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Compartmental models

The traditional approach to compute the therapeutic effect of drugs is by usage of a
compartmental model .

It divides the part of the body to be studied in compartments in which the concentrations of
the involved substances (drugs, receptors, metabolizing enzymes) are assumed to be
homogeneously distributed.

Examples of compartments include the blood circulatory system, intracellular and
extracellular fluid, adipose tissue, organs, cells, but they can represent abstract units as
well.

Compartmental models are particularly suited for drugs binding to membrane receptors and
very popular in physiologically based pharmacokinetic (PBPK) models for clinical pharmacy.

But they are employed as well for the more complicated behavior of nuclear receptors:
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A model for ligand-binding to the nuclear PXR receptor

Schematic representation of the modelled PXR-mediated processes. Numbered squares
represent the following reactions: (1) the xenobiotic enters the cell; (2) PXR binds to the
xenobiotic, leading to formation of PXR/RXRα heterodimer; (3) PXR/RXRα dimer binds to
DNA, increasing transcription; (4) mRNA background production; (5) degradation of mRNA;
(6) the translation of mRNA forms the protein; (7) degradation of the CYP3A4 protein; (8)
the CYP3A4 protein metabolizes the xenobiotic.

Luke N.S., DeVito M.J., Shah I., El-Masri H.A.:
Development of a quantitative model of pregnane X receptor (PXR) mediated xenobiotic metabolizing enzyme
induction.
Bulletin of mathematical biology, vol. 72(7), p. 1799-1819 (2010).
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A model for ligand-binding to the nuclear PXR receptor
This process is represented by the following equations:

d Xext(t)
dt

= d(t) − kimp Xext(t) + kexp Xint(t)

d Xint(t)

dt
= kimp Xext(t) − kexp Xint(t) − kassoc Xint(t) (sPXR − PR(t))

−kmet CYP3A4(t)Xint(t) + kdis PR(t)

d PR(t)

dt
= kassoc Xint(t) (sPXR − PR(t)) − kdis PR(t)

d mRNA(t)

dt
= kmRNA PR(t) − kmRNA ,deg mRNA(t) + pmRNA ,back

d CYP3A4(t)

dt
= kcyp mRNA(t) − kcyp,deg CYP3A4(t)

with variables (substance concentrations)

Xext = Xenobiotic concentration outside the cell

Xint = Xenobiotic concentration inside the cell

PR = PXR/RXR heterodimer concentration

mRNA = mRNA concentration

CYP3A4 = CYP3A4 concentration
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A model for ligand-binding to the nuclear PXR receptor

and where

d(t) = time-dependent dosing function

kimp = first order import constant for the xenobiotic

kexp = first order export constant for the xenobiotic

kassoc = association rate constant for PXR/RXR heterodimer formation

sPXR = the total system PXR concentration (binded and free)

kmet = second order metabolic constant

kdis = first order dissocation constant

kmRNA = first order transcription rate constant for mRNA

kmRNA ,deg = first order degradation coefficient for mRNA

pmRNA ,back = background production rate for mRNA

kcyp = first order translation rate constant for CYP3A4

kcyp,deg = first order degradation coefficient for CYP3A4
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Pharmacokinetic models
The systems of ODE’s result from the assumed physical and chemical properties of the
involved processes and are often stiff .

The compartmental modeling procedure has been used for decades. Dedicated PBPK
software exists: CellDesigner, ADAPT, Simcyp, NONMEM.

PBPK models can be highly sophisticated multi-compartmental models for the action of
several substances, including feedback loops and drug-drug interaction. Repeated dosing
can be simulated as well by extension of the initial conditions.

Many pharmacologic phenomena can be modelled as long as we know the correct
equations for the underlying processes and the correct values of the involved parameters!

Typically, only part of the model’s parameters is known from literature or obtainable from
direct experimental measuring. Parameter estimation is an integral part of the modeling
process itself. It is done through collecting of in vitro or in vivo data from donors and
subsequent curve fitting (see the next slide).

