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A general problem

A general nonlinear programming problem with complementarity
constraints can be written in the form

min F(x), ce(x)=0, c(x)<0, cf(x)c(x)=0

where
@ F:R" >R, cc:R" > R™, ¢ :R"— R™
are twice continuously differentiable functions

o | = JUK UL is a disjunctive decomposition of / with
K={ki,....,kp}, L={h,..., 15}

Difficulty
The Mangasarian-Fromowitz constraint qualification is not satisfied at
any feasible point if K #£ (), L # ().

Therefore, special methods have been developed by considering
complementarity constraints ¢l (x)c;(x) = 0 separately.



Complementarity constraints |

@ The expressions themselves can be taken as complementarity pairs:
CK(X) <0, C[_(X) <0,

i (x)e(x) =0, i=1,...,p.

@ One of the constraints can be slacked:
CK(X) — Sk = 07 sk < O? CL(X) < O?

spc(x) =0.

@ Both of the expressions in the constraint can be slacked:

CK(X) — Sk = O? CL(X) —SL= O? sk < O? sL < O?

sps.=0.



Complementarity constraints Il

Case c(x) =xk <0, c(x) =x <0:

@ Relaxation approach where X,ZX/_ = 0 is changed to

Xk XI; > —9, i= ].,. -, P (1)

and the relaxation parameter 6 > 0 is driven to zero.

[Scholtes, Ralph, Wright, Liu, Sun, Ragunathan, Biegler]

@ A different relaxation scheme where, in addition to (1), the
nonpositive bounds are relaxed to

X <0, x; <0

The algorithm drives either 6 or 4, but not both, to zero.

[De Miguel, Friedlander, Nogales, Scholtes]

@ The penalization of the complementarity constraint where the
objective is modified as

F(x) + pxigxe,

for a sequence of increasing penalty parameters p > 0.

[Anitescu, Hu, Ralph, Leyffer, Lopez-Calva, Nocedal] 5



Here, we describe an interior-point method that uses /; exact penalty
function instead of complementarity constraints.

Assumption

In the original problem
min F(x), ce(x) =0, c(x)<0, cf(x)c(x)=0,

where | = JUK UL ={1,...,m}, we assume (to simplify the
description and analysis of the method) without a loss of generality that
E=J=0.



The /; exact penalty function

Thus we are concerned with the problem

min F(x), ck(x) <0, c(x)<0, cf(x)c(x)=0
that can be replaced by the problem

min{F(x) + pci (x)c(x)}, ck(x) <0, c(x) <0

which has the same solution if p > 0 is sufficiently large.

Note that
C| = |: CK :| GRm’,
CL
K = {kl,...,kp}E{l,...,m//2},
L = {Il,...,/p}E{m,/2+1,...,m,},
and p =m;/2.



The interior-point method

The constraints of this problem usually satisfy the M-F constraint
qualification so it can be solved by an interior-point method.

Thus we solve a sequence of the following IP subproblems
min{F(x) + psks. — pe’ In(Sk)e — pe’ In(S.)e}

CK(X)—‘rSK =0, CL(X)+SL:O

where
@ p >0, > 0 are penalty / barrier parameters
@ sk >0, s; > 0 are vectors of slack variables

o Sk = diag(sk), S = diag(st)
If we denote s = (sk,s;), u= (uk, uL), where ux, u; are vectors of
Lagrange multipliers, then the Lagrange function has the form

L(x,s,u) = F(x)+psks. —pe’ In(Sk)e — pe” In(S.)e
+ k(e (x) + sk) + uf (cu(x) +s1)



The KKT conditions

Denoting Uk = diag(uk), UL = diag(ur), and Ak(x) = Vek(x),
AL(x) = Vi (x), we obtain the following necessary KKT conditions

ViL(x,s,u) =0,
Ve L(x,s,u) =0, Vg L(x,s,u)=0,
Vi l(x,s,u) =0, V,L(x,s,u)=0
or
VF(x)+ Ac(X)ux + AL(x)ur = 0 = g(x,u),
SkUke+ pSkSie—pe = 0 = gk(s,u),
SiUie+ pSkSie —pe = 0 = gi(s,u),
ck(x)+sk = 0,
CL(X) + 5 0



