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Introduction

The aim of this contribution is to establish the link between
experimental conditions (experimental protocol) and the accuracy of
the resulting model parameter estimate.

The idea is presented in a simplified case study of FRAP
(Fluorescence Recovery After Photobleaching) data processing.

It serves as a paradigmatic example of the inverse problem of the
diffusion parameter estimation from spatio-temporal measurements.

A natural question is how to design an experiment optimaly, i.e.,
how the experimental settings influence the accuracy of resulting
parameter estimates.
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Process model: Fick diffusion equation

Diffusion equation:
∂u

∂t
= δ

(

∂2u

∂r2
+

1

r

∂u

∂r

)

, (1)

where r ∈ [0, 1], t ∈ [0, 1], with the initial and Neumann boundary
conditions

u(r , 0) = u0(r),
∂u

∂r
(1, t) = 0. (2)

The main issue is to find the value of the diffusion coefficient δ from
spatio-temporal measurements of the concentration uM(r , t).

The measured data:

uM(ri , tj), i = 0 . . . n, r0 = 0, rn = 1,

j = 0 . . .m, t0 = 0, tn = 1,

The data points are uniformly distributed in spatio-temporal grid.
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Global sensitivity measure SGRS

When solving the inverse problem to (1)-(2):
Noise in data ⇒ an estimated value δ.

The expected relative error in δ depends on the data noise and the
sensitivity measure SGRS (global sensitivity):
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where σ2 denotes the variance of the additive Gaussian noise.

The sensitivity measure SGRS is

SGRS := δ2
n
∑

i=0

m
∑

j=1

[

∂

∂δ
u(ri , tj)

]2

, (4)

If the noise level is fixed, the estimation of δ can only be improved by an
experimental design with a higher sensitivity SGRS .
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Initial bleach as the experimental design parameter

We look for an optimal initial bleach shape (pattern), i.e., we aim to
select initial conditions in such a way that SGRS is maximized and hence
the expected error in δ is minimized.

The class of designs:

u0(r) =

{

1, r ∈ B,

0, else,
(5)

where B is an open subset of [0, 1].

We seek
Bopt = arg max

B⊂[0,1]
SGRS . (6)
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Numerical methods

We use a finite difference Crank-Nicholson (CN) scheme to compute a
numerical solution u(ri , tj), i = 0 . . . n − 1, j = 1 . . .m, of the initial
boundary value problem (1)-(2).

Replacing the derivative with a finite difference, the sensitivity measure
SGRS can be approximated with a value Sapp as follows

SGRS ≈ Sapp =

m
∑

j=1

j2
n
∑

i=0

[u(ri , tj)− u(ri , tj−1)]
2
. (7)

The values u(ri , tj) are computed from u(ri , tj−1) using the CN scheme,
thus no extra work is necessary.
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Numerical example

To demonstrate the optimal configurations of the initial condition let us
choose n = 30, m = 200 and find such an initial condition
(u0(r0), . . . , u0(rn))

T ∈ Rn+1 in form of a {1, 0}-function, cf. (5), that
maximizes the value Sapp (7) for 1/δ = 1, 2, . . . , 120.

For the sake of simplicity we consider four types of shapes (or patterns)
of the initial condition (the sets B in (5)):

disc: u0(x) = (1, 0)

annulus: u0(x) = (0, 1, 0)

disc+annulus: u0(x) = (1, 0, 1, 0)

double annulus: u0(x) = (0, 1, 0, 1, 0)
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Numerical example: Results 1
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The result of optimization problem (6): each vertical line indicates the
non-zero sub-vector of u0 for which Sapp is maximal.
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Numerical example: Results 2
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Each curve indicates the maximum value of Sapp determined by initial
conditions from the four groups listed above.
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Numerical example: Results 3
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Disc – optimal u0 for δ = 0.05 (1/δ = 20) and time evolution u(r , tj )
computed using the CN scheme.
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Numerical example: Results 4
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Annulus – optimal u0 for δ = 0.05 (1/δ = 20) and time evolution u(r , tj )
computed using the CN scheme.
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