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Back to PANM 19: XME Model & Slow-fast ...

At least three time-scales of XME
induction model:

@ Drug (Rifampicin) transport
into blood and liver occurs in
minutes: ’fast’ time-scale
Ty =t,

@ CYP3A4 enzyme induction is
evolving in hours ’slow’
time-scale 17 = et,

. XME model according to Luke 2010
© Drug degradation r'ate (and Jurjen Duintjer Tebbens 2019)
undergoes changes in days:

’even slower’ time-scale
T2 = €ot.
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Introduction — Motivation
Slow-fast ODEs & Methods: MMS — Averaging Slow-fast process #1 (a PK model)
Case study (weakly damped pendulum)

Introduction-Motivation

e We are stuck solving an (ill-posed) inverse problem of
PARAMETER ESTIMATION...
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o What to do if there are slow & fast phenomena in one
process (moreover, a noise is present in measured data)?
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e We are stuck solving an (ill-posed) inverse problem of
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o What to do if there are slow & fast phenomena in one
process (moreover, a noise is present in measured data)?

m“E
evolving in slow time?

(if a quasi-periodic behaviour is ‘:

observed. .. ) EVCI
Fig. 2. Rifampicin serum conceniration-time curves from pa-
tient 4 Following intravenous administration of 600 me rifumpi-
cin on day 1 (o), day § (#) and day 22 ()

E.g. How to identify the dynamics

RIFAMPICIN  (pg/nld
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PARAMETER ESTIMATION...

o What to do if there are slow & fast phenomena in one
process (moreover, a noise is present in measured data)?
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observed. .. ) EVCI
Fig. 2. Rifampicin serum conceniration-time curves from pa-
ticnt 4 following intravenous administration of 600 mg rifampi-
cin on day 1 (o), day 8 (+) and day 22 ()

E.g. How to identify the dynamics

RIFAMPICIN  (pg/nld

@ There exist certain methods as Method of Multiple Scales
(MMS) and (hopefully)
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Introduction-Motivation

e We are stuck solving an (ill-posed) inverse problem of
PARAMETER ESTIMATION...

o What to do if there are slow & fast phenomena in one
process (moreover, a noise is present in measured data)?

g
R
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E.g. How to identify the dynamics
evolving in slow time?

(if a quasi-periodic behaviour is
observed. ..)

@ There exist certain methods as Method of Multiple Scales
(MMS) and (hopefully)
e Method of averaging! (Krylov-Bogoliubov-Mitropolski)
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Introduction — Motivation
Slow-fast ODEs & Methods: MMS

Averosing
Case study

(weakly damped pendulum)

Slow-fast process #1 (a PK model):

Drug rifampicin metabolism and the PXR-mediated XME induction process

Slow-fast process #1 (a PK model)
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@ Left: Graph representation of the network associated to a drug
metabolism, there are 8 reactions, 541 state variables and ~12 model
parameters.

@ Right: Numerical simulation of time series data of (CYP3A4)mRNA
fold induction for periodic forcing (dial dosing of drug rifampicin).
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Slow-fast process #1 (a PK model)

Case study (

Slow-fast process #1 (a PK model):

Drug rifampicin metabolism and the PXR-mediated XME induction process
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@ Left: Graph representation of the network associated to a drug
metabolism, there are 8 reactions, 5+1 state variables and ~12 model
parameters.

@ Right: Numerical simulation of time series data of (CYP3A4)mRNA
fold induction for periodic forcing (dial dosing of drug rifampicin).

@ J. D. Tebbens, C. Matonoha, A. Matthios, S. Papacek: On parameter
estimation in an in vitro compartmental model for drug-induced
enzyme production in pharmacotherapy. Applications of Mathematics,

64 (2019), 253-277.
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Case study (weakly damped pendulum)

Method of multiple scales (MMS) for slow-fast ODEs

Two time-scales: fast ¢ and slow et

Method of multiple scales (MMS)
Averaging & Theorem Krylov-Bogoliubov-Mitropolski

@ General IVP (n-order ODE): Dynamics of state variables y € R is:

d"y(t,&p) _ (4" y(t, e p) ,
dtn _f dt"71 7"'7y(t767p) 9 (1)

with the corresponding initial conditions, p € R? and € < 1.
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Method of multiple scales (MMS) for slow-fast ODEs

Two time-scales: fast ¢ and slow et

Method of multiple scales (MMS)

Averaging & Theorem Krylov-Bogoliubov-Mitropolski

@ General IVP (n-order ODE): Dynamics of state variables y € R is:

d"y(t, &p) A"t y(t, e p)
= oyt e 1

dtn f dtn71 b 7y( 7€7p) ) ( )
with the corresponding initial conditions, p € R? and € < 1.

@ Solution y is approximated by (first order) perturbartion series
for y, i.e. y =y @ 4+ ey + O(e?).
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Method of multiple scales (MMS) for slow-fast ODEs

Two time-scales: fast ¢ and slow et

Slow-fast ODEs & Methods: MMS — Averaging

@ General IVP (n-order ODE): Dynamics of state variables y € R is:
d"y(t, & p) d" " y(t.ep)
—_—t = —— .., y(t, 1
dtn f dtn71 ) 7y( 7E7p) ? ( )
with the corresponding initial conditions, p € R? and € < 1.