The Newton method

Applying the Newton method to this nonlinear system we obtain

I G(x,u)
0

where

G(x,u

0
Uk + pStL
pSL

0 AK (X)
pSk Sk
U+ pSK 0

g(x, u)
gK(Sa U)
- gL(Sa U)
Ck + Sk
cL+ S

)+ Z u,Vzc,

ieEK

A[_(X) 7
0
St

+ZUV2C,

ieL

Ax 7

ASK
AS/_
AUK

Aup |
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The iteration process

The interior-point method for nonlinear programming with
complementarity constraints can be roughly described in the form

@ Given vectors x € R", sk € RP, s, € RP, ux € RP, uy € RP such
that sk > 0, s; > 0 and parameters u >0, p > 0.

@ We determine direction vectors Ax, Ask, As;, Auk, Aup by
solving linear system equivalent to above.

© We choose a step-length o > 0.
Q Set

X = x + alx, sk = sk + alsk, s, :=5s + alsp,
uk ‘= ux + alAuk, up:=u +alug

© We determine new parameters p > 0, p > 0.

11



Symmetric form

Our system of linear equations is nonsymmetric but it can be easily
transformed to the symmetric form

G 0 A/ [ Ax g
0o Mo Asp | =—| S'a
AT 10 | | Ay a+ s
where
8k | SK Uk
A=Ak, A = = =
1 =[Ak,ALl, & [gL_,S/ |:5L]’ u |:UL:|
and
V-1 [ S (Uk + pSL) pl ]
! pl S (UL + pSk)

12



Elimination of vector As,

This system can be further simplified by the elimination of vector As;.
Using the second equation, we obtain

As; = —M(Au + S gr),

which after substitution into the third equation gives

G A/ Ax o g
A/T —M, Aup | ¢+ s — M/Sflgl
—_—

w

13



Lemma

Lemma

Assume that the diagonal matrix
Dk = D; = UxU; + p(UKSK aF ULSL)
is nonsingular. Then

M — Dk 0 17! Sk(UL + pSk) —pSkSL
! 0 D —pSkSL St(Uk + pSi)

If diagonal matrices Sk, S;, Uk, U, are positive definite, then also M; is
positive definite.

14



Solving the linear system

Linear system

G Al Ax o g
Al =M, Aup | cr+s —MS g

with the matrix

— G Al (n+my)x(n+my)
=l ]

can be solved

@ either directly by the Bunch-Parlett decomposition (since matrix W
is indefinite when M, is positive semidefinite

@ or iteratively by the PCGM preconditioned by the matrix

[ D A
C—[Af —M}

where D is a positive definite diagonal matrix approximating G (e.g.
a diagonal of G) and N is a suitable matrix. We assume that the

matrix C is nonsingular. 5



The choice of N,

We consider two cases for N,.
Q First, let

-1
NI = MI = |: DK 0 :| |: SK(UL+pSK) _pSKSL :|

0 D, *pSKSL SL(UK + pSL)

In this case, preconditioner C has advantageous properties but a
disadvantage is that matrix M, can be indefinite.

@ This fact motivated us to use a positive diagonal of M.
Nevertheless, preconditioner C with

s [ D'Sk(UL + pSk) 0
N; = diag(M;) = [ 0 D; 'S (Uk + pS1)

has not excellent properties as the previous one and computational
efficiency is also lower in comparison with the choice N; = M.

16



The case N, = M, |

The following theorems demonstrate advantageous properties of
preconditioner C with the choice N; = M;.

[Luksan, Matonoha, Vi¢ek; NLAA 2004]

Theorem 1

Matrix WC~1 has at least m; unit eigenvalues with m; corresponding
linearly independent eigenvectors. Remaining eigenvalues of WC~! are
eigenvalues of matrix GD ™!, where

G=G+AMIAl, D=D+AMA.
If matrices G, D > 0, then all eigenvalues of WC™1 are positive.

Theorem 2

The dimension of the Krylov subspace defined by matrix WC~1 is at
most n + 1.

17



The case N, = M, 11

Theorem 3

Consider the CGM with preconditioner C applied to our system. Assume
that G, D > 0 and choose the initial estimation of Ax in such a way that
the second equation is satisfied accurately, e.g. set

Ax = —DflA/(A,TDilA/)il(C/ + s — MIS/_lgI)

Then:

@ Vector Ax* (the first part of the solution) is found after n iterations
at most.

