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Fick diffusion equation

We deal with the inverse problem of model parameters estimation using
the spatio-temporal images acquired by the so-called FRAP method.

Consider a diffusion process with one single parameter: a diffusion
coefficient D. The governing equation for the spatio-temporal signal
u(x , t) is the Fick diffusion equation

∂u(x , t)

∂t
= D∆u(x , t), x ∈ Ω, t ∈ [0,T ]. (1)

Initial condition:
u(x , 0) = u0(x), x ∈ Ω.

Boundary conditions:

u(x , t) = 0 or
∂

∂n
u(x , t) = 0 on ∂Ω× [0,T ].
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FRAP experiments

In FRAP experiments, IC (the first post-bleach profile) is often modeled
as a Gaussian, which leads in the 1D case to IC of the form

u0(x) = u0,0e
−

2x2

r2
0 ,

u0,0 ≥ 0 is the maximum depth at time t0 for x = 0,

r0 > 0 is the half-width of the bleach at normalized height (depth)

e−2, i.e. u0(r0)
u0,0

= e−2.

The explicit solution for u in the one-dimensional free space case is

u(x , t) = u0,0
r0

√

r20 + 8Dt
e
−

2x2

r2
0
+8Dt .

We now discuss the parameter identification problem, where we try to
infer about the parameter D by using direct measurements of u in some
space-time domain. That is, we assume that the following discrete data
are observed

u(xi , ti ) ∈ R, i = 1, . . . ,Ndata.
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Parameter identification problem

We define the forward map (also called the parameter-to-data map)

F : R → RNdata , F (D) = (u(xi , ti ))
Ndata

i=1

Our regression model is now

F (D) = data (2)

where the data are modeled as contaminated with additive white noise

data = F (DT ) + e = (u(xi , ti ))
Ndata

i=1 + (ei )
Ndata

i=1 .

Here DT ∈ R denotes the true coefficient and e ∈ RNdata is a data error
vector which we assume to be normally distributed with variance σ2:

ei = N (0, σ2), i = 1, . . . ,Ndata.

The aim of the parameter identification problem is to find D such that
(2) is satisfied in some appropriate sense:

‖F (Dc)− data‖2 = min
D

‖F (D)− data‖2. (3)

This problem is usually ill-posed thus regularization has to be employed.
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Sensitivity analysis

For the sensitivity analysis we require the Fréchet-derivative
F ′[D] ∈ RNdata of the forward map F , that is

F ′[D] =
∂

∂D
F (D) =

(

∂

∂D
u(x1, t1), . . . ,

∂

∂D
u(xNdata

, tNdata
)

)T

(4)
A corresponding quantity is the Fisher information matrix

M = F
′[D]TF ′[D]

which collapses into the scalar quantity

M =

Ndata
∑

i=1

(

∂

∂D
u(xi , ti )

)2

for the one single parameter case.
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Confidence intervals

Now we can estimate confidence intervals. Suppose we have computed
Dc as a least-squares solution to (3). Let us define the residual as

res
2(Dc) = ‖F (Dc)− data‖2 =

Ndata
∑

i=1

[uDc
(xi , ti)− datai ]

2
,

where uDc
is a solution to (1) for the computed parameter value Dc .

Then it is possible to quantify an error between Dc and DT . In fact, we
have an approximate 1− α confidence interval

(Dc − DT )
2
Ndata
∑

i=1

[

∂

∂D
u(xi , ti)

]2

≤ res
2(Dc)

Ndata − 1
f1,Ndata−1(α), (5)

where f1,Ndata−1(α) corresponds to the upper α quantile of the Fisher
distribution with 1 and Ndata − 1 degrees of freedom.
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Optimizing an experimental design variable

We can ask further questions concerning the optimal experimental design
based on the sensitivity analysis by looking at further design variables.

We can try to look for such a bleach radius r0 which leads to maximal
sensitivity since this corresponds to minimal confidence intervals.

More precisely, we consider the case of a dense set of observations on a
space-time cylinder Q = [− L

2 ,
L
2 ]× [0,T ] in 1D case and we try to infer

about the optimal bleach radius ropt yielding maximal sensitivity.

We approximate the sensitivity by integrals and forget the grid factor
1

∆x∆t
which is assumed to be fixed. We introduce

S(r0) =

∫ T

0

∫ L
2

−
L
2

∣

∣

∣

∣

∂

∂D
u(x , t)

∣

∣

∣

∣

2

dxdt,

and we try to find out the maximal value of function

S(ropt) = max
r0>0

S(r0).
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Optimal bleach radius

For the special case of full spatial observation on the real line R, i.e.,
L = ∞, we can actually find a formula for the optimal bleach radius:

S(r0) =
|u0,0|2
D3

c

r
3
0K (∞,

TDc

r20
),

where

K (∞, t) =

√
π(1 + 12t + 24t2)

16(1 + 8t)
3
2

−
√
π

16

It turns out that in this setting the function S(r0) has a unique maximum

ropt ≈ 1.728
√

TDc . (6)

Thus, this is the optimal bleach radius (with maximal sensitivity and
hence minimal confidence interval).
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