@ Solution y is approximated by (first order) perturbartion series
for y, i.e. y =y @ 4+ ey + O(e?).

@ The two-timing variant of MMS: we look for a solution of the form
y =y(t, 7,€,p), where 7 = €t.
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Method of multiple scales (MMS) for slow-fast ODEs

Two time-scales: fast ¢ and slow et

Slow-fast ODEs & Methods: MMS — Averaging

@ General IVP (n-order ODE): Dynamics of state variables y € R is:

d"y(t,ep) _ , (d" " y(t,ep) ,
dtn 7.f dtn71 7"'7y(t767p) ’ (1)

with the corresponding initial conditions, p € R? and € < 1.

@ Solution y is approximated by (first order) perturbartion series
for y, i.e. y =y @ 4+ ey + O(e?).
@ The two-timing variant of MMS: we look for a solution of the form
y =y(t, 7,€,p), where 7 = €t.
@ By the chain rule
d(e) _ d(e) = 0(e)
= 2
a ot “or @
we can transform ODE (1) into a system of PDEs (each PDE
corresponds to a power of €).
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Method of multiple scales (MMS) for slow-fast ODEs

Two time-scales: fast ¢ and slow et

Slow-fast ODEs & Methods: MMS — Averaging

@ General IVP (n-order ODE): Dynamics of state variables y € R is:

d"y(t,ep) _ , (d" " y(t,ep) ,
dtn 7.f dtn71 7"'7y(t767p) ’ (1)

with the corresponding initial conditions, p € R? and € < 1.

@ Solution y is approximated by (first order) perturbartion series
for y, i.e. y =y @ 4+ ey + O(e?).
@ The two-timing variant of MMS: we look for a solution of the form
y =y(t, 7,€,p), where 7 = €t.
@ By the chain rule
d(e) _ d(e) = 0(e)
= 2
a ot “or @
we can transform ODE (1) into a system of PDEs (each PDE
corresponds to a power of €).

@ Naive implementation of MMS (disregarding solvability conditions)
generates wrong results (secular terms), see Fig. 1 below.
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Introduction Motivation
Slow-fast ODEs & Methods: MMS — Averaging

Case study (weakly damped pendulum)

Method of averaging (Theorem #1)

Method of multiple scales (MMS)
Averaging & Theorem Krylov-Bogoliubov-Mitropolski

@ Consider the IVP for a system of ODEs for z(t) € R"
z=¢ef(z,t), =(0)=xo. 3)

@ Here, f: R" x T — R" is a Lipschitz continuous function of z(t) € R"
and a continuous function of ¢t € T.

@ For R >0, let
Bgr(zo) = {z(t) € R"||z — zo| < R}.
and

M= sup [f(z,1)].

zE€BR(w0), t€T
@ Then there is a unique solution of the IVP,
x:(=T/e,T/e) — Br(zo) C R"
that exists for |t| < T'/e, where T' =

R
-
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Introduction Motivation
Slow-fast ODEs & Methods: MMS — Averaging

Case study (weakly damped pendulum)

Theorem #2 (Krylov-Bogoliubov-Mitropolski)

Approximation error estimation

Method of multiple scales (MMS)
Averaging & Theorem Krylov-Bogoliubov-Mitropolski

With the same notation as the previous theorem:

@ There exists a unique solution
z:(=T/e,T/e) — Br(zo) C R"

of the averaged equation

= 6_]?(3_7), z(0) = wo, (4)
where f(z) = 5= [, f(z, t)dt.
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Case study (weakly damped pendulum)

Theorem #2 (Krylov-Bogoliubov-Mitropolski)

Approximation error estimation

Method of multiple scales (MMS)
Averaging & Theorem Krylov-Bogoliubov-Mitropolski

With the same notation as the previous theorem:

@ There exists a unique solution
z:(=T/e,T/e) — Br(zo) C R"

of the averaged equation

z=cf(z), z(0)= o, (4)
where f(z) = 5= [, f(z, t)dt.
@ Assume ...
Then there exist constants ¢p > 0 and C' > 0 such that for all
0<e<e¢
|z(t) —Z(t)| < Ce for |t| <T/e. (5)
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Theorem #2 (Krylov-Bogoliubov-Mitropolski)

Approximation error estimation

Method of multiple scales (MMS)
Averaging & Theorem Krylov-Bogoliubov-Mitropolski

With the same notation as the previous theorem:

@ There exists a unique solution
z:(=T/e,T/e) — Br(zo) C R"

of the averaged equation

i:ef(i:), Z(0) = xo, (4)
where f(z) = 5= [, f(z, t)dt.
@ Assume ...
Then there exist constants e¢p > 0 and C' > 0 such that for all
0<e<e¢
|z(t) —Z(t)| < Ce for |t| <T/e. (5)