@ Algorithm cannot fail before Ax* is found.

@ The norm ||Ax — Ax*|| converges to zero at least R-linearly with a

quotient ﬁ;i, where £ is the spectral condition number of matrix
GD .

o If Ax = Ax*, then also Au; = Auj.

18



Having computed directions Ax, As;, Auj, we need to select a suitable
stepsize o for computing new vectors

xT

+
S

+
u

= x+ min(, ax)Ax
= s+ min(a, @s)Asy,
= u + min(a,@,)Au,

where @y, @s, o, > 0 are suitable sufficiently large upper bounds.

Usually, a merit function P(a)) with P’(0) < O is used for this purpose
and a stepsize « is chosen in such a way that

o= F min(1,a)

where 0 < 8 < 1, and j > 0 is the lowest integer for which P(«) < P(0).
We use the following merit function.

[Luksan, Vigek; NLAA 1998]
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Merit function

P(a)

F(x + aAx)
(uk + Auk) " (ck(x + ax) + sk + alsk)

(ug 4+ Aup) " (cr(x 4+ alx) + s; + als;)

+ o+ o+

p(sk + Ask) T (st + als) + p(s. + Asy) T (sk + alsk)

— pe'In(Sk + alASk)e — pe” In(S. + aAS;)e
+ %HCK(x—f—an)—i—sK + alsk||?
+ %||CL(x+an)+sL+aAsL||2

where p >0, p >0, 0 > 0.

The following theorem holds.

20



Theorem

Let Uk + pS. >0, UL + pSk > 0 and let the pair Ax, Au; be an
inexact solution of our system so that

G AI Ax g — 4
[A,T —I\/I,] |:Au,:|+[c,+sl—/\/l/5,1g/]_[rl:|7 @

where r” = [rf, r[]. If
o> —o(Ax, Ask, As;, G, ck(x), cL(x), Sk, SL, Uk, UL, ) (3)
and if (2) is solved with a sufficient precision, namely if
AxTr+o(ck+sk) e +ola+s) e <7(...) (4)

then P’(0) < 0.

21



A new penalty parameter o

Merit function P(«) contains a new penalty parameter o. Condition (3)
restricts the choice of parameter o weakly. If matrix G = 0, any value
o > 0 satisfies this condition.

Inequality (3) gives one possibility for the computation of parameter o,
which implies P’(0) < 0 if (4) holds.

But it is usually more efficient for practical computation to choose
parameter o as a constant and replace matrix G by a positive definite
diagonal matrix D if condition P’(0) < 0 does not hold.

If D is the same as in preconditioner C, then WC—! = | and we obtain
the solution of our linear system in the first CG step.

22



Upper bounds |

Now we focus on the determination of upper bounds @y, @, a,.
@ We usually set .
_ A
« =
T lAx]

where value A is used as a safeguard against possible overflows.
@ The upper bound @, assures positivity of s,+. Thus we should set

as < aﬁ”, where

. S
Egl) =7 min -
i€l, As;<0 As;

and 0 < 7 < 1 is a coefficient close to unit.

@ Unfortunately, the same idea cannot be used for Lagrange
multipliers, since they can be negative if complementarity
constraints are not satisfied.

23



Upper bounds Il

Instead of inequality u,+ > 0, we need to assure inequalities
Ui +pSt >0, U +pSE>0 (5)

used in previous Theorem. These inequalities restrict both @ and @,,.
Thus we set

a, = as = min(@V, a? a)

£2) =7 min ( Uk TPy )

1<i<p Auk,. =+ pAS/,.
Aukl.+/)AS/,.<0

a?) =7 min ( Uitk )

1<i<p AU/,. =+ pASk,.
AU/i—FpASki <0

where

=]

Note that (5) imply
Ut +p"S >0, Uf+ptSE>0

for every p* > p, so we can increase p in the next iteration.
24



Global convergence

@ If the interior-point subproblems are solved with a sufficient precision
and parameters 1 and p are updated by a suitable way, then the
interior-point method for nonlinear programming with
complementarity constraints is globally convergent.

[Leyffer, Lopez-Calva, Nocedal]

@ Unfortunately, the strict rules for updating p and p are not suitable
for large problems with sparse matrices (since it is difficult to solve a
large interior-point subproblem with a sufficient precision).