Curve fitting (mostly sum of squares minimization or maximum likelihood estimation)
represents constrained optimization: the desired parameters are mostly positive and must
lie in physically meaningful intervals. In fact, the parameter estimation problems may be
ill-posed and regularization may be necessary. Sometimes a sensitivity analysis is
performed.
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A PBPK model for the action of Rifampicin

Curve fitting of the mRNA fold induction for various values of sPXR and pmRNA ,back :
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Notice the outlier at time t = 2880 caused by inappropriate physical circumstances that
might be ignored.
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Parameter estimation

The parameter estimation makes the computational costs significantly more expensive:

The iterative optimization process requires repeated computation of the ODE model.

Thus in fact a sequence of systems of ODE’s needs to be solved.

Efficient optimization procedures therefore have a large impact on total costs.

Modeling and parameter estimation are often alternated for iterative refinement.

Models can be very (experimental) data-driven. In addition to parameter fitting there is a
tendency to perform model fitting as well, when the underlying biophysical processes are
not understood or too complicated.

For example, delay of substance transport is sometimes modeled, without knowledge of its
biophysical cause or its location, through artificially increasing the number of compartments
(defining so-called transit compartments).

This is one motivation for including spatial resolution .
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Spatial resolution?

Further reasons to add spatial resolution to the models could be:

In some clinical applications spatial information is indispensable, for instance when
the drug is efficient only if it reaches very precise organ locations (e.g. the retina for
eye diseases).

Because elevated drug concentrations are often toxic , it is crucial to monitor not only
the average drug level all over a compartment, but to detect possible localized
maxima as well. Similarly, approaching the so-called no-observed-adverse-effect
levels should be detectable locally, inside compartments.

In other applications, spatial resolution may not seem necessary at first sight, but
might reveal unexpected explanations for observed pharmacological phenomena.

While substances can often be assumed to be homogenously distributed, it would be
beneficial to provide spatial resolution in those compartments, where physiological
properties or observations suggest heterogenous distributions.

Mathematically this leads to a mixed system of PDEs coupled with ODEs .

For the above Rifampicin model, we may assume that the most interesting localized
reactions take place in the cytoplasm and consider the following coupling:
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A mixed PDE/ODE model
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A mixed PDE/ODE model for the action of Rifampicin

υext
d Xext(t)

dt
= d(t) −

kimp

σext
Xext(t) +

kexp

σext

∫

Γext

Xint(t , x)dS

∂t Xint(t , x) = Dint ∆Xint(t , x) − kassoc Xint(t , x)PXR(t , x)

−kmet CYP3A4(t , x)Xint(t , x) + kdisPR(t , x)

∂t PXR(t , x) = DPXR ∆PXR(t , x) − kassoc Xint(t , x)PXR(t , x) + kdisPR(t , x)

∂t PR(t , x) = DPR ∆PR(t , x) + kassoc Xint(t , x)PXR(t , x) − kdisPR(t , x)

d mRNAnuc(t)
dt

=
kmRNA ,nuc

σnuc

∫

Γnuc

PR(t , x)dS − kmRNA ,deg mRNAnuc(t)

+pmRNA ,back +
knuc

σnuc

(∫

Γnuc

mRNAcyt(t , x)dS −mRNAnuc(t)

)

∂t mRNAcyt(t , x) = DmRNA ∆mRNAcyt(t , x)

∂t CYP3A4(t , x) = DCYP3A4 ∆CYP3A4(t , x) + kcyp mRNAcyt(t , x)

−kcyp,deg CYP3A4(t , x).

with additional variables

PXR = Free (unbinded) PXR concentration

mRNAnuc = mRNA concentration in the nucleus

mRNAcyt = mRNA concentration in the cytoplasm
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A mixed PDE/ODE model for the action of Rifampicin
and additonal parameters

υext = volume of exterior compartment

σext = surface of cell exposed to the exterior compartment

DS = diffusion coeffient (or matrix) for substance S in the cytoplasm

σnuc = surface of the nucleus

kmRNA ,nuc = first order transcription rate constant for mRNA in the nucleus

knuc = first order transport coefficient for mRNA from nucleus to cytoplasm

The boundary conditions for the cytoplasm are, with the boundary of the cytoplasm
consisting of the exterior boundary Γext and the boundary with the nucleus Γnuc :

