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Case study (weakly damped pendulum)

Back to PANM 19: XME Model & Slow-fast . . .

At least three time-scales of XME
induction model:

1 Drug (Rifampicin) transport
into blood and liver occurs in
minutes: ’fast’ time-scale
T0 = t,

2 CYP3A4 enzyme induction is
evolving in hours ’slow’
time-scale T1 = ϵ1t,

3 Drug degradation rate
undergoes changes in days:
’even slower’ time-scale
T2 = ϵ2t.

XME model according to Luke 2010
(and Jurjen Duintjer Tebbens 2019)
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Case study (weakly damped pendulum)
Slow-fast process #1 (a PK model)

Introduction-Motivation

We are stuck solving an (ill-posed) inverse problem of
PARAMETER ESTIMATION. . .

What to do if there are slow & fast phenomena in one
process (moreover, a noise is present in measured data)?

E.g. How to identify the dynamics
evolving in slow time?
(if a quasi-periodic behaviour is
observed. . . )

There exist certain methods as Method of Multiple Scales
(MMS) and (hopefully)

Method of averaging! (Krylov-Bogoliubov-Mitropolski)
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Slow-fast process #1 (a PK model)

Slow-fast process #1 (a PK model):
Drug rifampicin metabolism and the PXR-mediated XME induction process
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Left: Graph representation of the network associated to a drug
metabolism, there are 8 reactions, 5+1 state variables and ≈12 model
parameters.

Right: Numerical simulation of time series data of (CYP3A4)mRNA
fold induction for periodic forcing (dial dosing of drug rifampicin).

J. D. Tebbens, C. Matonoha, A. Matthios, Š. Papáček: On parameter
estimation in an in vitro compartmental model for drug-induced
enzyme production in pharmacotherapy. Applications of Mathematics,
64 (2019), 253-277.
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Method of multiple scales (MMS)
Averaging & Theorem Krylov-Bogoliubov-Mitropolski

Method of multiple scales (MMS) for slow-fast ODEs
Two time-scales: fast t and slow ϵt

General IVP (n-order ODE): Dynamics of state variables y ∈ R is:

dn y(t, ϵ; p)

dtn
= f

(
dn−1 y(t, ϵ; p)

dtn−1
, . . . , y(t, ϵ; p)

)
, (1)

with the corresponding initial conditions, p ∈ Rq and ϵ ≪ 1.

Solution y is approximated by (first order) perturbartion series
for y, i.e. y = y(0) + ϵ y(1) +O(ϵ2).

The two-timing variant of MMS: we look for a solution of the form
y = y(t, τ, ϵ, p), where τ = ϵt.

By the chain rule
d (•)
dt

=
∂(•)
∂t

+ ϵ
∂(•)
∂τ

, (2)

we can transform ODE (1) into a system of PDEs (each PDE
corresponds to a power of ϵ).

Naı̈ve implementation of MMS (disregarding solvability conditions)
generates wrong results (secular terms), see Fig. 1 below.
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Method of multiple scales (MMS)
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Method of averaging (Theorem #1)

Consider the IVP for a system of ODEs for x(t) ∈ Rn

ẋ = ϵf(x, t), x(0) = x0. (3)

Here, f : Rn × T → Rn is a Lipschitz continuous function of x(t) ∈ Rn

and a continuous function of t ∈ T.
For R > 0, let

BR(x0) = {x(t) ∈ Rn| |x− x0| < R}.

and
M = sup

x∈BR(x0), t∈T
|f(x, t)|.

Then there is a unique solution of the IVP,

x : (−T/ϵ, T/ϵ) → BR(x0) ⊂ Rn

that exists for |t| < T/ϵ, where T = R
M
.
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Method of multiple scales (MMS)
Averaging & Theorem Krylov-Bogoliubov-Mitropolski

Theorem #2 (Krylov-Bogoliubov-Mitropolski)
Approximation error estimation

With the same notation as the previous theorem:

There exists a unique solution

x̄ : (−T/ϵ, T/ϵ) → BR(x0) ⊂ Rn

of the averaged equation

˙̄x = ϵf̄(x̄), x̄(0) = x0, (4)

where f̄(x) = 1
2π

∫
T
f(x, t)dt.

Assume . . .
Then there exist constants ϵ0 > 0 and C > 0 such that for all
0 ≤ ϵ ≤ ϵ0

|x(t)− x̄(t)| ≤ C ϵ for |t| ≤ T/ϵ. (5)

J.A. Sanders, F. Verhulst and J. Murdock, Averaging Methods in
Nonlinear Dynamical Systems, Springer, 2007.
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Slow-fast process #2 (underdamped oscillations)
Numerical error analysis
Conclusion

(simpler) Two time-scale process #2:
Initial value problem of a weakly damped pendulum (with small oscillations)

ODE for position (angle) y ∈ R :

d2 y

dt2
+ ω2

0 y = −2δ
d y

dt
,

with I.C. : y(0) = 1 , ẏ(0) = 0,

where ω2
0 = g

l , and ϵ ≡ δ
ω0

≪ 1.

By rescaling the time tscaled ≡ tω

ÿ + y = −2ϵ ẏ, (6)

where ẏ = d y
dtscaled

.

