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Abstract
Our work is focused on the so-called model-based design of experiments (MBDOE) and shows practical applications in

biological research. Although the MBDOE method is model independent, we restrict ourselves to the parameter estimation

problem for a reaction-diffusion PDE system in form of the Initial Boundary Value Problem (IBVP). The presented case

study is focused on the FRAP (Fluorescence Recovery After Photobleaching) experimental technique applied to study

the mobility of photosynthetic protein complexes within the Institute of Microbiology CAS, Třeboň, CZ, and we reached

rather surprising results, e.g., (i) Ill-posedness of the inverse problem when the diffusivity can vary in time, (ii) Lotus-like

plot for the optimal data space selection, (iii) Disk vs. Annulus ‚ alternating winners of the competition for the best bleach

topology.

1 STATE-OF-THE-ART OF FRAP DATA PROCESSING

Fig. 1 A - Upper left: Image of red algae P. Cruentum acquired by the confocal laser scanning microscopy (CLSM) 8 s

after bleaching. Four regions of interest (ROI) are labeled as yellow rectangles. A - Lower left: Recovery dynamics in

time-sequence of one-dimensional bleach profiles perpendicular to the bleach stripe. The fluorescence in central ROI

is recovered with the growing time. B: Time series of the space-averaged fluorescence signal over 4 different ROI. The

lowest curve corresponding to the bleached ROI is the so-called FRAP recovery curve, Kaňa et al. (2014).

2 MATHEMATICAL MODEL

Initial Boundary Value Problem (IBVP)
Let us have u = (u1, ..., uqc)

T vector of concentrations of qc a priori not fixed interacting components, D a diagonal matrix
of diffusion coefficients (Dk)

qc
k=1, and K a matrix of reaction rates, then the reaction-diffusion PDE is

∂u(x, t)

∂t
= D∆u(x, t)−Ku(x, t), x ∈ Ω, t ∈ [0, T ], (1)

with initial conditions uk(x, 0) = uk0ϕ(x), k ∈ {1, . . . , qc} , ϕ(x) is an initial shape.

Boundary conditions could be of Dirichlet or Neumann type, e.g., u(x, t) = 0, or ∂u(x,t)
∂n = 0, on ∂Ω × [0, T ].

The measured fluorescent signal y (on spatio-temporal grid) is proportional to the sum of concentration profiles∑qc
k=1 uk(xi, tj).

Model-parameter estimation – Inverse (ill-posed) problem !?
We define the forward map (also called the parameter-to-data map)

F : Rq → RNdata, F (p) = (y(xi, ti))
Ndata
i=1 ,

where the total number of parameters to identify is q = qc + qr, i.e., p ∈ Rq.

Our regression model for the parameter vector p, is

F (p) = data, (2)

where the data are usually contaminated with additive white noise

data = F (pT ) + e = (y(xi, ti))
Ndata
i=1 + (ei)

Ndata
i=1 , (3)

i.e., e(tj) = N (0, σ2), for each time instant tj, and pT ∈ Rq are true coefficients.

The aim of the parameter estimation is to find p ∈ Rq such that (4) is satisfied:

∥F (pc)− data∥2 = min
p

∥F (p)− data∥2. (4)

This is usually ill-posed problem, thus a regularization technique has to be employed, see e.g., Engl, Hanke, Neubauer
(1996), Papáček et al. (2013).

3 OPTIMIZATION OF AN EXPERIMENT DESIGN

Sensitivity and Fisher information matrix
First, we require the Fréchet-derivative F ′[p] ∈ RNdata×q of the forward map F :

F ′[p] =
∂

∂p
F (p) =

(
∂

∂p
y(x1, t1), . . . ,

∂

∂p
y(xNdata

, tNdata
)

)T

.

A corresponding quantity (a ”global sensitivity”) is the Fisher information matrix

M = F ′[p]TF ′[p] ∈ Rq×q. (5)

In order to discriminate between relevant and irrelevant data, we compute ( ∂
∂py(x, t)) and select the data regions by

ordering all data points according to their ”local sensitivities” ( ∂
∂py(x1, t1))

2 ≤ ( ∂
∂py(x2, t2))

2 ≤ ... Then we select the reduced
data from the region of points (xi, ti), i = 1, . . . , N̄data using this ordering. I.e., we take the most sensitive data points as
relevant data (for some fixed value of η). The resulting visualization is the lotus-like plot, cf. Fig. 2, where the gray regions
correspond to regions where (for a previously chosen threshold η) the relevant data (N̄data) are taken, Kindermann and
Papáček (2015).

The key relation is:

(p̄c − pT )
2

Ndata∑
i=1

[
∂

∂p
y(xi, ti)

]2
≤ (1 + η)

res2(p̄c)

N̄data − 1
f1,Ndata−1(α) ≈ σ2. (6)

Lemma 1: Let N̄data be the number of reduced (relevant) data points and suppose that η is chosen according to

η ≥
∑Ndata

i=N̄data+1
( ∂
∂py(xi,ti))

2

∑N̄data
i=1 ( ∂

∂py(xi,ti))
2

. Then using reduced data, we find a confidence interval (for p̄c) of the form (6). The ratio N̄data
Ndata

indicates the fraction of ”η-relevant” data points taken over all data points. The factor 1 + η represents the enlargement

of the confidence interval compared to pc.
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Fig. 2a: Ratio N̄data
Ndata

= 0.1 was determined for
η = 1, i.e., confidence interval for p̄c compared
to pc is twofold, but only 10% of data is taken.

Fig. 2b: A lotus-like plot for the ratio N̄data
Ndata

= 0.31,
corresponding to η = 0.3. For the signification
of lateral petals, see Papáček et al. (2015).

When the bleach topology is subject to optimization...

For radially symmetric problem (R is the size of monitored ROI, T is the experiment
duration), the winner of competition for the best bleach topology depends on R2

4TD,
see Fig. 3.

Fig. 3a: Disk as optimal bleach shape for the
fast diffusion, i.e., low diffusion time tchar: R2

4TD =
tchar
T < 1.8.

Fig. 3b: Optimal bleach shape for higher dif-
fusion time 1.8 < R2

4TD < 6. For more details,
Kindermann and Papáček (2016).

4 CONCLUSION

Our study started with the question: Could the MBDOE method enhance the preci-
sion of parameter estimates? Then the problem of the data space selection and the
optimal initial bleach shape for the FRAP model parameter identification was formu-
lated. As an optimality criterion, we choose to maximize the sensitivity measure M ,
Eq. (5), in order to have the expected error minimal. We studied the optimization
problem with the fixed bleach depth, finding the analytical expressions for the sensi-
tivity measure M , allowing to find the relevant data space and compare different
initial bleach shapes, as well. While the first task was visualized via the lotus-like
plot, the latter revealed even more surprising result: For small values of the scaled
inverse diffusion coefficient (or low values of tchar

T ), the disk is the optimal shape, while
for higher values, shapes with more and more components (i.e. annuli-type shapes)
become optimal (and realizable, cf. Blumenthal et al. (2015)), leading to a significant
improvement in the parameter precision, Kindermann and Papáček (2016).
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Papáček, Š., Jablonský, J., Matonoha, C., Kaňa, R., Kindermann, S. (2015) FRAP & FLIP: Two sides of the same coin?
Bioinformatics and Biomedical Engineering, Volume 9044 of the series Lecture Notes in Computer Science, 444–455.


