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FRAP data: Spatio-temporal images

Experimental data from an experiment with red algae Porphyridium

cruentum. FRAP (Fluorescence Recovery After Photobleaching)
technique helps us to reveal the mobility of photosynthetic proteins
(phycobilisomes) due to the DIFFUSION (only!?) on thylakoid
membrane.
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State-of-the-art FRAP data (pre)processing

A - Upper left: Representative image taken 8 s after bleaching. The regions of
interest (ROI) are labeled as yellow rectangles.
A - Lower left: The recovery dynamics in time-sequence of one-dimensional
bleach profiles perpendicular to the bleach stripe. The fluorescence in central
zone is recovered with the growing time.

B - On the right: So-called FRAP recovery curves for 4 different ROI, i.e.,

time series of space-averaged fluorescence signal.
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IBVP – Forward problem formulation

Initial Boundary Value Problem (IBVP): Reaction-diffusion PDE for a
previously not fixed number (qc) of interacting components (ui )

qc
i=1,

∂u(x , t)

∂t
= D∆u(x , t) − Ku(x , t) (1)

with initial conditions

ui(x , 0) = ui0φ(x), i ∈ {1, . . . , qc} , (2)

φ(x) is some given initial shape, D is a diagonal matrix of diffusion coefficients
(Di)

qc
i=1, and K is a (singular) matrix of (qr ) reaction rates. The total number

of parameters to identify is q = qc + qr , i.e., p ∈ R
q. The measured fluorescent

signal is proportional to the sum of concentration profiles
∑n

i=1 ui (x , t).

Boundary conditions could be, e.g.,

u(x , t) = gD(x , t) or
∂u(x , t)

∂n
= gN(x , t) on ∂Ω× [0,T ]. (3)

Q.#1. Is it possible to identify both model structure and parameters?
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Parameter identification problem

We define the forward map (also called the parameter-to-data map)

F : Rq → RNdata , F (p) = (u(xi , ti ))
Ndata

i=1

Our regression model is now

F (p) = data (4)

where the data are modeled as contaminated with additive white noise

data = F (pT ) + e = (u(xi , ti))
Ndata

i=1 + (ei)
Ndata

i=1 .

Here pT ∈ Rq denote the true coefficients and e ∈ RNdata is a data error
vector which we assume to be normally distributed with variance σ2:

ei = N (0, σ2), i = 1, . . . ,Ndata.

The aim is to find a vector of parameters p ∈ Rq such that (4) is
satisfied in some appropriate sense:

‖F (pc)− data‖2 = min
p

‖F (p) − data‖2. (5)

This problem is usually ill-posed thus regularization has to be employed.
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Sensitivity analysis: Key concept of our approach

For the sensitivity analysis we require the Fréchet-derivative
F ′[p] ∈ RNdata×q of the forward map F , that is

F ′[p] =
∂

∂p
F (p) =

(

∂

∂p
u(x1, t1), . . . ,

∂

∂p
u(xNdata

, tNdata
)

)T

(6)

A corresponding quantity is the Fisher information matrix (FIM)

Mq = F ′[p]TF ′[p] ∈ Rq×q

which collapses into the scalar quantity

M1 =

Ndata
∑

i=1

(

∂

∂p
u(xi , ti)

)2

for the one single parameter case (p ∈ R).

Q.#2. How to determine the Fréchet-derivatives having real data only?
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Confidence intervals: the role of inequality (7)

Suppose we have computed pc ∈ R as a least-squares solution to (5). Let
us define the residual as

res
2(pc) = ‖F (pc)− data‖2 =

Ndata
∑

i=1

[upc (xi , ti)− datai ]
2 ,

where upc is a solution to (1-3) for the computed parameter value pc .

Then it is possible to quantify an error between pc and pT . In fact, we
bound the product of two quantities: 1− α confidence interval
(squared) and the sum of squared sensitivities

(pc − pT )
2
Ndata
∑

i=1

[

∂

∂p
u(xi , ti )

]2

≤
res

2(pc)

Ndata − 1
f1,Ndata−1(α) ≈ σ2, (7)

where f1,N
data

−1(α) corresponds to the upper α quantile of the Fisher distribution with 1 (pc ∈ R) and N
data

− 1 degrees of

freedom.
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A simple case study: 1D Fick diffusion equation

Assume the Fick diffusion equation for one component (concentration y)
in 1D domain, i.e.,

∂

∂t
y(x , t) = p∆y(x , t),

x ∈ R and y(x , 0) = y0(x) = u0,0exp(−2x2/r20 ). Further we compare two
data (pre)processings: Integrated vs. Full data approach. We compute the
parameter values pc corresponding to both approaches and 4 cases of
data regions with the growing size (ratios L

2r0
= 1, 5, 10, 20). The

resulting visualization of all 8 results is presented in the next slide –
boxplots of the squared error |pT − pc |2 corresponding to 4 cases of data
regions with the growing size (ratios).

In each pair, the left boxplot corresponds to using full data, while the
right boxplot corresponds to using spatially integrated data on the same
ROI. According to [4], the data set represented by the FRAP
recovery curves (the integrated data approach) leads to a larger
confidence interval compared to the spatio-temporal data
(confirmed by this case study, indeed).
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Integrated vs. Full data approach (for 4 different ROIs)
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Comparison of errors for full data and integrated data

Note: While the value |pT − pc |2 for the full data case is decreasing for
the growing L

2r0
, it exists an optimal L for the integrated data case.
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Optimizing an experimental design variable – bleach radius r0

By maximizing the sensitivity (⇒ minimal confidence interval) we can
optimize an experimental design variable, e.g., bleach radius r0.

Consider the case of a dense set of observations on a space-time cylinder
Q = [− L

2 ,
L
2 ]× [0,T ] in 1D case and try to infer about the optimal

bleach radius ropt yielding maximal sensitivity.
We approximate the sensitivity by integrals and forget the grid factor

1
∆x∆t

which is assumed to be fixed. We introduce the function

S(r0) =

∫ T

0

∫ L
2

−
L
2

∣

∣

∣

∣

∂

∂p
u(x , t)

∣

∣

∣

∣

2

dxdt,

and we try to find out its maximal value

S(ropt) = max
r0>0

S(r0).

In the setting according to [4], S(r0) has a unique maximum

ropt ≈ 1.728
√

Tpc . (8)

Q.#3. Does some explanation exist for (8)?
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Summary

Our method of FRAP data processing, based on full spatio-temporal
data, IBVP formulation and the sensitivity analysis, outperforms
the state-of-the-art methods because it does not use any simplified
assumptions (e.g., homogeneous B.C.).

Using our software CA-FRAP we determine both the diffusion
coefficients mean value and its confidence interval, as well.

The analysis of sensitivity (FIM) leads us to the optimal
experimental design. Experimental factors, e.g., size of the bleach
spot, time interval between measurements, size of the monitored
area (ROI), are set in order to MAXIMIZE SENSITIVITY.
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