@ J.A. Sanders, F. Verhulst and J. Murdock, Averaging Methods in
Nonlinear Dynamical Systems, Springer, 2007.
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Introduction — Motivation Slow-fast process #2 (underdamped oscillations)
Slow-fast ODEs & Methods: MMS — Averaging Numerical error analysis

Case study (weakly damped pendulum) Conclusion

(simpler) T'wo time-scale process #2:

Initial value problem of a weakly damped pendulum (with small oscillations)

ODE for position (angle) y € R :

Py dy

¢y —_25Y

a2 Ty at’
with I.C. : y(0) =1, (0) =0,
where wg_g and :—<<1

By rescaling the time t4.q5eq = tw

i +y = —2€y,

(6)

. dy
where y = e

Using (2) & perturbartion series for y, e.g. | y ~ y(© + ey™
the governing ODE (6) is transformed — PDEs.
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Slow-fast process #2 (underdamped oscillations)
Numerical error analysis
Case study (weakly damped pendulum) Conclusion

Naive implementation of MMS

(disregarding solvability conditions)

1.5 T T T T
— Exact solution
1 Naive MMS approximation
0.5
= |
S it
-0.5]
-1
-15 . : : :
0 500 1000 1500 2000 2500

time

Figure 1: Comparison of the exact solution (6) (solid black curve)
with the naive MMS approximation (dotted curve).
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Case study - analytical solution

For computational experiments we will take equation (6)

j+y=—2y y(0)=1, §(0)=0]

Analytical solution is known:
Yexact (t) = exp(—et) (cos(wt) + 5 Sin(wt)) ,
w

where w = V1 — €2.
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Case study - method of averaging #1

i +y=—2cy, y(0) =1, §(0) =0]

o Transformation y = rsin(t — ¢), y = rcos(t — ¢)
o (7, ¢) satisfies the system
7 = ecos(t — ¢)(—2rcos(t — ¢)) = ef(t)

¢ = elsin(t — ¢)(—2rcos(t — ¢)) = efy(t)
o Applying averaging principle we obtain approximate
solution of the system

F=cfr, ¢=cls
_ 1 2m _ 1 21
fr = % 0 fr(t) dt, f¢ = % ; f¢(t) dt.

Stépan Papacek and Ctirad Matonoha joint work wit Slow-Fast & Averaging



Introduction — Motivation Slow-fast process #2 (underdamped oscillations)
Slow-fast ODEs & Methods: MMS — Averaging Numerical error analysis
Case study (weakly damped pendulum) Conclusion

Case study - method of averaging #2

It holds
_ 1 271'
fr=— cos(t — ¢)(—2rcos(t — ¢)) = —r
271' 0
1 2

Lsin(t — ¢)(~2r cos(t — ¢)) = 0

fo=

and thus the system of equations is

27 Jo

F=—er, ¢=0

whose solution is

7= Crexp(—et), ¢=0Cy
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Case study - method of averaging #3

The averaging solution is then
y(t) = Tsin(t — ¢) = Cr exp(—et) sin(t — Cyp)
y(t) = 7 cos(t — ) = Cy exp(—et) cos(t — Cy)
Initial conditions:
y(0) = Cysin(—=Cy) =1, 3(0) = Cy cos(—Cy) = 0,
which implies
cos(—Cy) =0 = Cy=3m

and
C, =1.

Finally,
Yaver (t) = exp(—et) sin(t — 37) = exp(—et) cos(t)
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Case study - numerical approach (backward Euler)

j+y=—27, y(0)=1, 5(0)=0]

o Transformation
r=y, T2=Y
leads to a system
T+ Ax =0,

() a1
o Backward Euler method:
(I + AtA)z(t + At) = z(t)
@ Solutions:

ynumer(tj) :xl(tj)a j:O7-"7m7 tj :jAt’ typ =T
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Case study - computational experiment #1

Comparison of errors:

Yexact (tj) — Ynumer (tj) ) Yexact (tj) — Yaver (tj)

for e =1.0E-3, At =1.0E-5, T = 10000.

5 «1073 Errors of computed soutions.

errors

2
0 2000 4000 6000 8000 10000
time
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Case study - computational experiment #2

Initial and final time spans

Left: errors for initial time interval ¢ € [0, 100],
Right: errors for final time interval ¢ € [9900, 10000].

’ «107® Errors of computed soutions. 3 «10°® Errors of computed soutions.
—numerical solution —numerical solution
—averaging solution 2 —averaging solution
0.5
4
o @
s ol eo
5] 5]
J
-0.5
1) 1 2

-3
0 20 40 60 80 100 9900 9920 9940 9960 9980 10000
time time
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Conclusion — Future prospects

@ The solution of slow-fast ODE, z(t, €), is to be expected as
a perturbation-series (7 = €t):
z(t,7) = 2O, 1) + exD(t, 1) + P (t,7) + ...

e The suitability of the Method of Multiple (time)Scales
(MMS) and mainly the Averaging method to
approximate the solutions of perturbation problems.

e Naive implementation of MMS generates wrong results
(secular terms).

o Averaging method gives satisfactory results, the error is of
order C'e (as predicted by the KBM theorem)

o Future: application of averaging method to our PK model

Thank you for your attention!
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