@ Therefore, we use different strategies based on heuristic formulas
which have been verified by computational experiments.

25



Update of 4 |

Our implementation of interior-point methods chooses the value p in
such a way that

si(uk + ps.) + s/ (uL + PSK)>
my

[ = max (Hv A

where 11 > 0 is a small lower bound for the barrier parameter which
serves as a safeguard and 0 < A < 1.

This choice corresponds to a usual strategy used for standard nonlinear
programming problems (where p = 0).

Computational experiments have shown that the algorithm performs best
when components

sk (uk +psi),  si(uy +psi), 1<i<p,
of the dot-product in numerator approach zero at a uniform rate.

26



Update of Il

The distance from uniformity can be measured by the ratio

mini <;<p[sk (uk + psi) + s, (v + psk;)]

v=2p
t?:l[ski(uki + psli) + s/i(u/i + pski)]

(also called the centrality measure). Clearly, 0 < v < 1.

The value X is then computed by using v. Heuristic formulas are usually
used for this purpose. In our implementation, we have used the formula

1-v .\’
A=0.1min{——,2
0 mm(QOy’)

[Vanderbei, Shanno]
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Update of p

Parameter p should be increased if |/ (x)c.(x)| (the violation of
complementarity constraints) is much larger than ||c?(x)||, where

c?(x) = max(ci(x),0), i€l

1

We use the condition
ek (x)er(x)] < pmax(1078, |[<P[])

where p > 0 is a suitable constant.
@ If this inequality holds, we set

@ In the opposite case, we set

p* = min(yp,p)
where v > 1 is a suitable coefficient and p > 0 is a large upper
bound which serves as a safeguard.
28



Update of o

Concerning parameter o, we use a small constant value. If P/(0) > 0,
than o is not increased, but the iteration is restarted with G replaced by
D, i.e. we solve

W= D A Ax | g
A —Mm Aup | a+s—MS g
with preconditioner

[ D A
C—{Af —M

and N, = M. It holds WC~! = | and we obtain the solution in the first
CG step.

29



The algorithm |

@ Minimum precision for the direction determination 0 < w < 1.
Line-search parameter 0 < 3 < 1.
Maximum step-length reduction 0 < 7 < 1.

Lower bound for the barrier parameter p > 0.

Upper bound for the exact penalty parameter 5 > 0.
Rate of the exact penalty parameter increase +y.

9
°
°
@ Level for changing the exact penalty parameter p > 0.
9
°
@ Step bound A > 0.

Input:
@ Sparsity pattern of matrices V2F and A;.

@ Initial choice of vector x.

30



The algorithm 11

Step 1. Initiation:
@ Choose the values pu,p,0 >0 (e.g. u=1, p=1, 0 =0.01).
@ For i€l set s;:=max(—ci(x),0s) and u;:=J,, where ds,d, >0
(e.g. 95 =0.1, §, =0.1).
@ Compute value F(x) and vector ¢;(x). Set k := 0.

Step 2. Termination:
@ Compute matrix A; := A;(x) and vector g := g(x, u).
@ If complementarity constraints and KKT conditions are satisfied with
a sufficient precision and p is sufficiently small, terminate the
computation; otherwise set k := k + 1.

Step 3. Approximation of the Hessian matrix:

@ Compute approximation G of the Hessian matrix G(x, u) by using
differences of gradient g(x, u).
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The algorithm 111

Step 4. Direction determination:

@ Build linear system with matrix W and choose a suitable
preconditioner C.

@ Determine positive definite diagonal matrix D as an approximation
of the diagonal of G and factorize the matrix AT D=*A; + N, by
using the complete or incomplete Gill-Murray decomposition to
obtain a representation of C~1.

o Set w = min(||g||,1/k, ).

@ Determine direction vectors Ax, Au; as an inexact solution of the
linear system (with the precision w) by using a preconditioned
Krylov-subspace method.

@ Compute vector As;.
@ Compute directional derivative P’(0) of the merit function P(«).

32



The algorithm 1V

Step 5. Restart:

o If P/(0) > 0, determine positive definite diagonal matrix D, set
G = D and go to Step 4.