Dint ∂nXint(t , x) = 0 on Γnuc

υext Dint ∂nXint(t , x) =
kimp

σext
Xext(t) −

kexp

σext
Xint(t , x) on Γext

DPXR ∂nPXR(t , x) = 0 on Γnuc ∪ Γext

DPR ∂nPR(t , x) = 0 on Γnuc ∪ Γext

DmRNA ∂nmRNAcyt(t , x) = 0 on Γext

DmRNA ∂nmRNAcyt(t , x) = −
knuc

σnuc

(

mRNAcyt(t , x) −mRNAnuc(t)
)

on Γnuc

DCYP3A4 ∂nCYP3A4(t , x) = 0 on Γnuc ∪ Γext
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A first simple mixed PDE/ODE model

A first, very simple attempt towards computation of the previous model is to consider only
three substances:

u1 – the ligand outside the cell

u2 – the ligand binded to the receptor in the cytoplasm

u3 – the mRNA in the nucleus (here simply activated without transport)

u′1 = d(t) − k1u1 −
s12
v1

k12 (u1 −
1
R u2)

u′2 = −k2u2 + s12
v2

k12 (u1 −
1
R u2)

u′3 = p3 − k3u3 + p23u2

To add spatial resolution, replace u2(t) by ũ2(t , x), x ∈ Ω:

u′1 = d(t) − k1u1 −
s12
v1

k̃12 (u1 −
1
R

>
Γext

ũ2 dS)

∂
∂t ũ2 − D∆ũ2 = −k2ũ2 for all x ∈ Ω

−D∇ũ2 · n = −k̃12 (u1 −
1
R ũ2) for x ∈ Γext , zero otherwise

u′3 = p3 − k3u3 + p23

>
Γnuc

ũ2 dS

Γext, Γnuc ⊂ ∂Ω represent the interfaces with the other two compartments.
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A first simple mixed PDE/ODE model

We assume that Ω is a 1D domain, Ω = [0,1] and let R = 1. In this case

>
Γext

ũ2 dS = ũ2(t ,0),
>
Γnuc

ũ2 dS = ũ2(t ,1), and ∆ũ2 = ∂2

∂x2 ũ2.

The first simple mixed PDE/ODE model then has the form

u′1(t) = d(t) − k1u1(t) −
s12
v1

k̃12 (u1(t) − ũ2(t ,0))

∂
∂t ũ2(t , x) − D ∂2

∂x2 ũ2(t , x) = −k2ũ2(t , x) for all x ∈ (0, 1)

D ∂
∂x ũ2(t ,0) = −k̃12 (u1(t) − ũ2(t , x)) for x = 0

D ∂
∂x ũ2(t ,1) = 0 for x = 1

u′3(t) = p3 − k3u3(t) + p23ũ2(t , 1)

Initial conditions are set to be

u1(0) = uinit
1 , ũ2(0, x) = 0 ∀x ∈ [0,1], u3(0) = p3/k3.
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Simplest PDE/ODE model

The following graphs give consecutively the solutions u1, ũ2 and u3 obtained from 1D
discretization (Ω = [0,1]) and using equidistant mesh with N = 100 spatial points. The
diffusion D is chosen as the scalar D = 0.01, other parameters are taken from the
(sometimes fitted) values in the original model.
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Simplest PDE/ODE model
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There is a clear delay due to the diffusion in the cytoplasm.
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Slightly extended PDE/ODE model

To come closer to the desired model, we can add a fourth substance u4 representing the
mRNA-induced metabolizing enzyme in the cytoplasm. Be aware of the feedback loop - the
enzyme metabolizes not only disease-causing substances, but the ligand as well:

u′1 =
d(t)
v1
− k1u1 −

s12
v1

k12 (u1 −
1

R12
u2)

u′2 = −k2u2 − kmet u2u4 + s12
v1

k12 (u1 −
1

R12
u2)

u′3 = p3 − k3u3 + s23
v3

p23u2 −
s23
v3

k23 (u3 −
1

R34
u4)

u′4 = −k4u4 + k34 (u3 −
1

R34
u4)

