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1D problem formulation

One-dimensional form of diffusion-reaction equation:

∂y

∂τ
− p

∂2y

∂x2
= 0. (1)

The initial condition is

y(x , τ0) = f (x), x ∈ [0, 1]. (2)

The time varying boundary conditions are either of the Dirichlet type

y(0, τ) = g0(τ), y(1, τ) = g1(τ), τ ≥ τ0, (3)

or of the Neumann type

− p
∂y

∂x
(0, τ) = h0(τ), p

∂y

∂x
(1, τ) = h1(τ), τ ≥ τ0. (4)



5

Experimental data

Based on FRAP experiments, we have a 2D dataset in form of a table
with (N + 1) rows corresponding to the number of spatial points where
the values are measured, and (m +M + 1) columns with m pre-bleach
and M + 1 post-bleach experimental values forming 1D profiles

yexp(xi , τj), i = 0 . . .N , j = −m . . .M .

In fact the process is determined by

m columns of pre-bleach data containing the information about the
steady state and optical distortion

M +1 columns of post-bleach data containing the information about
the transport of unbleached particles (due to the diffusion) through
the boundary
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FRAP data: spatio-temporal image

Fluorescence intensity (in arbitrary units) vs. Distance [µm].
Experimental data from FRAP experiment with red algae Porphyridium

cruentum describing the phycobilisomes mobility on thylakoid membrane.
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Objective function

We construct an objective function Y representing the disparity between
the experimental and simulated time-varying concentration profiles, and
then within a suitable method we look for such a value p minimizing Y .

The usual form of an objective function is the sum of squared differences
between the experimentally measured and numerically simulated
time-varying concentration profiles:

Y (p) =

M
∑

j=0

N
∑

i=0

[yexp(xi , τj)− ysim(xi , τj , p)]
2
, (5)

where ysim(xi , τj , p) are the simulated values resulting from the solution
of problem (1)–(4).
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Simulated data

We have
x0 = 0, xN = 1,

τ0 corresponds to the first post-bleach measurement, and

yexp(xi , τ0), i = 0 . . .N , represents the IC,

yexp(0, τj), j = 0 . . .M , represents the left Dirichlet BC,

yexp(1, τj), j = 0 . . .M , represents the right Dirichlet BC,

the Neumann BC for each j th time instant is determined using the
Fick’s first law.

Simulated data ysim(xi , τj , p) (the solution of (1)–(4)) were found
numerically using the Crank-Nicholson scheme for uniformly distributed
nodes with the space steplength ∆h and the variable time steplength ∆τ :

−
β

2
yi−1,j +(1+ β)yi ,j −

β

2
yi+1,j =

β

2
yi−1,j−1 +(1− β)yi ,j−1 +

β

2
yi+1,j−1.

Here β = ∆τ
∆h2

p and yi ,j ≡ ysim(xi , τj , p) are the computed values in
nodes that enter the function Y .
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1D optimization problems

We allow the time dependence of fluorescent particles diffusivity, hence
for the minimization problem

Y (p) =

M
∑

j=1

Yj(p) =

M
∑

j=1

N
∑

i=0

[yexp(xi , τj)− ysim(xi , τj , p)]
2
→ min

p>0
(6)

we further consider two cases:
1 Taking both sums for i and j in (6) together. In this case, the scalar

p is a result of minimization problem for Y :

p∗ = argmin
p>0

Y (p)

2 Considering each j th time instant separately. In this case, the M

solutions p1 . . . pM correspond to each minimization problem for
fixed j in sum (6) and we can observe a ’dynamics’ of diffusion
coefficient pj evolution:

p∗j = argmin
p>0

Yj(p), j = 1 . . .M

Problem (6) was solved using the methods from the UFO system

http://www.cs.cas.cz/luksan/ufo.html
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Test data (theoretical): noise = NO
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Numerical results: noise = NO
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Test data (practical): noise = YES
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Numerical results: noise = YES
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Numerical results: with and without noise
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Ill-posed problem: Necessity of regularization

Our problem is ill-posed in the sense that the solution, i.e. the diffusion
coefficients p1 . . . pM do not depend continuously on the initial
experimental data. This led us to the necessity of using some stabilizing
procedure, formulation of regularized cost functions:

Yj(pj , preg , α) =

N
∑

i=0

[yexp(xi , τj)− ysim(xi , τj , pj)]
2
+α (pj − preg )

2 (7)

for j = 1 . . .M , where α ≥ 0 is a regularization parameter, and preg is an
expected value that is dynamically re-calculated with growing j

(preg := øp∗j (α)). Thus it is performed some kind of smoothing between
consecutive values of pj .
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Tikhonov regularization

Values p∗j and p∗j (α) are approximate solutions of minimization problems

p∗j = arg min
pj>0,preg

Yj(pj , preg , 0), p∗j (α) = arg min
pj>0,preg

Yj (pj , preg , α)

Now:

It holds
lim
α→0

p∗j (α) = p∗j

What we have for α → ∞:

:-) the variance of solutions p∗

j (α) is diminishing, i.e. p∗

j (α) ≡ preg ∀j

:-( function values
∑

j
Yj (p

∗

j (α), α) become larger (although there is a
supremum).

