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FRAP data: spatio-temporal image

Fluorescence intensity (in arbitrary units, averaged along the shorter axis)
vs. Position (along the longer axis) [µm]. Experimental data from FRAP
(Fluorescence Recovery After Photobleaching) experiment with red
algae Porphyridium cruentum describing the phycobilisomes mobility (due
to the DIFFUSION ONLY !?) on thylakoid membrane.
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IBVP – Forward problem formulation

One-dimensional dimensionless (re-scaled) form of diffusion equation:

∂y

∂τ
− p

∂2y

∂x2
= 0, (1)

where y is the re-scaled fluorescent signal, x := r
L
, L is a characteristic

length, τ := t
T
, T is the time interval between two measurements, and

p := D T
L2 is the re-scaled diffusion coefficient.

The initial condition is

y(x , τ0) = f (x), x ∈ [0, 1]. (2)

The time varying boundary conditions are of the Dirichlet type

y(0, τ) = g0(τ), y(1, τ) = g1(τ), τ ≥ τ0, (3)

Note: The Neumann type conditions can also be considered

− p
∂y

∂x
(0, τ) = h0(τ), p

∂y

∂x
(1, τ) = h1(τ), τ ≥ τ0. (4)

Q.#1. What boundary condition to choose?
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Experimental data – 2D dataset

Based on FRAP experiments, we have a 2D dataset in form of a table
with (N + 1) rows corresponding to the number of spatial points where
the values are measured, and (m +M + 1) columns with m pre-bleach
and M + 1 post-bleach experimental values forming 1D profiles

yexp(xi , τj), i = 0 . . .N , j = −m . . .M .

In fact the process is determined by

m columns of pre-bleach data containing the information about the
steady state and optical distortion

M +1 columns of post-bleach data containing the information about
the transport of unbleached particles (due to the diffusion) through
the boundary

Comment: Future goal is to deal with 2D domain, thus the dataset
would be the set of (Ni × Nk)j matrices, j remains the time index.
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Experimental data – Initial and boundary conditions

Initial conditions: τ0 corresponds to the first post-bleach measurement,

yexp(xi , τ0), i = 0 . . .N , represents the IC.

Boundary conditions: After re-scaling, we have x0 = 0, xN = 1, and

yexp(0, τj), j = 0 . . .M , represents the left Dirichlet BC,

yexp(1, τj), j = 0 . . .M , represents the right Dirichlet BC.

Recall: Due to the measurement noise, both the respective j − profiles

yexp(xi , τj), i = 0 . . .N , and the initial and boundary conditions cannot
be simply approximated by a smooth function.

Note: The Neumann BC for each j th time instant is determined using the
Fick’s first law. This is possible thanks to the numerically computed total
flux h(τj) through the boundary. We suppose the symmetry, hence the
total flux is equally divided into the left border (x = 0) and the right
border (x = 1).
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Objective function Y (p)

We construct an objective function Y (p) representing the disparity
between the experimental and simulated time-varying 1D (further 2D)
concentration profiles, and then within a suitable method we look for
such a scalar value p minimizing Y .
The isotropic, time and space independent diffusion is supposed,
nevertheless, we further define a sequence of parameter estimation
problems resulting in the sequence of solutions pj , j beeing the time
index.

The usual form of an objective function is the sum of squared differences
between the experimentally measured and numerically simulated
time-varying concentration profiles:

Y (p) =

M
∑

j=0

N
∑

i=0

[yexp(xi , τj)− ysim(xi , τj , p)]
2
, (5)

where ysim(xi , τj , p) are the simulated values resulting from the solution
of the initial boundary value problem (IBVP) (1-2-3) or (1-2-4).



10

1D global or sequential optimization problem

Taking into account the biological reality residing in possible time
dependence of diffusion coefficients, we further consider two cases for the
minimization problem:

Y (p) =
M
∑

j=1

Yj(p) =
M
∑

j=1

N
∑

i=0

[yexp(xi , τj)− ysim(xi , τj , p)]
2 → min

p
(6)

1 We take both sums for i and j in (6) together. In this case, the
scalar p is a result of minimization problem for Y :

p∗ = argmin
p

Y (p) (6a)

2 We consider each j th time instant separately. In this case, the M

solutions p1 . . . pM correspond to each minimization problem for
fixed j in sum (6) and we can observe a ’dynamics’ of diffusion
coefficient pj evolution:

p∗j = argmin
p

Yj(p), j = 1 . . .M (6b)
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Forward initial boundary value problem

In order to compute a function value Yj(p) in (6) for a given value p, we
need to know both

the experimental values yexp(xi , τj ), i = 0 . . .N , j = 0 . . .M ,

the simulated values ysim(xi , τj , p), i = 0 . . .N , j = 0 . . .M .