Replacing u2(t) by ũ2(t , x) and u4(t) by ũ4(t , x), x ∈ Ω, we obtain

u′1 =
d(t)
v1
− k1u1 −

s12
v1

k̃12 (u1 −
1

R12

>
Γext

ũ2 dS)

∂
∂t ũ2 − D2∆ũ2 = −k2ũ2 − kmet ũ2ũ4 for all x ∈ Ω

−D2∇ũ2 · n = −k̃12 (u1 −
1

R12
ũ2) for x ∈ Γext, zero for x ∈ Γnuc

u′3 = p3 − k3u3 +
s23
v3

p23

>
Γnuc

ũ2 dS − s23
v3

k̃23(u3 −
1

R34

>
Γnuc

ũ4 dS)

∂
∂t ũ4 − D4∆ũ4 = −k4ũ4 for all x ∈ Ω

−D4∇ũ4 · n = −k̃23 (u3 −
1

R34
ũ4) for x ∈ Γnuc, zero for x ∈ Γext
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Slightly extended PDE/ODE model

Assuming again that Ω = [0,1] and letting R12 = R34 = 1, we obtain

u′1(t) =
d(t)
v1
− k1u1 −

s12
v1

k̃12(u1(t) − ũ2(t , 0))

∂
∂t ũ2(t , x) − D2

∂2

∂x2 ũ2(t , x) = −k2ũ2(t , x) − kmet ũ2(t , x)ũ4(t , x) for all x ∈ (0, 1)

D2
∂
∂x ũ2(t ,0) = −k̃12 (u1(t) − ũ2(t ,0)) for x = 0

∂
∂x ũ2(t ,1) = 0 for x = 1

u′3(t) = p3 − k3u3(t) +
s23
v3

p23ũ2(t , 1) −
s23
v3

k̃23(u3(t) − ũ4(t , 1))

∂
∂t ũ4(t , x) − D4

∂2

∂x2 ũ4(t , x) = −k4ũ4(t , x) for all x ∈ (0, 1)

∂
∂x ũ4(t ,0) = 0 for x = 0

−D4
∂
∂x ũ4(t ,1) = −k̃23 (u3(t) − ũ4(t ,1)) for x = 1

Initial conditions are set to be

u1(0) = uinit
1 , ũ2(0, x) = 0 ∀x ∈ [0, 1], u3(0) = p3/k3, ũ4(0, x) = 0 ∀x ∈ [0, 1].

Notice the nonlinear term ũ2ũ4.
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Slightly extended PDE/ODE model
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A 1D mixed PDE/ODE model for the action of Rifampicin
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A 1D mixed PDE/ODE model for the action of Rifampicin
Now consider a 1D mixed PDE/ODE model for the action of Rifampicin. Again, we have

∫

Γext

W(t , x)dS = W(t ,0),
∫

Γnuc

W(t , x)dS = W(t ,1)

and thus the system of mixed PDE/ODE equations has the form

υext
d Xext(t)

dt
= d(t) −

kimp

σext
Xext(t) +

kexp

σext
Xint(t , 0)

∂t Xint(t , x) = Dint ∆Xint(t , x) − kassoc Xint(t , x)PXR(t , x)

−kmet CYP3A4(t , x)Xint(t , x) + kdisPR(t , x)

∂t PXR(t , x) = DPXR ∆PXR(t , x) − kassoc Xint(t , x)PXR(t , x) + kdisPR(t , x)

∂t PR(t , x) = DPR ∆PR(t , x) + kassoc Xint(t , x)PXR(t , x) − kdisPR(t , x)

d mRNAnuc(t)

dt
=

kmRNA ,nuc

σnuc
PR(t , 1) − kmRNA ,deg mRNAnuc(t)

+pmRNA ,back +
knuc

σnuc

(

mRNAcyt(t ,1) −mRNAnuc(t)
)

∂t mRNAcyt(t , x) = DmRNA ∆mRNAcyt(t , x)

∂t CYP3A4(t , x) = DCYP3A4 ∆CYP3A4(t , x) + kcyp mRNAcyt(t , x)

−kcyp,deg CYP3A4(t , x)
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A 1D mixed PDE/ODE model for the action of Rifampicin

Boundary conditions are:

