all k ∈ N . This bound can be used for the definition of the level set in
Assumption 3.

Lemma 6 Let assumptions of Lemma 3 and Assumption 3 be satisfied. Then the values
{µk}∞1 , generated by Algorithm 1, form a non-increasing sequence such that µk → 0.

Proof. The same as the proof of Lemma 2 (using Lemma 3 instead of Lemma 1). 2

Theorem 6. Let assumptions of Lemma 5 and Assumption 3 be satisfied. Consider a
sequence {xk}∞1 generated by Algorithm 1 (with δ = ε = µ = 0). Then

lim
k→∞

m∑

i=1

ni∑

j=1

uij(xk; µk)∇fij(xk) = 0,
ni∑

j=1

uij(xk; µk) = hi(z(xk; µk)),

uij(xk; µk) ≥ 0, zi(xk; µk)− fij(xk) ≥ 0,

lim
k→∞

uij(xk; µk)(zi(xk; µk)− fij(xk)) = 0

for 1 ≤ i ≤ m and 1 ≤ j ≤ ni.

Proof. The same as the proof of Theorem 4 (using Lemma 3, Lemma 5 and Lemma 6
instead of Lemma 1). 2

Corollary 2. Let assumptions of Theorem 6 hold. Then every cluster point x ∈ Rn of the
sequence {xk}∞1 satisfies KKT conditions (6)-(7), where z and u (with elements zi and uij,
1 ≤ i ≤ m, 1 ≤ j ≤ ni) are cluster points of sequences {z(xk; µk)}∞1 and {u(xk; µk)}∞1 .
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Now, assuming that the values δ, ε, µ are nonzero, we can prove the following theorem
informing us about the precision obtained, when Algorithm 1 terminates.

Theorem 7. Consider the sequence {xk}∞1 generated by Algorithm 1. Let assumptions of
Lemma 5 and Assumption 3 hold. Then, choosing δ > 0, ε > 0, µ > 0 arbitrarily, there is
an index k ≥ 1 such that

‖g(xk; µk)‖ ≤ ε, |hi(z(xk; µk))−
ni∑

j=1

uij(xk; µk)| ≤ δ,

uij(xk; µk) ≥ 0, zi(xk; µk)− fij(xk) ≥ 0,

uij(xk; µk)(zi(xk; µk)− fij(xk)) ≤ µ

for all 1 ≤ i ≤ m and 1 ≤ j ≤ ni.

Proof. The same as the proof of Theorem 5 (using Lemma 6 and Theorem 6 instead of
Lemma 2 and Theorem 4). 2

7 Special cases and numerical experiments

The simplest function of form (2) is the sum

F (x) =
m∑

i=1

Fi(x) =
m∑

i=1

max
1≤j≤ni

fij(x). (45)

In this case, ∂h(z)/∂zi = 1, 1 ≤ i ≤ m, for an arbitrary vector z and the matrix H(z) is
diagonal. Using the logarithmic barrier, system of equations (14) decomposes on m scalar
equations

1−
ni∑

j=1

µ

zi(x; µ)− fij(x)
= 0, 1 ≤ i ≤ m, (46)

whose solutions lie in the intervals

Fi(x) + µ ≤ zi(x; µ) ≤ Fi(x) + niµ, 1 ≤ i ≤ m,

as follows from the proof of Theorem 2 substituting hi = hi = 1. For m = 1 we obtain the
classic minimax problem. A primal interior point method for this problem is described in
[11]. Table 1, taken from [11], contains a comparison of three implementations of the primal
interior point method (P1 uses the logarithmic barrier, P2 uses positive barrier (9), P3
uses bounded barrier (10)–(11)) with the smoothing method SM described in [18], and the
primal-dual interior point method DI described in [9]. All these methods were realized as
the line-search methods with two modifications: NM denotes the discrete Newton method
with the Hessian matrix computed using the differences by the way described in [3] and
VM denotes the variable metric method with the partitioned updates described in [6].
The tests were carried out using a collection of 22 test problems introduced in [14] (the
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source texts can be downloaded from the web page www.cs.cas.cz/~luksan/test.html

as Test 14). In Table 1, NIT denotes the total number of iterations, NFV denotes the total
number of function evaluations, NFG denotes the total number of gradient evaluations, NR
denotes the total number of restarts, NL denotes the number of problems for which the
lowest known local minimum was not found, NF denotes the number of failures, NT denotes
the number of problems for which some parameters of the method had to be tuned, and
Time denotes the total computational time in seconds.

Method NIT NFV NFG NR NL NF NT Time

P1-NM 1675 3735 11109 327 - - 4 1.92
P2-NM 2018 6221 12674 605 - - 7 2.09
P3-NM 1777 3989 11596 379 1 - 7 2.11
SM-NM 4123 12405 32451 823 - - 7 9.64
DI-NM 1771 3732 17952 90 1 - 10 6.34
P1-VM 1615 2429 1637 - - - 1 1.05
P2-VM 2116 3549 2138 2 - - 3 1.47
P3-VM 1985 3208 2007 1 - - 3 1.27
SM-VM 7244 21008 7266 - 1 - 8 9.09
DI-VM 1790 3925 1790 5 1 - 9 4.59

Table 1. Test 14: minimax with 200 variables

Table 1 indicates that the logarithmic barrier P1 is the best possibility for practical com-
putations (in comparison with P2, P3) even if it needs stronger assumptions to prove its
global convergence.

If ni = 2, 1 ≤ i ≤ m, equations (46) are quadratic and their solution has the form

zi(x; µ) = µ +
fi1(x) + fi2(x)

2
+

√√√√µ2 +

(
fi1(x)− fi2(x)

2

)2

, 1 ≤ i ≤ m. (47)

This formula can be used in the case when function h : Rm → R contains absolute values
Fi(x) = |fi(x)| = max(fi(x),−fi(x)). Then fi1(x) = fi(x) a fi2(x) = −fi(x), so that

zi(x; µ) = µ +
√

µ2 + f 2
i (x), 1 ≤ i ≤ m. (48)

The primal interior point method for the sums of absolute values is described in [12].
Table 2 contains a comparison of two realizations of the primal interior point method with
the logarithmic barrier (the trust region realization PT and the line-search realization PL)
with the primal-dual interior point method DI described in [9] and the bundle variable
metric method BM described in [15]. These methods were realized in two modifications:
NM denotes the discrete Newton method with the Hessian matrix computed using the
differences and VM denotes the variable metric method with the partitioned updates (BM
is principally the variable metric method, so it could not be realized as NM). The tests were
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again carried out using a collection of 22 test problems introduced in [14]. The meaning of
the columns is the same as in Table 1.

Method NIT NFV NFG NR NL NF NT Time

PT-NM 3014 3518 27404 1 - - 4 4.66
PL-NM 2651 12819 22932 3 1 - 6 5.24
DI-NM 5002 7229 42462 328 1 - 13 33.52
PT-VM 3030 3234 3051 - - 1 1 1.44
PL-VM 2699 3850 2721 - - 1 2 1.42
DI-VM 7138 14719 14719 9 2 - 9 86.18
BM-VM 34079 34111 34111 22 1 1 11 25.72

Table 2. Test 14: sum of absolute values with 200 variables

Tables 1 and 2 indicate that the primal interior point methods are very suitable for
minimization of generalized minimax functions. They are more efficient than special bundle
methods and also than general primal-dual interior point methods applied to problem (4)–
(5). This is especially caused by the fact that the primal-dual interior point methods require
the introduction of an additional slack vector s ∈ Rm so that the resulting optimization
problem contains n+2m variables x, z, s, which considerably increases the computational
time.
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