It means that in each iteration we need to solve the following IBVP
similar to (1-2-3-4):

∂ysim
∂τ

− p
∂2ysim

∂x2
= 0 (7)

with the initial and Dirichlet boundary conditions defined by the
experimental data:

ysim(x , τ0, p) = yexp(x , τ0), x ∈ [0, 1] (8)

ysim(0, τ, p) = yexp(0, τ), ysim(1, τ, p) = yexp(1, τ), τ ≥ τ0 (9)

Q.#2. How to improve DBC?
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Forward IBVP – numerical scheme

Problem (7-9) was solved numerically for uniformly distributed nodes:

Space steplength: ∆h = 1/N

Time steplength: ∆τ ideally of the same order as ∆h

using the Crank-Nicholson scheme (order ∆τ2 +∆h2):

−β

2
yi−1,j + (1+ β)yi ,j −

β

2
yi+1,j =

β

2
yi−1,j−1 + (1− β)yi ,j−1 +

β

2
yi+1,j−1

Here β = ∆τ
∆h2

p and yi ,j ≡ ysim(xi , τj , p) are the computed values in
nodes that enter the function Y as values ysim(xi , τj , p).

In order to get from the (j − 1)th time instant to the j th, we need to
perform κ ∈ N substeps, where κ is an integer depending on ∆τ .

Q.#3. How to choose κ?
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Basic optimization method

Minimizing Y with respect to p > 0 represents a one-dimensional
optimization problem.
Basic optimization method is an iteration process starting from an initial
point p(0) and generating a sequence of iterates p(1), p(2), . . . leading to a
value p∗ such that

p(l+1) = p(l) + σ(l)d (l),

where

d (l) is a direction vector – is determined on the basis of values

p(j), Y (p(j)), Y ′(p(j)), Y ′′(p(j)), 0 ≤ j ≤ l ,

σ(l) > 0 is a step-length – is determined on the basis of behavior of
the function Y in the neighborhood of p(l).

Q.#4. How to choose p(0)?
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Variable metric method

The most suitable and effective method for solving problem (6) is the
variable metric method (the type of the line-search methods).

The direction vector d (l) is constructed such that

d (l) = −H (l)Y ′(p(l))

where H (l) are symmetric positive definite matrices updated in each
iteration in a recurrent way that approximate the inverse of Hessian
matrices in points p(l).

The step-length σ(l) satisfies the weak Wolfe condition

Y (p(l+1))− Y (p(l)) ≤ ε1σ
(l)d (l)TY ′(p(l)),

ε2d
(l)TY ′(p(l)) ≤ d (l)TY ′(p(l+1))

where 0 < ε1 < ε2 < 1 are independent of l .
The UFO system:

http://www.cs.cas.cz/luksan/ufo.html
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2+1 methods for FRAP data processing

C. W. Moullineax et al., Nature (1997) [1],

J. Ellenberg et al., J. Cell Biol. (1997) [2],

Numerical solution of IBVP (7-9) & Tikhonov regularization based
method [3].

C.W. Moullineaux, M.J. Tobin, G.R. Jones
Mobility of photosynthetic complexes in thylakoid membranes.
Nature, 390:421-–424, 1997.

J. Ellenberg, E.D. Siggia, J.E. Moreira, C.L. Smith, J.F. Presley, H.J.
Worman, J. Lippincott-Schwartz
Nuclear membrane dynamics and reassembly in living cells: targeting
of an inner nuclear membrane protein in interphase and mitosis.
The Journal of Cell Biology, 138:1193-1206, 1997.

Š. Papáček, R. Kaňa, C. Matonoha
Estimation of diffusivity of phycobilisomes on thylakoid membrane
based on spatio-temporal FRAP images.
Mathematical and Computer Modelling, 57: 1907-1912, 2013.
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Method of C. W. Moullineax et al., Nature (1997)

In [1] it is presented:

y(x , t) =
y0,0r0√
r02 + 8Dt

exp
−2x2

r02 + 8Dt
,

as the closed form solution of 1D diffusion PDE. It is correct supposing:

1 infinite domain x ∈ R,

2 Gaussian initial bleaching profile (halfwidth r0 in rel. height e−2),

3 the complete recovery (i.e. y → 0 as t → ∞).

