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© 1D diffusion-reaction equation



1D problem formulation

One-dimensional form of diffusion-reaction equation:

dy 0%y _
o Pae =0 o
The initial condition is
y(x,m0) = f(x), xe€][0,1]. (2)

The time varying boundary conditions are either of the Dirichlet type

y(O7T) = gO(T)’ Y(lﬂT) = gl(T)’ T 2 7o, (3)
or of the Neumann type

dy

—-p 5(077) = ho(7), ay(lﬂ') = (1), 72> (4)

P ox



Experimental data

Based on FRAP experiments, we have a 2D dataset in form of a table

with (N + 1) rows corresponding to the number of spatial points where
the values are measured, and (m + M + 1) columns with m pre-bleach
and M + 1 post-bleach experimental values forming 1D profiles

)/eXp(X,',TJ'), IZON, _j:—mM

In fact the process is determined by
@ m columns of pre-bleach data containing the information about the
steady state and optical distortion
@ M+ 1 columns of post-bleach data containing the information about
the transport of unbleached particles (due to the diffusion) through
the boundary



FRAP data: spatio-temporal image

Fluorescence intensity (in arbitrary units) vs. Distance [pm].
Experimental data from FRAP experiment with red algae Porphyridium
cruentum describing the phycobilisomes mobility on thylakoid membrane.



© Single parameter estimation problem



Objective function

We construct an objective function Y representing the disparity between
the experimental and simulated time-varying concentration profiles, and
then within a suitable method we look for such a value p minimizing Y.

The usual form of an objective function is the sum of squared differences
between the experimentally measured and numerically simulated
time-varying concentration profiles:

M N
Y(0) = D3 Wexpis 73) — Yaim (i 75, P)I,, (5)
j=0 i=0

where ysim(xi, 7j, p) are the simulated values resulting from the solution
of problem (1)—(4).



Simulated data

We have
x =0, xy=1,
T corresponds to the first post-bleach measurement, and
® Yep(xi,m0), i =0...N, represents the IC,
® Yep(0,75), j=0... M, represents the left Dirichlet BC,
® Yexp(1,75), j=0... M, represents the right Dirichlet BC,

@ the Neumann BC for each j* time instant is determined using the
Fick's first law.
Simulated data ysim(x;, 7}, p) (the solution of (1)—(4)) were found
numerically using the Crank-Nicholson scheme for uniformly distributed
nodes with the space steplength Ah and the variable time steplength A7:

p B B g
—oYi-ijt (1+B)yij— Vil = SYi-1j-1F (1= B)yij-1+ S YiHLi-1-

Here (= ﬁ p and y;; = ysim(Xi,7j, p) are the computed values in
nodes that enter the function Y.



1D optimization problems

We allow the time dependence of fluorescent particles diffusivity, hence
for the minimization problem

Y(p) =D Yi(p) = D> [Vexp(i:75) = Yoim(xi, 7, p))* = min  (6)

>0
=1 j=1 i=0 p

we further consider two cases:
@ Taking both sums for i and j in (6) together. In this case, the scalar
p is a result of minimization problem for Y:

p" = argmin (p)

@ Considering each j time instant separately. In this case, the M
solutions py ... py correspond to each minimization problem for
fixed j in sum (6) and we can observe a 'dynamics’ of diffusion
coefficient p; evolution:

r = inY; j=1...M
pj = argmin i(p)s J
Problem (6) was solved using the methods from the UFO system

http://www.cs.cas.cz/luksan /ufo.html 0
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Test data (theoretical): noise = NO

Test data (theoretical)
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Numerical results: noise = NO

0.322

Test data (theoretical) - results

0.3215[ =
0.3211 4
[ ]

0.3205 N . . . - -

03195 ~ 1
0319 TR g

0.3185[ -

0.318 I I I I I I I I
1

13



Test data (practical): noise = YES

Test data (practical)
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Numerical results: noise

Test data (practical) — results
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Numerical results: with and with

Test data - results
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© Regularization
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lll-posed problem: Necessity of regularization

Our problem is ill-posed in the sense that the solution, i.e. the diffusion
coefficients p; ... py do not depend continuously on the initial
experimental data. This led us to the necessity of using some stabilizing
procedure, formulation of regularized cost functions:

N
2
Yi(pj, Preg, ) = Z Wexp (X, 7j) = ysim(Xis 75, )]+ (pj — Preg)2 (7)
i=0

for j=1... M, where a > 0 is a regularization parameter, and pye, is an
expected value that is dynamically re-calculated with growing j

(Preg := #p; (). Thus it is performed some kind of smoothing between
consecutive values of p;.
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Tikhonov regularization

Values p; and pj(a) are approximate solutions of minimization problems

= in Yi(p; 0 * = in Yi(p;
pj =arg min i(Pj» Preg;0),  p; () arg min 5(Pj, Preg )
Now:
@ It holds
lim pj(a) = pj

@ What we have for a — oo:
--) the variance of solutions p;(«) is diminishing, i.e. pj (&) = preg Vj
-( function values > Yj(pj(a), &) become larger (although there is a
supremum).

