On the optimal initial conditions for an inverse problem of model parameter estimation

Ctirad Matonoha¹, Štěpán Papáček²

¹Institute of Computer Science AS CR, Prague 8

²Institute of Complex Systems, University of South Bohemia in České Budějovice, FFPW USB, CENAKVA, Nové Hrady

Seminar on Numerical Analysis and Winter School Ostrava, January 30 – February 3, 2017

- The aim of this contribution is to establish the link between experimental conditions (experimental protocol) and the accuracy of the resulting model parameter estimate.
- The idea is presented in a simplified case study of FRAP (Fluorescence Recovery After Photobleaching) data processing.
- It serves as a paradigmatic example of the inverse problem of the diffusion parameter estimation from spatio-temporal measurements.
- A natural question is how to design an experiment optimaly, i.e., how the experimental settings influence the accuracy of resulting parameter estimates.

Diffusion equation:

$$\frac{\partial u}{\partial t} = \delta \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} \right), \tag{1}$$

where $r \in [0, 1]$, $t \in [0, 1]$, with the initial and Neumann boundary conditions

$$u(r,0) = u_0(r), \quad \frac{\partial u}{\partial r}(1,t) = 0.$$
 (2)

The main issue is to find the value of the diffusion coefficient δ from spatio-temporal measurements of the concentration $u^{M}(r, t)$.

The measured data:

$$u^{M}(r_{i}, t_{j}),$$
 $i = 0 \dots n, r_{0} = 0, r_{n} = 1,$
 $j = 0 \dots m, t_{0} = 0, t_{n} = 1,$

The data points are uniformly distributed in spatio-temporal grid.

Global sensitivity measure S_{GRS}

When solving the inverse problem to (1)-(2): Noise in data \Rightarrow an estimated value $\overline{\delta}$.

The expected relative error in δ depends on the data noise and the sensitivity measure S_{GRS} (global sensitivity):

$$\mathbb{E}\left(\left|\frac{\overline{\delta}-\delta}{\delta}\right|^2\right) \sim \frac{\sigma^2}{S_{GRS}},\tag{3}$$

where σ^2 denotes the variance of the additive Gaussian noise.

The sensitivity measure S_{GRS} is

$$S_{GRS} := \delta^2 \sum_{i=0}^{n} \sum_{j=1}^{m} \left[\frac{\partial}{\partial \delta} u(r_i, t_j) \right]^2, \tag{4}$$

If the noise level is fixed, the estimation of δ can only be improved by an experimental design with a higher sensitivity S_{GRS} .

We look for an optimal initial bleach shape (pattern), i.e., we aim to select initial conditions in such a way that S_{GRS} is maximized and hence the expected error in δ is minimized.

The class of designs:

$$u_0(r) = \begin{cases} 1, & r \in B, \\ 0, & \text{else,} \end{cases}$$
(5)

where B is an open subset of [0, 1].

We seek

$$B_{opt} = \arg \max_{B \subset [0,1]} S_{GRS}.$$
 (6)

We use a finite difference Crank-Nicholson (CN) scheme to compute a numerical solution $u(r_i, t_j)$, $i = 0 \dots n - 1$, $j = 1 \dots m$, of the initial boundary value problem (1)-(2).

Replacing the derivative with a finite difference, the sensitivity measure S_{GRS} can be approximated with a value S_{app} as follows

$$S_{GRS} \approx S_{app} = \sum_{j=1}^{m} j^2 \sum_{i=0}^{n} \left[u(r_i, t_j) - u(r_i, t_{j-1}) \right]^2.$$
(7)

The values $u(r_i, t_j)$ are computed from $u(r_i, t_{j-1})$ using the CN scheme, thus no extra work is necessary.

To demonstrate the optimal configurations of the initial condition let us choose n = 30, m = 200 and find such an initial condition $(u_0(r_0), \ldots, u_0(r_n))^T \in \mathbb{R}^{n+1}$ in form of a $\{1, 0\}$ -function, cf. (5), that maximizes the value S_{app} (7) for $1/\delta = 1, 2, \ldots, 120$.

For the sake of simplicity we consider four types of shapes (or patterns) of the initial condition (the sets B in (5)):

disc:	$u_0(x)=(1,0)$
annulus:	$u_0(x) = (0, 1, 0)$
disc+annulus:	$u_0(x) = (1, 0, 1, 0)$
double annulus:	$u_0(x) = (0, 1, 0, 1, 0)$

The result of optimization problem (6): each vertical line indicates the non-zero sub-vector of u_0 for which S_{app} is maximal.

Each curve indicates the maximum value of S_{app} determined by initial conditions from the four groups listed above.

Disc – optimal u_0 for $\delta = 0.05 (1/\delta = 20)$ and time evolution $u(r, t_j)$ computed using the CN scheme.

Annulus – optimal u_0 for $\delta = 0.05$ $(1/\delta = 20)$ and time evolution $u(r, t_j)$ computed using the CN scheme.

Š. Papáček, R. Kaňa, C. Matonoha

Estimation of diffusivity of phycobilisomes on thylakoid membrane based on spatio-temporal FRAP images.

Mathematical and Computer Modelling 57 (2013), 1907-1912.

🥐 R. Kaňa, E. Kotabová, M. Lukeš, Š. Papáček, C. Matonoha, L.N. Liu, O. Prášil, C.W. Mullineaux

Phycobilisome mobility and its role in the regulation of light harvesting in red algae. Plant Physiology 165(4) (2014), 1618-1631.

S. Kindermann, Š. Papáček

On data space selection and data processing for parameter identification in a reaction-diffusion model based on FRAP experiments. Abstract and Applied Analysis, Article ID 859849 (2015).

📎 C. Matonoha, Š. Papáček

On the connection and equivalence of two methods for solving an ill-posed inverse problem based on FRAP data

Journal of Computational and Applied Mathematics, **290** (2015), 598–608.

This work was supported by the long-term strategic development financing of the Institute of Computer Science (RVO:67985807). and by the Ministry of Education. Youth and Sport of the Czech Republic - projects CENAKVA (No. CZ.1.05/2.1.00/01.0024) and CENAKVA II (No. LO1205 under the NPU I program).