Note: The calculation of diffusion coefficient D was performed in [1] as

the weighted linear regression: a plot of
(

y0,0
y0,t

)2

against time gives a

straight line with the tangent 8D
r02

.
Error analysis based on statistics...
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Statistical vs. Stochastic approach: Assessing uncertainty

Notation: Let F = G ◦ S represent the parameter-to-output map, i.e.
the concatenation of the PDE solution operator S onto the solution
vector y of the underlying system (7-9), i.e. S(p) = yi ,j , and G is the
observation operator.
Then (due to noisy data and model imperfections) the system F (p) = zδ

is replaced by a nonlinear least squares problem:

‖ zδ − F (p) ‖2→ min
p>0

.

How the measurement noise influences the result?
Experimentalists use the statistics...
Our (CM & SP) error analysis (for three FRAP methods) is based on the
evaluation of

the sensitivity matrix: χ = ∂z
∂p , i.e., on the Jacobian matrix of the

output, being evaluated at p∗ (estimated parameters vector), or

Fisher information matrix (FIM): FIM = χTχ.
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Assessing uncertainty (cont. of error analysis)

Let the statistical model for the observation process be the following:

zδj = z(τj ; p
∗) + εj .

Assuming

E [εj ] = 0, var(εj) = σ2
0 < ∞, cov(εj , εk) = 0, for j 6= k ,

we have
E [zδj ] = z(τj ; p

∗), var(zδj ) = σ2
0 .

The standard errors of estimated parameters pk are then

SEk(p
∗) = σ0

√

[χ(p∗)Tχ(p∗)]
−1
kk , 1 ≤ k ≤ q.

The propagation of uncertainty from the observation process (ε) to the
estimated parameter vector is described by:

p ≈ p∗ +
[

χ(p∗)Tχ(p∗)
]−1

χ(p∗)T ε.
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Assessing uncertainty for 3 methods (The End)

The key is the evaluation of the semi-relative sensitivity:

1 (spatial) point Moullineax method:

zM(t) =
y0,0r0√
r02 + 8Dt

,

FIMM =
m
∑

j=1

[

∂zM(tj)

∂D
D

]2

=
m
∑

j=1

[

4y0,0r0Dtj
(r02 + 8Dtj)3/2

]2

.

Integrated Ellenberg method (n spatial points):

zE (τ) = 1− 1√
1 + pπτ

, σE =
σ0√
n

FIME =

m
∑

j=1

[

1
2πpτj

(1 + πpτj )3/2

]2

, SEE (p̂) =
σE√
FIME

.

Full data & numerical method based on [3]: TODO...
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Ill-posedness and Regularization

Problem (6b) is ill-posed in the sense that the solution, i.e. the diffusion
coefficients p1 . . . pM , do not depend continuously on the data. This lead
us to the necessity of using some stabilizing procedure by adding a
regularization term αR(p) to (5). Expecting the minimal variability of pj ,
we have formulated the folowing regularized objective functions:

Yj(pj , preg , α) =

N
∑

i=0

[yexp(xi , τj)− ysim(xi , τj , pj)]
2
+α (pj − preg )

2 (10)

for j = 1 . . .M , where α ≥ 0 is a regularization parameter and preg is an
expected value.
Note: preg is dynamically re-calculated with growing j (preg := øp∗j (α)),
thus it is performed some kind of smoothing between consecutive values
of pj .
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Tikhonov regularization

Values p∗j and p∗j (α) are approximate solutions of two minimization
problems:

p∗j = arg min
pj ,preg

Yj(pj , preg , 0), p∗j (α) = arg min
pj ,preg

Yj(pj , preg , α)

Now:

It holds
lim
α→0

p∗j (α) = p∗j

For α → ∞:

:-) the variance of solutions p∗

j (α) is diminishing, i.e. p∗

j (α) ≡ preg ∀j

:-( function values
∑

j
Yj (p

∗

j (α), preg , α) become larger (although there
is a supremum).

We look for such a value α∗ for which the p∗j (α
∗) variance (or L2-norm)

is ’small enough’.

Q.#5. How to get α∗?
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L-curve: USED FOR VISUALIZATION ONLY!