We look for such a value o for which both the p(a*) variance (or
£2-norm) and the residuum Y/(p), cf. (5) are 'small enough’.
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L-curve criterion

A plot of a norm of regularized solution versus the corresponding residual
norm is called the L-curve. We plot

@ the value of objective function Y (without the regularization term)

M N

Y(pi(@) . pia(@) = D [Yew(xi:75) = Vaim(xi, 77, P} ()]

j=1 i=1

against

@ the (relative) deviation o of p¥(a) from their average value gp;(a)

1
g =
op; ()

> 57 (@) — 997 ()2

The L-curve optimal parameter o* then usually corresponds to the point
with maximal curvature.
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L-curve in theory by Hansen

An example of the L-curve
1 T T T T T T T

09 4
08|

07

as

L L L L L L L L L
100 101 102 103 104 105 106 107 108 109 110

Y(p)

¥ P.C. Hansen: Rank-Deficient and Discrete Ill-Posed Problems:
Numerical Aspects of Linear Inversion. SIAM, 1997.
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Morozov’s discrepancy principle

Let 5* be a measure of the noise in input data. If we denote

° yg;p(x,-,n) as really measured data with the noise

@ Yexp(xi, 7j) as data that would be measured without the noise
then

M N 5
ZZ |:_yexp XI7TJ _yEXP(Xl'yTj)i| S C(S*

j=1 i=1

where ¢ > 0.

There exists o* such that

= [0%, L(67)]

and this a* is ,,noise" optimal.
Such a solution p;(6*)...py,(6*) is based on the discrepancy principle.

¥ V.A. Morozov: On the solution of functional equations by the
method of regularization. Soviet Math. Dokl., 7 (1966), pp. 414-417.
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Equivalent problems to Tikhonov’s method

Hansen claims: Tikhonov regularization is equivalent to the following two
optimization problems with a nonlinear constraint (note that

Y(p) = Zjl\il Yi(pj) with p = (p1, .. pm)T € RM):

M
p*(0) = arg mpin 1P = Pregll?, Z Yi(p) <6, p=0 (8)
j=1
and
M
p*(0) = arg mplnz st. |lp— pregl® < L(S), p; >0 (9)
j=1

By theory, L-curve is continuous and decreasing which means that both
constraints in (8) and (9) are attained on the boundary. Thus each value
d (specifying the noise) corresponds the value L(§) so that

M
ZYJ pj)=6 & ||p_Preg||2:L(6)
j=1
23
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Results of 3 EQUIVALENT(?!) methods on L-curve plot

Figure 3: Test data with noise: L-curves
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Solution p;

Test data with noise: Solution p; for different o
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Values Y against o

Test data with noise: Values Y against o

Test data — values Y vs.o
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Porphyridium cruentum - solution p;

P.Cruentum-11-11 08: Solution pf for different «
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Porphyridium cruentum - values Y against o

P.Cruentum-11-11 08: Values Y against o

P.Cruentum-11-11 08 - values Y vs.o
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Summary and future prospects

@ Our method improves on other (closed form) models by accounting
for experimentally measured post-bleaching fluorescence profiles and
time-dependent boundary conditions.

@ Due to the ill-posedness and noisy data a suitable regularization
technique and a robust optimization procedure have to be
implemented.

@ The discrepancy principle based methods are appealing because the
experimental FRAP protocol allows an adequate assessment of the
measurement noise.

@ Based on simulation results, cf. Fig. 3, we argue that all three
methods are for the practical purposes equivalent, thus we can
choose the most suitable one...

@ 2D extension of our method (the membrane is 2D) based on FD,
CN.

@ Uncertainty assessment or error analysis, i.e. to assess how the
measurement noise influences the result (in terms of mean and SD).

@ The analysis of sensitivity (Fischer information matrix), should lead
us to the optimal experimental design (time interval between

measurements, size of the bleach spot, etc.). 30
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