−υext Dint
∂

∂x
Xint(t , x)|x=0 =

kimp

σext
Xext(t) −

kexp

σext
Xint(t , 0)

Dint
∂

∂x
Xint(t , x)|x=1 = 0

DPXR
∂

∂x
PXR(t , x)|x=0 = DPXR

∂

∂x
PXR(t , x)|x=1 = 0

DPR
∂

∂x
PR(t , x)|x=0 = DPR

∂

∂x
PR(t , x)|x=1 = 0

DmRNA
∂

∂x
mRNAcyt(t , x)|x=0 = 0

DmRNA
∂

∂x
mRNAcyt(t , x)|x=1 = −

knuc

σnuc

(

mRNAcyt(t , 1) −mRNAnuc(t)
)

DCYP3A4
∂

∂x
CYP3A4(t , x)|x=0 = DCYP3A4

∂

∂x
CYP3A4(t , x)|x=1 = 0
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A 1D mixed PDE/ODE model for the action of Rifampicin

Initial conditions are:

Xext(0) = Xext
init

Xint(0, x) = 0

PXR(0, x) = 1

PR(0, x) = 0

mRNAnuc(0) = mRNAnuc
init

mRNAcyt(0, x) = mRNAcytss =
pmRNA ,back

kmRNA ,deg

CYP3A4(0, x) = CYP3A4ss =
kcyp

kcyp,deg
mRNAcytss

for all x ∈ [0,1].
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A 1D mixed PDE/ODE model for the action of Rifampicin
The parameters are taken from the literature and have the values:

kimp = kexp = 6.55 · 10−3, kmet = 2.47 · 10−5, kmRNA ,deg = 4 · 10−2

kdis = 1.03 · 10−4, kassoc = kdis/5.6, pmRNA ,back = 2.83 · 10−7

kcyp = 2.5, kcyp,deg = 2.7 · 10−4, kmRNA ,nuc = 39.3, knuc = 306

υext = 1.0, σext = 1.1 · 10−5, σnuc = 2.36 · 10−6

These values are usually used in the model above for computational purposes but it is not
sure that they are correct for this model. So, it may be better to use fitted values of some
parameters (e.g. pmRNA ,back ).

The values of diffusion coefficients

Dint , DPXR , DPR , DmRNA , DCYP3A4

are unknown.

Initial conditions are:

Xext
init = 10, mRNAnuc

init = 2 · 10−5, d(t) = 0,

i.e., no dosing added into the system but with initial nonzero xenobiotic concentration
outside the cell.
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The method - two approaches
The main idea in solving the above PDE/ODE system is to replace the second derivative in
the space variable by finite differences. We create an equidistant mesh x0, x1, . . . , xN−1, xN
of N + 1 nodes, where x0 = 0 and xN = 1, and obtain a system of 5N + 7 ODEs.
Notation:

u1(t) ≡ Xext(t), u2(t, x) = Xint(t , x), . . . , u7(t, x) = CYP3A4(t , x),

where x = (x0, . . . , xN)
T ∈ RN+1 . We arrive to solving the ODE of the form

v ′(t) = Av(t) + b(t)

where

v(t) = [u1(t), u2(t, x),u3(t, x), u4(t, x), u5(t), u6(t, x), u7(t, x)]
T ∈ R5N+7,

b(t) = [d(t)/υext ,−kassocu2u3−kmet u2u7,−kassocu2u3, kassocu2u3,pmRNA ,back , o,o]T ∈ R5N+7

and A is a sparse constant matrix with model parameters (18N + 15 nonzero elements).
We used two approaches:

The software ODEPACK developed by Alan Hindmarsh

The Crank-Nicolson or the backward Euler scheme. The time derivatives are
replaced by finite differences with a time step ∆t . This leads to solving a linear
system of equations. From the values v(t) we obtain new values v(t +∆t).

In both cases, we obtained practically the same results.
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The method - backward Euler Newton method
The time derivatives are replaced by finite differences with a time step ∆t :

v ′(t) = Av(t) + b(t) ⇒
v(t j+1) − v(t j)

∆t
= Av(t j+1) + b(t j+1)

[I −∆t A ] v(t j+1) −∆t b(t j+1) = v(t j)

In fact, the term b(t j+1) ≡ b(v(t j+1)) is nonlinear, so we use the Newton method. Denote

x ≡ v(t j+1), p(x) = [I −∆t A ] x −∆t b(x), q = v(t j).