A plot of a norm of regularized solution versus the corresponding residual
norm is called the L-curve. Further we plot one of

the norm ‖p − preg‖2
the (relative) standard deviation σ

σ =

√

√

√

√

1

M

M
∑

j=1

[p∗j (α)− øp∗j (α)]
2

the coefficient of variation cv = σ
øp∗

j
(α)

versus

the value of objective function Y (without the regularization term)

Y (p∗1 (α) . . . p
∗
M(α)) =

M
∑

j=1

N
∑

i=1

[

yexp(xi , τj)− ysim(xi , τj , p
∗
j (α))

]2
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L-curve in theory [1]
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p re
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α→ 0

α→ ∞

← α = [δ,L(δ)]

← α*

L−curve

Note: The L-curve optimal parameter α∗ corresponds (accordingly to
[1]) to the point with maximal curvature. The more realistic approach is
based on the discrepancy principle.

Per Christian Hansen
Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects

of Linear Inversion.

SIAM, 1997.
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Morozov’s discrepancy principle

Let δ∗ be a measure of the noise in input data. If we denote

yδ∗

exp(xi , τj) as really measured data with the noise

yexp(xi , τj) as data that would be measured without the noise

then
M
∑

j=0

N
∑

i=0

[

yδ∗

exp(xi , τj)− yexp(xi , τj)
]2

≤ Cδ∗

There exists α∗ such that

α∗ = [δ∗, L(δ∗)],

see the previous Figure, and this α∗ is
”
noise“ optimal.

Such a solution p∗1 (δ
∗) . . . p∗M(δ∗) is based on the discrepancy principle.

Q.#6. How to get δ∗?
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Equivalent methods to Tikhonov’s method

Hansen claims that Tikhonov’s regularization is equivalent to the
following two optimization problems with a nonlinear constraint (note

that Y (p) =
∑M

j=1 Yj(pj) with p = (p1, . . . , pM)T ∈ RM):

p∗(δ) = argmin
p

‖p − preg‖2, st. Y (p) ≤ δ, pj ≥ 0 (11)

and

p∗(δ) = argmin
p

Y (p), st. ‖p − preg‖2 ≤ L(δ), pj ≥ 0 (12)

L-curve is continuous and decreasing which means that both constraints
in (11) and (12) are attained on the boundary. Thus each value δ
(specifying the noise) corresponds to the value L(δ) so that

Y (p) = δ ⇔ ‖p − preg‖2 = L(δ)
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Test data without and with an additive Gaussian noise N (0, 1)
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Test data - results for different p(0) and κ

Parameters: α = 1D5, κ = 20 (∆τ = ∆h)

p(0) 1D-6 0.1 1 10
ø{Dj} 0.3926 0.3926 39.455 399.86

||D − Dreg ||
2 1.79D-02 1.79D-02 5.56D-05 2.63D-08

Y 177.33 177.33 1758.74 1830.26
NIT 43 43 1 1
time 1.30 1.37 0.51 0.47

Parameters: α = 1D5, p(0) = 1D-6

κ 3 5 10 20
ø{Dj} 0.3733 0.3918 0.3926 0.3926

||D − Dreg ||
2 1.94D-02 1.76D-02 1.78D-02 1.79D-02

Y 177.72 177.40 177.34 177.33
NIT 33 43 43 43
time 0.28 0.44 0.76 1.30
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Test data - results for inexact Dirichlet boundary condition

Parameters: α = 1D5, p(0) = 1D-6, κ = 100

DBC% 0 10 30 50
ø{Dj} 0.3927 0.4113 0.4103 0.3959

||D − Dreg ||
2 1.79D-02 1.43D-02 1.09D-02 9.44D-03

Y 177.32 174.92 172.58 172.18
NIT 43 46 58 59
time 5.03 5.21 10.82 16.11

Test data with noise - results for inexact DBC:
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Summary

Conclusions:

Our method improves on other (closed form) models by accounting for
the real conditions (without oversimplifications), e.g. for the
experimentally measured post-bleaching fluorescence profiles (i.e. full
data case) and for time-dependent boundary conditions.

We deal with the ill-posed problem (and noisy data) by implementing a
suitable regularization technique and a robust optimization procedure.

We developed both the method for the computation of the mean value of
diffusion coefficient (for the real FRAP measurements with the red algae
Porphyridium cruentum is the range of result 10−14m2s−1 in agreement
with reference values), and the method for numerical estimation of the
standard error of the estimate.

Future prospects:

2D extension of our method (the membrane is 2D...) based on FD, CN
scheme.

The analysis of sensitivity based on Fischer information matrix enables the
optimal experimental design, i.e. we aim in determining the optimal size
of the bleach spot, time interval between measurements, etc.

The deeper theoretical analysis of the uncertainty assessment for the
FRAP measurements.
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