Step 6. Step-length selection:
@ Define maximum step-lengths @, as, @,.
@ Find the minimum integer / > 0 such that P(B'a) < P(0).
o Set o = fla.
o Set x :=x", s/ := s/, u:=u, where x™, 5", u are new vectors.
°

Compute value F(x) and vector ¢;(x).

Step 7. Parameters update:
@ Determine new p using A and new p.
@ Go to Step 2.

33



The problems

The algorithm was tested by using a set of 18 test problems with 100
variables. This set was obtained by a modification of test problems for
equality constrained minimization given in

[Lukgan, Vigek, TR 1998]
(Test18), which can be downloaded from
http://www.cs.cas.cz/luksan/test.html

In our set, equalities ¢;(x) =0, 1 < i < m, are replaced by
complementarity constraints

ci(x) <0, ciyp(x) <0,

Gi(x)ciyp(x) =0, 1<i<p=m/2

We have used preconditioner C with N; = M in our tests (preconditioner
C with N; = diag(M,) gave worse results).

34



Columns of the table

The results of the tests are listed in following table, where
@ NIT is the number of iterations,
@ NFV is the number of function evaluations,

@ NFG is the number of gradient evaluations (NFG is greater than
NFV since the second order derivatives are computed by using
gradient differences),

@ NCG is the number of CG iterations,

@ the last row contains

o summary results for all of 18 problems together with
o the total number of restarts NRS
@ and the total computational time.
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P | NIT NFV NFG NCG F Il | Ikl lell
1 35 35 210 977 3.98714 0.0 0.3E-13  0.1E-11
2 71 71 094 8354 2084.88 0.9E-12  0.3E-08  0.2E-09
3 12 12 72 41 14.1685 0.0 0.4E-21  0.6E-06
4 33 34 198 165 454.645 0.2E-14  0.2E-20  0.4E-09
5 46 55 460 465  4.890021E-01 0.0 0.6E-11  0.1E-06
6 19 19 266 88 6037.6532 0.4E-15 0.2E-29  0.5E-08
7 16 16 112 29 -34.9980 0.0 0.3E-25  0.3E-09
8 128 189 896 1858 9743.49 0.4E-15 0.9E-14 0.1E-08
9 | 450 2007 3157 5011 9.99304 0.3E-01 0.1E-05 0.2E-03
10 13 13 78 64 2.23397 0.6E-16 0.1E-11  0.3E-10

11 74 75 444 8471  1.663530E-16  0.5E-11  0.1E-16  0.6E-09
12 33 33 231 2928  3.748598E-11 0.0 0.1E-10  0.2E-10

13 39 102 312 1928 339.382 0.0 0.4E-27  0.4E-08
14 72 72 504 3544  2.141127E-21 0.0 0.2E-19  0.4E-15
15 126 128 756 13551  1.083434E-17 0.0 0.6E-17  0.6E-12
16 42 49 210 4848  2.846946E-17 0.0 0.2E-17  0.1E-14
17 32 42 160 2278 29.4314 0.2E-12 0.9E-13  0.8E-07
18 108 146 540 3849 32.5028 0.5E-64 0.9E-11  0.4E-07
> 1349 3098 9600 59349 NRS = 63 TIME = 1.72
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Conclusion

The results proposed in previous table imply several conclusions:

@ The idea used in this report seems to be reasonable. The algorithm
solved all problems except Problem 9 with a sufficient precision.
Problem 9 was solved after changing several parameters (p, p and ).

@ Linear system with matrix W is usually worse conditioned than
similar system obtained by interior-point methods for standard
nonlinear programming problems. Thus the number of CG iterations
is larger in comparison with problems where complementarity
constraints are not present.

@ We have used a simple procedure for updating the exact penalty
parameter p and have observed that the efficiency of the method
strongly depends on parameters p, p and . For this reason, the
efficiency of our algorithm could be increased by using more
sophisticated procedure, which could be the main field for future
research.
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MacMPEC collection

The algorithm was also tested by using the problems from the MacMPEC
collection

http://wiki.mcs.anl.gov/leyffer/index.php/MacMPEC

The selected problems were those with classification
@ OO - general objective with general constraints
@ QQ - quadratic objective with quadratic constraints
@ QO - quadratic objective with general constraints

Our preliminary computational experiments show that the algorithm
solved nearly half of problems (12/29). The main task for future research
is to improve our algorithm and find more sophisticated procedures for
updating parameters g, o, 4.
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