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Pharmacokinetic model for the action of Rifampicin

Schematic representation of the modelled PXR-mediated processes, introduced by Luke
(compartmental model). Numbered squares represent the following reactions: (1) the
xenobiotic enters the cell; (2) PXR binds to the xenobiotic, leading to formation of
PXR/RXRα heterodimer; (3) PXR/RXRα dimer binds to DNA, increasing transcription; (4)
mRNA background production; (5) degradation of mRNA; (6) the translation of mRNA forms
the protein; (7) degradation of the CYP3A4 protein; (8) the CYP3A4 protein metabolizes the
xenobiotic.

This process is represented by the system of nonlinear ODE of the form

x ′(t) = Ax(t) + b(x(t)), t ∈ [0,T ], x(0) = x0 (1)
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Parameter estimation
Many pharmacologic phenomena can be modelled as long as we know the correct
equations for the underlying processes and the correct values of the involved parameters.
Typically, only a part of the model parameters is known from literature or obtainable from
direct experimental measuring. Parameter estimation is an integral part of the modeling
process itself. It is done through collecting of in vitro or in vivo data from donors and
subsequent curve fitting. It makes the computational costs significantly more expensive.

Curve fitting of the mRNA fold induction for various values of unknown estimated parameter:
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Spatial resolution

Important reasons and motivations to include spatial resolution :

There is a tendency to perform model fitting when the underlying biophysical
processes are not understood or too complicated. For example, delay of substance
transport is sometimes modeled, without knowledge of its biophysical cause or its
location, through artificially increasing the number of compartments.

In some clinical applications spatial information is indispensable, for instance when
the drug is efficient only if it reaches very precise organ locations (e.g. the retina for
eye diseases).

Because elevated drug concentrations are often toxic, it is crucial to monitor not only
the average drug level all over a compartment, but to detect possible localized
maxima as well. Similarly, approaching the so-called no-observed-adverse-effect
levels should be detectable locally, inside compartments.

In other applications, spatial resolution may not seem necessary at first sight, but
might reveal unexpected explanations for observed pharmacological phenomena.

While substances can often be assumed to be homogenously distributed, it would be
beneficial to provide spatial resolution only in those compartments, where physiological
properties or observations suggest heterogenous distributions. Mathematically this leads to
a mixed system of PDEs coupled with ODEs .
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Slow-fast phenomena

Some reactions can be classified as fast, some are in between, and some are slow. The
existence of slow-fast phenomena in the network represents difficulties for numerical
simulation of all species in the network but opportunities to reduce the system order
applying the delayed quasi steady-state approximation (D-QSSA) method introduced by
Vejchodský et al. We apply it to a simplified model of a chemical reaction network with mass
conservation property and encompassing mass transport (by a diffusion process) between
an outer and inner compartment containing enzymatic reactions leading to the
Michaelis-Menten kinetics (Briggs and Haldane).

Let x(t) = (xT
F (t), x

T
S (t)) be the partitioning of x(t) and let system (1) be rewritten as

x ′F(t) = f(xS(t)) − g(t)xF (t), x ′S(t) = h(xF(t), xS(t)). (2)

The QSSA of xF(t) and the reduced ODE system for xS(t) are defined as

xqss
F (t) =

f(xS(t))
g(t)

, x ′S(t) = h(xqss
F (t), xS(t)). (3)

The D-QSSA of xF(t) and the reduced ODE system for xS(t) are defined as

xdqss
F (t) =

f(xS(t − τ(t)))

g(t − τ(t))
, x ′S(t) = h(xdqss

F (t), xS(t)). (4)
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Constant delay

The value τ(t) = 1/g(t) is called a delay . However, it generally depends on other (slow)
system components, which causes some numerical issues when solving delayed differential
equations by a computer algebra system. Thus, the natural question is to consider a
constant delay τ, e.g. by solving the minimization problem

τ∗ = arg min
τ
‖x̄(t) − xdqss(t)‖2 s.t. 0 < τ ≤ τ ≤ τ < T , (5)

where x̄(t) is a solution to original system (2) or experimental data, etc.

The assumptions for D-QSSA are not too restrictive and D-QSSA is applicable to most
chemical systems based on the law of mass action. While the standard QSSA ignores the
time needed by fast variables to reach their steady states, the advantage of D-QSSA is the
possibility of a time delay introduction improving the approximation accuracy.

Finding optimal delay(s) is not computationally expensive as the optimization problem is
small-scale; on the other hand, in order to compute an optimal delay, we need an
approximate solution or at least some measured data.

The question is about optimal delay(s) τ for the same fast variable(s) but for various time
intervals. For t ∈ [0,0.5] we see only a fast dynamics but the system has also a small
dynamics which is different and will be seen for larger times, e.g. for t ∈ [0,100].
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Numerical results
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