Using (2) & perturbartion series for y, e.g. y ≃ y(0) + ϵ y(1) ,

the governing ODE (6) is transformed → PDEs.
Štěpán Papáček and Ctirad Matonoha joint work with Jurjen Duintjer TebbensSlow-Fast & Averaging
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Slow-fast process #2 (underdamped oscillations)
Numerical error analysis
Conclusion

Naive implementation of MMS
(disregarding solvability conditions)
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x
(t

)

Exact solution

Naive MMS approximation

Figure 1: Comparison of the exact solution (6) (solid black curve)
with the naive MMS approximation (dotted curve).
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Slow-fast process #2 (underdamped oscillations)
Numerical error analysis
Conclusion

Case study - analytical solution

For computational experiments we will take equation (6)

ÿ + y = −2ϵ ẏ, y(0) = 1, ẏ(0) = 0

Analytical solution is known:

yexact(t) = exp(−ϵt)
(
cos(ωt) +

ϵ

ω
sin(ωt)

)
,

where ω =
√
1− ϵ2.
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Slow-fast process #2 (underdamped oscillations)
Numerical error analysis
Conclusion

Case study - method of averaging #1

ÿ + y = −2ϵ ẏ, y(0) = 1, ẏ(0) = 0

Transformation y = r sin(t− ϕ), ẏ = r cos(t− ϕ)

(r, ϕ) satisfies the system

ṙ = ϵ cos(t− ϕ)(−2r cos(t− ϕ)) ≡ ϵfr(t)

ϕ̇ = ϵ1r sin(t− ϕ)(−2r cos(t− ϕ)) ≡ ϵfϕ(t)

Applying averaging principle we obtain approximate
solution of the system

˙̄r = ϵf̄r,
˙̄ϕ = ϵf̄ϕ

f̄r =
1

2π

∫ 2π

0
fr(t) dt, f̄ϕ =

1

2π

∫ 2π

0
fϕ(t) dt.
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Slow-fast process #2 (underdamped oscillations)
Numerical error analysis
Conclusion

Case study - method of averaging #2

It holds

f̄r =
1

2π

∫ 2π

0
cos(t− ϕ)(−2r cos(t− ϕ)) = −r

f̄ϕ =
1

2π

∫ 2π

0

1
r sin(t− ϕ)(−2r cos(t− ϕ)) = 0

and thus the system of equations is

˙̄r = −ϵr̄, ˙̄ϕ = 0

whose solution is

r̄ = Cr exp(−ϵt), ϕ̄ = Cϕ

Štěpán Papáček and Ctirad Matonoha joint work with Jurjen Duintjer TebbensSlow-Fast & Averaging
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Slow-fast process #2 (underdamped oscillations)
Numerical error analysis
Conclusion

Case study - method of averaging #3

The averaging solution is then

y(t) = r̄ sin(t− ϕ̄) = Cr exp(−ϵt) sin(t− Cϕ)

ẏ(t) = r̄ cos(t− ϕ̄) = Cr exp(−ϵt) cos(t− Cϕ)

Initial conditions:

y(0) = Cr sin(−Cϕ) = 1, ẏ(0) = Cr cos(−Cϕ) = 0,

which implies

cos(−Cϕ) = 0 ⇒ Cϕ = 3
2π

and
Cr = 1.

Finally,

yaver(t) = exp(−ϵt) sin(t− 3
2π) = exp(−ϵt) cos(t)
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Slow-fast process #2 (underdamped oscillations)
Numerical error analysis
Conclusion

Case study - numerical approach (backward Euler)

ÿ + y = −2ϵ ẏ, y(0) = 1, ẏ(0) = 0

Transformation
x1 = y, x2 = ẏ

leads to a system
ẋ+Ax = 0,

x =

(
x1
x2

)
, A =

(
0 −1
1 2ϵ

)
Backward Euler method:

(I +∆tA)x(t+∆t) = x(t)

Solutions:

ynumer(tj) = x1(tj), j = 0, . . . ,m, tj = j∆t, tm = T

Štěpán Papáček and Ctirad Matonoha joint work with Jurjen Duintjer TebbensSlow-Fast & Averaging
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Case study (weakly damped pendulum)

Slow-fast process #2 (underdamped oscillations)
Numerical error analysis
Conclusion

Case study - computational experiment #1

Comparison of errors:

yexact(tj)− ynumer(tj), yexact(tj)− yaver(tj)

for ϵ =1.0E-3, ∆t =1.0E-5, T = 10000.

0 2000 4000 6000 8000 10000

time

-2
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1

2

e
rr
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10
-3 Errors of computed soutions.

numerical solution

averaging solution
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Case study - computational experiment #2
Initial and final time spans

Left: errors for initial time interval t ∈ [0, 100],
Right: errors for final time interval t ∈ [9900, 10000].
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Conclusion – Future prospects

The solution of slow-fast ODE, x(t, ϵ), is to be expected as
a perturbation-series (τ = ϵ t):
x(t, τ) = x(0)(t, τ) + ϵx(1)(t, τ) + ϵ2x(2)(t, τ) + . . .

The suitability of the Method of Multiple (time)Scales
(MMS) and mainly the Averaging method to
approximate the solutions of perturbation problems.

Naı̈ve implementation of MMS generates wrong results
(secular terms).

Averaging method gives satisfactory results, the error is of
order C ϵ (as predicted by the KBM theorem)

Future: application of averaging method to our PK model

Thank you for your attention!
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