Then we seek x such that
F(x) ≡ p(x) − q = 0.

The Newton method starts with x(0) and produces iterations x(1), x(2), . . . , x(K) such that

x(k+1) = x(k ) + d(k ), where J(x(k ))d(k ) = −F(x(k )),

where J(x) is a sparse Jacobi matrix of F(x) (23N + 20 nonzero elements).
We take x(0) = v(t j) and v(t j+1) = x(K). It holds

−F(x(0)) = ∆t
[

Av(t j) + b(t j)
]

,

−F(x(k )) = q − x(k ) +∆t
[

Ax(k ) + b(x(k ))
]

.
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The method - BEN algorithm

The algorithm for creating time evolutions v(t0), v(t1), . . . , v(tm) :

1 Determine model parameters matrix A , set Ā = ∆t A and j = 0.

2 Determine vector b(t j) and set b̄(t j) = ∆t b(t j).

3 Set x(0) = v(t j) and −F(x(0)) = Āx(0) + b̄(x(0)).

4 Set Ã = I − Ā and b̃(t j) = −b̄(t j).

5 Set k = 0 and determine a Jacobi matrix J(x(k )) = F ′(x(k )).

6 Compute d(k ) as a solution of a system J(x(k ))d(k ) = −F(x(k )).

7 Set x(k+1) = x(k ) + d(k ) and −F(x(k+1)) = v(t j) −
[

Ãx(k+1) + b̃(x(k+1))
]

.

8 If ‖dk ‖ ≤ εd or ‖F(x(k+1))‖ ≤ εF or k + 1 = K then set v(t j+1) = x(k+1) and
GOTO step 10.

9 Update J(x(k+1)), set k := k + 1 and GOTO step 6.

10 If j + 1 < m, set j := j + 1 and GOTO step 2.
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Parameter estimation

Collecting of experimental data from donors and subsequent estimation of missing
parameters (diffusion coefficients and others): the estimates are obtained through curve
fitting, i.e. minimization of a sum of squares based on comparing observed and computed
concentrations:

Z(q∗) = min
q

Z(q), where Z(q) =
p

∑

j=1

(ū(tj , q) − Rj)
2

where

q∗ is the optimal parameter set that minimizes the ordinary least squares (OLS) cost
function Z

R represents the set of observed concentrations in times tj , in this case the mRNA
fold induction

ū(tj ,q) is the time course model result (solution of ODEs) in times tj , in this case the
average value of the mRNA fold induction over space variables, i.e.

ū(tj , q) =
1

N + 1

N
∑

i=0

u6(tj , xi)

p is a number of observations
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Parameter estimation

Software used: The UFO system (Ladislav Lukšan et al.)

http://www.cs.cas.cz/luksan/ufo.html

Methods used:

Variable metric method (VM) – it uses approximations of the Hessian matrix or its
inverse

Heuristic method (HM) – it does not require continuity of the objective function

Note that the objective function is not smooth as it is a solution of a system of ODEs.
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The results for the action of Rifampicin

The results for CYP3A4 mRNA fold induction when N = 2 and N = 10 follow. When
minimizing function Z , the outlier at time t = 2880 is omitted from the set of observations.
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Mixed PDE/ODE models - summary

The main mathematical and numerical challenges with a mixed PDE/ODE model are:

Correct PDE-formulation of the processes, existence, uniqueness, stability of the
(periodic) solution

Computational costs become an important issue. We need efficient numerical
methods for:

Time- and space-discretization (finite elements mesh generation)

The solution of the discretized nonlinear coupled PDE/ODE model (a (quasi-)Newton
type method)

The solution of linear systems (Krylov subspace methods, preconditioning,
sequences of linear systems)

The sum of squares minimization when estimating the parameters (curve fitting)

Recall that during parameter estimation, the model must be run repeatedly! It is a two-level
problem:

outer problem – minimization of Z subject to q

inner problem – solution of a system of ODEs for ū(tj ,q)
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