We look for such a value α∗ for which both the p∗j (α
∗) variance (or

L2-norm) and the residuum Y (p), cf. (5) are ’small enough’.
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L-curve criterion

A plot of a norm of regularized solution versus the corresponding residual
norm is called the L-curve. We plot

the value of objective function Y (without the regularization term)

Y (p∗1 (α) . . . p
∗

M(α)) =
M
∑

j=1

N
∑

i=1

[

yexp(xi , τj)− ysim(xi , τj , p
∗

j (α))
]2

against

the (relative) deviation σ of p∗j (α) from their average value øp∗j (α)

σ =
1

øp∗j (α)

√

√

√

√

1

M

M
∑

j=1

[p∗j (α)− øp∗j (α)]
2

The L-curve optimal parameter α∗ then usually corresponds to the point
with maximal curvature.
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L-curve in theory by Hansen
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P.C. Hansen: Rank-Deficient and Discrete Ill-Posed Problems:

Numerical Aspects of Linear Inversion. SIAM, 1997.
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Morozov’s discrepancy principle

Let δ∗ be a measure of the noise in input data. If we denote

yδ∗

exp(xi , τj) as really measured data with the noise

yexp(xi , τj) as data that would be measured without the noise

then
M
∑

j=1

N
∑

i=1

[

yδ∗

exp(xi , τj)− yexp(xi , τj)
]2

≤ cδ∗

where c > 0.

There exists α∗ such that

α∗ = [δ∗, L(δ∗)]

and this α∗ is
”
noise“ optimal.

Such a solution p∗1 (δ
∗) . . . p∗M(δ∗) is based on the discrepancy principle.

V.A. Morozov: On the solution of functional equations by the

method of regularization. Soviet Math. Dokl., 7 (1966), pp. 414-417.



23

Equivalent problems to Tikhonov’s method

Hansen claims: Tikhonov regularization is equivalent to the following two
optimization problems with a nonlinear constraint (note that

Y (p) =
∑M

j=1 Yj(pj) with p = (p1, . . . , pM)T ∈ RM):

p∗(δ) = argmin
p

‖p − preg‖
2, st.

M
∑

j=1

Yj(pj) ≤ δ, pj ≥ 0 (8)

and

p∗(δ) = argmin
p

M
∑

j=1

Yj (pj), st. ‖p − preg‖
2 ≤ L(δ), pj ≥ 0 (9)

By theory, L-curve is continuous and decreasing which means that both
constraints in (8) and (9) are attained on the boundary. Thus each value
δ (specifying the noise) corresponds the value L(δ) so that

M
∑

j=1

Yj(pj ) = δ ⇔ ‖p − preg‖
2 = L(δ)
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Results of 3 EQUIVALENT(?!) methods on L-curve plot

Figure 3: Test data with noise: L-curves
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Solution p∗j

Test data with noise: Solution p∗j for different α
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Values Y against σ

Test data with noise: Values Y against σ
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Porphyridium cruentum - solution p∗j

P.Cruentum-11-11 08: Solution p∗j for different α
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Porphyridium cruentum - values Y against σ

P.Cruentum-11-11 08: Values Y against σ
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Summary and future prospects

Our method improves on other (closed form) models by accounting
for experimentally measured post-bleaching fluorescence profiles and
time-dependent boundary conditions.
Due to the ill-posedness and noisy data a suitable regularization
technique and a robust optimization procedure have to be
implemented.
The discrepancy principle based methods are appealing because the
experimental FRAP protocol allows an adequate assessment of the
measurement noise.
Based on simulation results, cf. Fig. 3, we argue that all three
methods are for the practical purposes equivalent, thus we can
choose the most suitable one...

2D extension of our method (the membrane is 2D) based on FD,
CN.
Uncertainty assessment or error analysis, i.e. to assess how the

measurement noise influences the result (in terms of mean and SD).
The analysis of sensitivity (Fischer information matrix), should lead
us to the optimal experimental design (time interval between
measurements, size of the bleach spot, etc.).
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Kaňa R., Matonoha C., Papáček Š., Soukup J.:
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